Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (133)

Search Parameters:
Keywords = ophthalmic solution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4339 KB  
Article
Efficient Ensemble Learning with Curriculum-Based Masked Autoencoders for Retinal OCT Classification
by Taeyoung Yoon and Daesung Kang
Diagnostics 2026, 16(2), 179; https://doi.org/10.3390/diagnostics16020179 - 6 Jan 2026
Viewed by 271
Abstract
Background/Objectives: Retinal optical coherence tomography (OCT) is essential for diagnosing ocular diseases, yet developing high-performing multiclass classifiers remains challenging due to limited labeled data and the computational cost of self-supervised pretraining. This study aims to address these limitations by introducing a curriculum-based [...] Read more.
Background/Objectives: Retinal optical coherence tomography (OCT) is essential for diagnosing ocular diseases, yet developing high-performing multiclass classifiers remains challenging due to limited labeled data and the computational cost of self-supervised pretraining. This study aims to address these limitations by introducing a curriculum-based self-supervised framework to improve representation learning and reduce computational burden for OCT classification. Methods: Two ensemble strategies were developed using progressive masked autoencoder (MAE) pretraining. We refer to this curriculum-based MAE framework as CurriMAE (curriculum-based masked autoencoder). CurriMAE-Soup merges multiple curriculum-aware pretrained checkpoints using weight averaging, producing a single model for fine-tuning and inference. CurriMAE-Greedy selects top-performing fine-tuned models from different pretraining stages and ensembles their predictions. Both approaches rely on one curriculum-guided MAE pretraining run, avoiding repeated training with fixed masking ratios. Experiments were conducted on two publicly available retinal OCT datasets, the Kermany dataset for self-supervised pretraining and the OCTDL dataset for downstream evaluation. The OCTDL dataset comprises seven clinically relevant retinal classes, including normal retina, age-related macular degeneration (AMD), diabetic macular edema (DME), epiretinal membrane (ERM), retinal vein occlusion (RVO), retinal artery occlusion (RAO), and vitreomacular interface disease (VID) and the proposed methods were compared against standard MAE variants and supervised baselines including ResNet-34 and ViT-S. Results: Both CurriMAE methods outperformed standard MAE models and supervised baselines. CurriMAE-Greedy achieved the highest performance with an area under the receiver operating characteristic curve (AUC) of 0.995 and accuracy of 93.32%, while CurriMAE-Soup provided competitive accuracy with substantially lower inference complexity. Compared with MAE models trained at fixed masking ratios, the proposed methods improved accuracy while requiring fewer pretraining runs and reduced model storage for inference. Conclusions: The proposed curriculum-based self-supervised ensemble framework offers an effective and resource-efficient solution for multiclass retinal OCT classification. By integrating progressive masking with snapshot-based model fusion, CurriMAE methods provide high performance with reduced computational cost, supporting their potential for real-world ophthalmic imaging applications where labeled data and computational resources are limited. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

21 pages, 3560 KB  
Article
Novel Superelastic Polyesters Based on 2,5-Furandicarboxylic Acid for Potential Use in Ophthalmic Surgery
by Arianna Palumbo, Gloria Astolfi, Giulia Guidotti, Michelina Soccio, Elisa Boanini, Piera Versura and Nadia Lotti
Polymers 2025, 17(23), 3220; https://doi.org/10.3390/polym17233220 - 3 Dec 2025
Viewed by 513
Abstract
The rapid development of ophthalmic surgery in recent years has made big steps forward, making interventions such as penetrating and lamellar keratoplasty or trabeculectomy widely practiced. However, the use of non-absorbable sutures in these procedures poses significant challenges. Indeed, unequal tension between the [...] Read more.
The rapid development of ophthalmic surgery in recent years has made big steps forward, making interventions such as penetrating and lamellar keratoplasty or trabeculectomy widely practiced. However, the use of non-absorbable sutures in these procedures poses significant challenges. Indeed, unequal tension between the various stitches can lead to deformations of the cornea or lens and consequently to problems such as post-operative astigmatism or anisometropia. To overcome these problems, sutures with improved closure via a highly stretchable behaviour together with an excellent elastic return are a credible solution. Accordingly, to widen the plethora of superelastic polymeric materials, in the present study a novel solution deriving from two furan-based polyesters, poly(pentamethylene furanoate), PPeF, and poly(hexamethylene furanoate), PHF, was successfully obtained. Of note, these homopolymers are also entirely derived from sustainable sources. The two homopolymers were physically and chemically mixed to obtain copolymers with different block lengths, which were characterised from molecular, thermal, mechanical, and surface wettability points of view, showing interesting properties which were easily modulated as a function of block length. Lastly, all the materials showed good stability over time and cell viability and, for some of them, a great mechanical recovery upon deformation was also observed. Full article
(This article belongs to the Special Issue Stimuli-Responsive Polymers: Advances and Prospects)
Show Figures

