Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (898)

Search Parameters:
Keywords = opportunity fuels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1832 KiB  
Review
Breaking the Traffic Code: How MaaS Is Shaping Sustainable Mobility Ecosystems
by Tanweer Alam
Future Transp. 2025, 5(3), 94; https://doi.org/10.3390/futuretransp5030094 - 1 Aug 2025
Viewed by 184
Abstract
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and [...] Read more.
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and improving the user experience. This review critically examines the role of MaaS in fostering sustainable mobility ecosystems. MaaS aims to enhance user-friendliness, service variety, and sustainability by adopting a customer-centric approach to transportation. The findings reveal that successful MaaS systems consistently align with multimodal transport infrastructure, equitable access policies, and strong public-private partnerships. MaaS enhances the management of routes and traffic, effectively mitigating delays and congestion while concurrently reducing energy consumption and fuel usage. In this study, the authors examine MaaS as a new mobility paradigm for a sustainable transportation system in smart cities, observing the challenges and opportunities associated with its implementation. To assess the environmental impact, a sustainability index is calculated based on the use of different modes of transportation. Significant findings indicate that MaaS systems are proliferating in both quantity and complexity, increasingly integrating capabilities such as real-time multimodal planning, dynamic pricing, and personalized user profiles. Full article
Show Figures

Figure 1

38 pages, 1308 KiB  
Review
Mitochondrial Metabolomics in Cancer: Mass Spectrometry-Based Approaches for Metabolic Rewiring Analysis and Therapeutic Discovery
by Yuqing Gao, Zhirou Xiong and Xinyi Wei
Metabolites 2025, 15(8), 513; https://doi.org/10.3390/metabo15080513 - 31 Jul 2025
Viewed by 190
Abstract
Mitochondria, pivotal organelles in cellular metabolism and energy production, have emerged as critical players in the pathogenesis of cancer. This review outlines the progress in mitochondrial profiling through mass spectrometry-based metabolomics and its applications in cancer research. We provide unprecedented insights into the [...] Read more.
Mitochondria, pivotal organelles in cellular metabolism and energy production, have emerged as critical players in the pathogenesis of cancer. This review outlines the progress in mitochondrial profiling through mass spectrometry-based metabolomics and its applications in cancer research. We provide unprecedented insights into the mitochondrial metabolic rewiring that fuels tumorigenesis, metastasis, and therapeutic resistance. The purpose of this review is to provide a comprehensive guide for the implementation of mitochondrial metabolomics, integrating advanced methodologies—including isolation, detection, and data integration—with insights into cancer-specific metabolic rewiring. We first summarize current methodologies for mitochondrial sample collection and pretreatment. Furthermore, we then discuss the recent advancements in mass spectrometry-based methodologies that facilitate the detailed profiling of mitochondrial metabolites, unveiling significant metabolic reprogramming associated with tumorigenesis. We emphasize how recent technological advancements have addressed longstanding challenges in the field and explore the role of mitochondrial metabolism-driven cancer development and progression for novel drug discovery and translational research applications in cancer. Collectively, this review delineates emerging opportunities for therapeutic discovery and aims to establish a foundation for future investigations into the therapeutic modulation of mitochondrial pathways in cancer, thereby paving the way for innovative diagnostic and therapeutic approaches targeting mitochondrial pathways. Full article
(This article belongs to the Topic Overview of Cancer Metabolism)
Show Figures

Figure 1

30 pages, 7897 KiB  
Review
Recent Progress of 2D Pt-Group Metallic Electrocatalysts for Energy-Conversion Applications
by Ziyue Chen, Yuerong Wang, Haiyan He and Huajie Huang
Catalysts 2025, 15(8), 716; https://doi.org/10.3390/catal15080716 - 27 Jul 2025
Viewed by 495
Abstract
With the rapid growth of energy demand, the development of efficient energy-conversion technologies (e.g., water splitting, fuel cells, metal-air batteries, etc.) becomes an important way to circumvent the problems of fossil fuel depletion and environmental pollution, which motivates the pursuit of high-performance electrocatalysts [...] Read more.
With the rapid growth of energy demand, the development of efficient energy-conversion technologies (e.g., water splitting, fuel cells, metal-air batteries, etc.) becomes an important way to circumvent the problems of fossil fuel depletion and environmental pollution, which motivates the pursuit of high-performance electrocatalysts with controllable compositions and morphologies. Among them, two-dimensional (2D) Pt-group metallic electrocatalysts show a series of distinctive architectural merits, including a high surface-to-volume ratio, numerous unsaturated metal atoms, an ameliorative electronic structure, and abundant electron/ion transfers channels, thus holding great potential in realizing good selectivity, rapid kinetics, and high efficiency for various energy-conversion devices. Considering that great progress on this topic has been made in recent years, here we present a panoramic review of recent advancements in 2D Pt-group metallic nanocrystals, which covers diverse synthetic methods, structural analysis, and their applications as electrode catalysts for various energy-conversion technologies. At the end, the paper also outlines the research challenges and future opportunities in this emerging area. Full article
Show Figures

Graphical abstract

48 pages, 4145 KiB  
Review
A Review on the State-of-the-Art and Commercial Status of Carbon Capture Technologies
by Md Hujjatul Islam and Shashank Reddy Patlolla
Energies 2025, 18(15), 3937; https://doi.org/10.3390/en18153937 - 23 Jul 2025
Viewed by 402
Abstract
Carbon capture technologies are largely considered to play a crucial role in meeting the climate change and global warming target set by Net Zero Emission (NZE) 2050. These technologies can contribute to clean energy transitions and emissions reduction by decarbonizing the power sector [...] Read more.
Carbon capture technologies are largely considered to play a crucial role in meeting the climate change and global warming target set by Net Zero Emission (NZE) 2050. These technologies can contribute to clean energy transitions and emissions reduction by decarbonizing the power sector and other CO2 intensive industries such as iron and steel production, natural gas processing oil refining and cement production where there is no obvious alternative to carbon capture technologies. While the progress of carbon capture technologies has fallen behind expectations in the past, in recent years there has been substantial growth in this area, with over 700 projects at various stages of development. Moreover, there are around 45 commercial carbon capture facilities already in operation around the world in different industrial processes, fuel transformation and power generation. Carbon capture technologies including pre/post-combustion, oxyfuel and chemical looping combustion have been widely exploited in the recent years at different Technology Readiness level (TRL). Although, a large number of review studies are available addressing different carbon capture strategies, however, studies related to the commercial status of the carbon capture technologies are yet to be conducted. In this review article, we summarize the state-of-the-art of different carbon capture technologies applied to different emission sources, focusing on emission reduction, net-zero emission, and negative emission. We also highlight the commercial status of the different carbon capture technologies including economics, opportunities, and challenges. Full article
Show Figures

Graphical abstract

19 pages, 2143 KiB  
Article
Biofuels Production Using Structured Catalyst in Fischer–Tropsch Synthesis
by Yira Hurtado, Iván D. Mora-Vergara and Jean-Michel Lavoie
Energies 2025, 18(14), 3846; https://doi.org/10.3390/en18143846 - 19 Jul 2025
Viewed by 390
Abstract
The biomass-to-liquid process is a promising alternative for sustainably meeting the growing demand for liquid fuels. This study focuses on the fabrication, characterization, and performance of a structured iron catalyst for producing hydrocarbons through Fischer–Tropsch synthesis (FTS). The catalyst was designed to address [...] Read more.
The biomass-to-liquid process is a promising alternative for sustainably meeting the growing demand for liquid fuels. This study focuses on the fabrication, characterization, and performance of a structured iron catalyst for producing hydrocarbons through Fischer–Tropsch synthesis (FTS). The catalyst was designed to address some drawbacks of conventional supported catalysts, such as low utilization, poor activity, and instability. The experimental investigation involved the manufacturing and characterization of both promoted and unpromoted iron-based catalysts. The performance of the structured iron catalyst was assessed in a fixed-bed reactor under relevant industrial conditions. Notably, the best results were achieved with a syngas ratio typical of the gasification of lignocellulosic biomass, where the catalyst exhibited superior catalytic activity and selectivity toward desired hydrocarbon products, including light olefins and long-chain paraffins. The resulting structured catalyst achieved up to 95% CO conversion in a single pass with 5% selectivity for CH4. The results indicate that the developed structured iron catalyst has considerable potential for efficient and sustainable hydrocarbon production via the Fischer–Tropsch synthesis. The catalyst’s performance, enhanced stability, and selectivity present promising opportunities for its application in large-scale hydrocarbon synthesis processes. Full article
Show Figures

Figure 1

15 pages, 924 KiB  
Article
Excessive Smoke from a Neighborhood Restaurant Highlights Gaps in Air Pollution Enforcement: Citizen Science Observational Study
by Nicholas C. Newman, Deborah Conradi, Alexander C. Mayer, Cole Simons, Ravi Newman and Erin N. Haynes
Air 2025, 3(3), 20; https://doi.org/10.3390/air3030020 - 18 Jul 2025
Viewed by 413
Abstract
Regulatory air pollution monitoring is performed using a sparse monitoring network designed to provide background concentrations of pollutants but may miss small area variations due to local emission sources. Low-cost air pollution sensors operated by trained citizen scientists provide an opportunity to fill [...] Read more.
Regulatory air pollution monitoring is performed using a sparse monitoring network designed to provide background concentrations of pollutants but may miss small area variations due to local emission sources. Low-cost air pollution sensors operated by trained citizen scientists provide an opportunity to fill this gap. We describe the development and implementation of an air pollution monitoring and community engagement plan in response to resident concerns regarding excessive smoke production from a neighborhood restaurant. Particulate matter (PM2.5) was measured using a low-cost, portable sensor. When cooking was taking place, the highest PM2.5 readings were within 50 m of the source (mean PM2.5 36.9 µg/m3) versus greater than 50 m away (mean PM2.5 13.0 µg/m3). Sharing results with local government officials did not result in any action to address the source of the smoke emissions, due to lack of jurisdiction. A review of air pollution regulations across the United States indicated that only seven states regulate food cookers and six states specifically exempted cookers from air pollution regulations. Concerns about the smoke were communicated with the restaurant owner who eventually changed the cooking fuel. Following this change, less smoke was observed from the restaurant and PM2.5 measurements were reduced to background levels. Although current environmental health regulations may not protect residents living near sources of food cooker-based sources of PM2.5, community engagement shows promise in addressing these emissions. Full article
Show Figures

Figure 1

27 pages, 2729 KiB  
Review
Polymer Composite-Based Triboelectric Nanogenerators: Recent Progress, Design Principles, and Future Perspectives
by Geon-Ju Choi, Sang-Hyun Sohn, Se-Jin Kim and Il-Kyu Park
Polymers 2025, 17(14), 1962; https://doi.org/10.3390/polym17141962 - 17 Jul 2025
Viewed by 465
Abstract
The escalating consumption of fossil fuels and the rapid development of portable electronics have increased interest in alternative energy solutions that can sustainably self-power wearable devices. Triboelectric nanogenerators (TENGs), which convert mechanical energy into electricity through contact electrification and electrostatic induction, have emerged [...] Read more.
The escalating consumption of fossil fuels and the rapid development of portable electronics have increased interest in alternative energy solutions that can sustainably self-power wearable devices. Triboelectric nanogenerators (TENGs), which convert mechanical energy into electricity through contact electrification and electrostatic induction, have emerged as a promising technology due to their high voltage output, lightweight design, and simple fabrication. However, the performance of TENGs is often limited by a low surface charge density, inadequate dielectric properties, and poor charge retention of triboelectric materials. To address these challenges, recent research has focused on the use of polymer composites that incorporate various functional fillers. The filler materials play roles in improving dielectric performance and enhancing mechanical durability, thereby boosting triboelectric output even in harsh environments, while also diminishing charge loss. This review comprehensively examines the role of polymer composite design in TENG performance, with particular emphasis on materials categorized by their triboelectric polarity. Tribo-negative polymers, such as PDMS and PVDF, benefit from filler incorporation and phase engineering to enhance surface charge density and charge retention. By contrast, tribo-positive materials like nylon and cellulose have demonstrated notable improvements in mechanical robustness and environmental stability through composite strategies. The interplay between material selection, surface engineering, and filler design is highlighted as a critical path toward developing high-performance, self-powered TENG systems. Finally, this review discusses the current challenges and future opportunities for advancing TENG technology toward practical and scalable applications. Full article
(This article belongs to the Special Issue Advances in Polymer Composites for Nanogenerator Applications)
Show Figures

Figure 1

18 pages, 522 KiB  
Article
Rural Entrepreneurs and Forest Futures: Pathways to Emission Reduction and Sustainable Energy
by Ephraim Daka
Sustainability 2025, 17(14), 6526; https://doi.org/10.3390/su17146526 - 16 Jul 2025
Viewed by 257
Abstract
Rural areas around the world are increasingly dealing with energy and environmental challenges. These challenges are particularly acute in developing countries, where persistent reliance on traditional energy sources—such as wood fuel—intersects with concerns about forest conservation and energy sustainability. While wood fuel use [...] Read more.
Rural areas around the world are increasingly dealing with energy and environmental challenges. These challenges are particularly acute in developing countries, where persistent reliance on traditional energy sources—such as wood fuel—intersects with concerns about forest conservation and energy sustainability. While wood fuel use is often portrayed as unsustainable, it is important to acknowledge that much of it remains ecologically viable and socially embedded. This study explores the role of rural entrepreneurs in shaping low-carbon transitions at the intersection of household energy practices and environmental stewardship. Fieldwork was carried out in four rural Zambian communities in 2016 and complemented by 2024 follow-up reports. It examines the connections between household energy choices, greenhouse gas emissions, and forest resource dynamics. Findings reveal that over 60% of rural households rely on charcoal for cooking, with associated emissions estimated between 80 and 150 kg CO2 per household per month. Although this is significantly lower than the average per capita carbon footprint in industrialized countries, such emissions are primarily biogenic in nature. While rural communities contribute minimally to global climate change, their practices have significant local environmental consequences. This study draws attention to the structural constraints as well as emerging opportunities within Zambia’s rural energy economy. It positions rural entrepreneurs not merely as policy recipients but as active agents of innovation, environmental monitoring, and participatory resource governance. A model is proposed to support sustainable rural energy transitions by aligning forest management with context-sensitive emissions strategies. Full article
Show Figures

Figure 1

34 pages, 2504 KiB  
Review
Review of Challenges in Heat Exchanger Network Development for Electrified Industrial Energy Systems
by Stanislav Boldyryev, Oleksandr S. Ivashchuk, Goran Krajačić and Volodymyr M. Atamanyuk
Energies 2025, 18(14), 3685; https://doi.org/10.3390/en18143685 - 12 Jul 2025
Viewed by 368
Abstract
Shifting towards electrified industrial energy systems is pivotal for meeting global decarbonization objectives, especially since process heat is a significant contributor to greenhouse gas emissions in the industrial sector. This review examines the changing role of heat exchanger networks (HENs) within electrified process [...] Read more.
Shifting towards electrified industrial energy systems is pivotal for meeting global decarbonization objectives, especially since process heat is a significant contributor to greenhouse gas emissions in the industrial sector. This review examines the changing role of heat exchanger networks (HENs) within electrified process industries, where electricity-driven technologies, including electric heaters, steam boilers, heat pumps, mechanical vapour recompression, and organic Rankine cycles, are increasingly supplanting traditional fossil-fuel-based utilities. The analysis identifies key challenges associated with multi-utility integration, multi-pinch configurations, and low-grade heat utilisation that influence HEN design, retrofitting, and optimisation efforts. A comparative evaluation of various methodological frameworks, including mathematical programming, insights-based methods, and hybrid approaches, is presented, highlighting their relevance to the specific constraints and opportunities of electrified systems. Case studies from the chemicals, food processing, and cement sectors demonstrate the practicality and advantages of employing electrified heat exchanger networks (HENs), particularly in terms of energy efficiency, emissions reduction, and enhanced operational flexibility. The review concludes that effective strategies for the design of HENs are crucial in industrial electrification, facilitating increases in efficiency, reductions in emissions, and improvements in economic feasibility, especially when they are integrated with renewable energy sources and advanced control systems. Future initiatives must focus on harmonising technical advances with system-level resilience and economic sustainability considerations. Full article
Show Figures

Figure 1

21 pages, 1404 KiB  
Project Report
Implementation Potential of the SILVANUS Project Outcomes for Wildfire Resilience and Sustainable Forest Management in the Slovak Republic
by Andrea Majlingova, Maros Sedliak and Yvonne Brodrechtova
Forests 2025, 16(7), 1153; https://doi.org/10.3390/f16071153 - 12 Jul 2025
Viewed by 230
Abstract
Wildfires are becoming an increasingly severe threat to European forests, driven by climate change, land use changes, and socio-economic factors. Integrated solutions for wildfire prevention, early detection, emergency management, and ecological restoration are urgently needed to enhance forest resilience. The Horizon 2020 SILVANUS [...] Read more.
Wildfires are becoming an increasingly severe threat to European forests, driven by climate change, land use changes, and socio-economic factors. Integrated solutions for wildfire prevention, early detection, emergency management, and ecological restoration are urgently needed to enhance forest resilience. The Horizon 2020 SILVANUS project developed a comprehensive multi-sectoral platform combining technological innovation, stakeholder engagement, and sustainable forest management strategies. This report analyses the Slovak Republic’s participation in SILVANUS, applying a seven-criterion fit–gap framework (governance, legal, interoperability, staff capacity, ecological suitability, financial feasibility, and stakeholder acceptance) to evaluate the platform’s alignment with national conditions. Notable contributions include stakeholder-supported functional requirements for wildfire prevention, climate-sensitive forest models for long-term adaptation planning, IoT- and UAV-based early fire detection technologies, and decision support systems (DSS) for emergency response and forest-restoration activities. The Slovak pilot sites, particularly in the Podpoľanie region, served as important testbeds for the validation of these tools under real-world conditions. All SILVANUS modules scored ≥12/14 in the fit–gap assessment; early deployment reduced high-risk fuel polygons by 23%, increased stand-level structural diversity by 12%, and raised the national Sustainable Forest Management index by four points. Integrating SILVANUS outcomes into national forestry practices would enable better wildfire risk assessment, improved resilience planning, and more effective public engagement in wildfire management. Opportunities for adoption include capacity-building initiatives, technological deployments in fire-prone areas, and the incorporation of DSS outputs into strategic forest planning. Potential challenges, such as technological investment costs, inter-agency coordination, and public acceptance, are also discussed. Overall, the Slovak Republic’s engagement with SILVANUS demonstrates the value of participatory, technology-driven approaches to sustainable wildfire management and offers a replicable model for other European regions facing similar challenges. Full article
(This article belongs to the Special Issue Wildfire Behavior and the Effects of Climate Change in Forests)
Show Figures

Graphical abstract

26 pages, 1884 KiB  
Article
A Symmetry-Based Spherical Fuzzy MCDM Approach for the Strategic Assessment of Alternative Fuels Toward Sustainable Energy Policies
by Adnan Abdulvahitoğlu
Symmetry 2025, 17(7), 1089; https://doi.org/10.3390/sym17071089 - 8 Jul 2025
Viewed by 284
Abstract
Alternative fuels obtained from renewable sources, providing low greenhouse gas emissions and high energy efficiency, offer significant advantages in terms of sustainability. In addition, the wide applicability of these fuel types in sectors such as housing, transportation, and industry creates significant opportunities in [...] Read more.
Alternative fuels obtained from renewable sources, providing low greenhouse gas emissions and high energy efficiency, offer significant advantages in terms of sustainability. In addition, the wide applicability of these fuel types in sectors such as housing, transportation, and industry creates significant opportunities in terms of reducing dependence on fossil fuels. Alternative fuels should be evaluated not only according to their environmental contributions but also based on multi-dimensional criteria such as economic cost, technical suitability, sustainability level, fuel properties, infrastructure requirements, and social acceptance. In this context, a comparative analysis of alternative fuel types in terms of various basic parameters is no longer optional, but a necessity. These parameters generally include symmetrical relationships such as balanced trade-offs between economic and environmental dimensions or mutual effects between technical and social criteria. However, they also show variability and uncertainty depending on the fuel type. Therefore, Spherical Fuzzy Multi-Criteria Decision Making (SF-MCDM) methods, which can effectively represent symmetry in membership and hesitation degrees, have been used to achieve more realistic and reliable results in uncertain decision environments. The proposed model provides a systematic and flexible evaluation structure that helps decision makers determine the most appropriate alternative fuel options and contributes to the formation of sustainable energy policies. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

21 pages, 4683 KiB  
Article
Economic and Sustainability Assessment of Floating Photovoltaic Systems in Irrigation Ponds: A Case Study from Alicante (Spain)
by María Inmaculada López-Ortiz, Joaquín Melgarejo-Moreno and José Alberto Redondo-Orts
Sustainability 2025, 17(13), 6212; https://doi.org/10.3390/su17136212 - 7 Jul 2025
Viewed by 497
Abstract
Environmental problems, along with the increasing energy demand and high electricity costs in the agricultural sector, justify the need to explore renewable energy sources in order to improve irrigation efficiency and sustainability. Therefore, the objective of this study is to analyse the feasibility [...] Read more.
Environmental problems, along with the increasing energy demand and high electricity costs in the agricultural sector, justify the need to explore renewable energy sources in order to improve irrigation efficiency and sustainability. Therefore, the objective of this study is to analyse the feasibility of installing floating photovoltaic panels in the irrigation ponds of irrigation communities (ICs) in the province of Alicante. To this end, a practical case study based on the operating data of a photovoltaic installation on an irrigation pond, which shows 31% self-consumption and a 27% reduction in energy costs, is presented. Based on these results, this type of installation has been considered for the rest of the ponds in the province of Alicante, with an estimated total investment of EUR 130 million and annual savings of EUR 23 million in energy costs. Additionally, barriers such as the initial investment and the need for public financing for large-scale implementation are identified. Finally, it is concluded that the adoption of floating photovoltaic energy represents a key opportunity to reduce dependence on fossil fuels, mitigate environmental impact, and promote the circular economy in the agricultural sector. Full article
Show Figures

Figure 1

37 pages, 1031 KiB  
Article
Synergistic Integration of ESG Across Life Essentials: A Comparative Study of Clothing, Energy, and Transportation Industries Using CEPAR® Methodology
by Eve Man Hin Chan, Fanucci Wan-Ching Hui, Dawson Wai-Shun Suen and Chi-Wing Tsang
Standards 2025, 5(3), 17; https://doi.org/10.3390/standards5030017 - 4 Jul 2025
Viewed by 364
Abstract
This study conducts a comparative assessment of the environmental, social, and governance (ESG) integration strategies of three leading companies in Hong Kong—H&M Group, China Gas Company Limited (Towngas), and MTR Corporation Limited (MTR)—each operating in distinct sectors with unique sustainability challenges and opportunities. [...] Read more.
This study conducts a comparative assessment of the environmental, social, and governance (ESG) integration strategies of three leading companies in Hong Kong—H&M Group, China Gas Company Limited (Towngas), and MTR Corporation Limited (MTR)—each operating in distinct sectors with unique sustainability challenges and opportunities. The analysis adopts the Challenge–Evaluation–Planning–Action–Review (CEPAR®) framework developed by the International Chamber of Sustainable Development to examine how these companies identify and evaluate ESG-related risks, formulate action plans, implement sustainability initiatives, and refine their strategies. The findings reveal H&M’s strong emphasis on sustainable fashion, with a target of using 100% sustainable materials by 2030 and reducing greenhouse gas emissions by 56%. Towngas faces the complex challenge of transitioning from fossil fuels to cleaner energy and is investing in zero-carbon technologies to meet regulatory standards and stakeholder expectations. MTR focuses on sustainable urban development and efficient mass transit, prioritizing community engagement and reducing environmental impact. This study underscores the importance of sector-specific ESG approaches tailored to a company’s operational context. It also demonstrates how ESG integration is enhanced by proactive planning, transparent reporting, and alignment with long-term corporate values. By showcasing both successful practices and areas requiring further attention, this research contributes to the broader discourse on sustainable business practices in Hong Kong. Moreover, it provides actionable policy implications for government agencies and regulatory bodies. The insights gained can inform strategic decision-making across sectors and support the development of a more sustainable, resilient, and inclusive economy aligned with Hong Kong’s long-term climate and governance goals. Full article
(This article belongs to the Special Issue Sustainable Development Standards)
Show Figures

Figure 1

30 pages, 5139 KiB  
Article
Design to Deployment: Flight Schedule-Based Analysis of Hybrid Electric Aircraft Variants in U.S. Regional Carrier Operations
by Emma Cassidy, Paul R. Mokotoff, Yilin Deng, Michael Ikeda, Kathryn Kirsch, Max Z. Li and Gokcin Cinar
Aerospace 2025, 12(7), 598; https://doi.org/10.3390/aerospace12070598 - 30 Jun 2025
Viewed by 329
Abstract
This study evaluates the feasibility and benefits of introducing battery-powered hybrid electric aircraft (HEA) into regional airline operations. Using 2019 U.S. domestic flight data, the ERJ175LR is selected as a representative aircraft, and several HEA variants are designed to match its mission profile [...] Read more.
This study evaluates the feasibility and benefits of introducing battery-powered hybrid electric aircraft (HEA) into regional airline operations. Using 2019 U.S. domestic flight data, the ERJ175LR is selected as a representative aircraft, and several HEA variants are designed to match its mission profile under different battery technologies and power management strategies. These configurations are then tested across over 800 actual daily flight sequences flown by a regional airline. The results show that well-designed HEA can achieve 3–7% fuel savings compared to conventional aircraft, with several variants able to complete all scheduled missions without disrupting turnaround times. These findings suggest that HEA can be integrated into today’s airline operations, particularly for short-haul routes, without the need for major infrastructure or scheduling changes, and highlight opportunities for future co-optimization of aircraft design and operations. Full article
Show Figures

Figure 1

21 pages, 614 KiB  
Article
The Decarbonisation of Heating and Cooling Following EU Directives
by Joana Fernandes, Silvia Remédios, Frank Gérard, Andro Bačan, Martin Stroleny, Vassiliki Drosou and Rosie Christodoulaki
Energies 2025, 18(13), 3432; https://doi.org/10.3390/en18133432 - 30 Jun 2025
Cited by 1 | Viewed by 331
Abstract
Heating and cooling (H&C) accounts for approximately 50% of the European Union’s (EU) total energy demand and remains significantly reliant on imported fossil fuels. Hence, addressing the decarbonization of the H&C sector is key to achieving a successful energy transition. At the EU [...] Read more.
Heating and cooling (H&C) accounts for approximately 50% of the European Union’s (EU) total energy demand and remains significantly reliant on imported fossil fuels. Hence, addressing the decarbonization of the H&C sector is key to achieving a successful energy transition. At the EU level, several legislative instruments within the Fit for 55 package directly target the decarbonization of H&C, including the core directives on renewable energy, energy efficiency, and the energy performance of buildings. At the national level, EU Member States (MSs) have developed National Energy and Climate Plans (NECPs), which are the main framework for defining national energy transition strategies, including measures to address H&C. Within the EU-funded REDI4HEAT project, a guideline was developed to support the assessment of policy documents—particularly NECPs—regarding the robustness of their policies and measures for decarbonizing H&C. This assessment framework supports the identification of gaps and opportunities through six key Strategic Policy Priority (SPP) areas, offering a set of policy options that can be further elaborated into effective measures. The design of these policy measures is informed by the Knowledge Sharing Centre—an online repository of replicable and adaptable initiatives that can be tailored to the specific geographical, social, and economic contexts of each MS. Full article
(This article belongs to the Collection Energy Transition Towards Carbon Neutrality)
Show Figures

Figure 1

Back to TopTop