Graphical abstract

13 pages, 1209 KB  
Systematic Review
Ocular Surface Parameters in Glaucoma Patients Treated with Topical Prostaglandin Analogs and the Importance of Switching to Preservative-Free Eye Drops—A Systematic Review
by Jaromir Wasyluk, Grzegorz Rotuski, Marta Dubisz and Radosław Różycki
Life 2025, 15(12), 1837; https://doi.org/10.3390/life15121837 - 29 Nov 2025
Viewed by 1123
Abstract
Background: The use of preservative agents in eye drop solutions may worsen symptoms of ocular surface disease, which is a highly prevalent syndrome worldwide. Preservatives are often used in pharmacotherapy of glaucoma, another disease concerning tens of millions of people around the globe. [...] Read more.
Background: The use of preservative agents in eye drop solutions may worsen symptoms of ocular surface disease, which is a highly prevalent syndrome worldwide. Preservatives are often used in pharmacotherapy of glaucoma, another disease concerning tens of millions of people around the globe. These numbers are predicted by the World Health Organization and are predicted to increase with time due to constant aging of populations. Methods: PubMed and Scopus databases were searched for articles investigating the topic of ocular surface disease in relation with glaucoma pharmacotherapy, according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The aim of this review is to summarize the effect of various solvents used in drug formulations and ways to quantify their impact on the ocular surface. Discussion and Conclusions: Topical ophthalmic preservative-free formulations are better tolerated and less burdensome for all patients. They should be considered especially for glaucoma patients, who are expected to take medications for years, up to decades or a lifetime in many cases. Due to the chronicity of dry eye disease and the lack of reliable ways for lacrimal and meibomian gland renewal, primary prophylaxis is of uttermost importance. Unfortunately, despite the development of many measuring devices, the standardization of diagnostic methods poses a challenge due to high variability of results which are influenced by a myriad of factors—local, internal, and external. Full article
Show Figures

Figure 1

32 pages, 2342 KB  
Review
Hypochlorous Acid: Clinical Insights and Experience in Dermatology, Surgery, Dentistry, Ophthalmology, Rhinology, and Other Specialties
by Vanda Haralović, Mislav Mokos, Sanja Špoljar, Lorena Dolački, Mirna Šitum and Liborija Lugović-Mihić
Biomedicines 2025, 13(12), 2921; https://doi.org/10.3390/biomedicines13122921 - 28 Nov 2025
Viewed by 3288
Abstract
Background: Hypochlorous acid (HOCl) is an integral component of the human innate immune system. It possesses antimicrobial properties and is available in solution, dermal spray, and scar gel forms. Objectives/Methods: This review presents data from studies on the clinical use of HOCl in [...] Read more.
Background: Hypochlorous acid (HOCl) is an integral component of the human innate immune system. It possesses antimicrobial properties and is available in solution, dermal spray, and scar gel forms. Objectives/Methods: This review presents data from studies on the clinical use of HOCl in various specialties, including dermatology, surgery, dentistry, ophthalmology, and rhinology. Results: Due to its anti-inflammatory/antimicrobial/immunomodulatory and healing properties, HOCl is advantageous in treating various skin disorders: ulcus cruris (and wound care), diabetic ulcers, atopic dermatitis, seborrheic dermatitis, pruritus, acne vulgaris, etc. Also, the application of a HOCl spray/gel after surgical procedures may prevent infection, reduce inflammation, and accelerate healing. HOCl is also effective and safe for the prevention and treatment of hypertrophic and keloid scars. Growing evidence shows a broader role for HOCl in limiting cancer cell survival and slowing tumor growth. It is also important in treating various viral infections like SARS-CoV-2 (coronavirus), influenza, and herpes, thereby helping to prevent the spread of aerosols. In addition, since HOCl is an endogenous compound naturally present in mammals with a high safety profile, it may be an effective bacterial disinfectant in dental waterlines. In ophthalmology, adjuvant treatment with HOCl ophthalmic spray can reduce the duration of antibiotic/corticosteroid use, even in severe blepharitis. To fully harness the protective/therapeutic properties of HOCl, future advancements will rely on the development of new chemical compounds and sophisticated pharmaceutical formulations. Conclusions: The majority of clinical studies have confirmed that HOC1 is useful in therapy, although the results are not entirely consistent. Further research is essential to optimize HOCl dosing and to develop controlled-release systems aimed at maximizing its anti-inflammatory and photoprotective effects while minimizing tissue irritation and damage. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

81 pages, 3044 KB  
Review
Emulsion and Emulgel-Based Ophthalmic Drug Delivery Systems
by Debadatta Mohapatra, Eleen Yang and Timothy W. Corson
Pharmaceutics 2025, 17(12), 1504; https://doi.org/10.3390/pharmaceutics17121504 - 21 Nov 2025
Cited by 1 | Viewed by 1902
Abstract
Ophthalmic drug delivery encounters unique challenges due to the anatomical and physiological ocular barriers, necessitating the development of novel drug delivery systems (NDDSs). This review focuses on emerging therapeutic platforms, including nanoemulsions (NEs), microemulsions (MEs), self-emulsifying drug delivery systems (SEDDSs) such as self-nano [...] Read more.
Ophthalmic drug delivery encounters unique challenges due to the anatomical and physiological ocular barriers, necessitating the development of novel drug delivery systems (NDDSs). This review focuses on emerging therapeutic platforms, including nanoemulsions (NEs), microemulsions (MEs), self-emulsifying drug delivery systems (SEDDSs) such as self-nano emulsifying drug delivery systems (SNEDDSs) and self-micro emulsifying drug delivery systems (SMEDDSs), emulgels, and in situ-forming emulgels, as novel strategies for enhancing ocular drug delivery. NEs and MEs, due to their small globule size, excellent drug solubility, stability, and bioavailability, offer promising solutions for effective ocular therapy. SEDDSs further enhance the stability and bioavailability of hydrophobic drugs through self-emulsification in aqueous environments. Emulgels, combining the benefits of emulsions and gels, provide sustained and controlled release of therapeutic agents, improving the ocular retention time and therapeutic efficacy. Additionally, in situ-forming emulgels offer the advantage of liquid-to-gel transition upon contact with ocular surfaces, optimizing drug delivery. The review discusses various ocular diseases, challenges for ocular delivery of conventional formulations, updates on emulsion-based novel drug delivery systems for ophthalmic drug delivery, mechanisms of enhanced ocular permeation, formulation strategies, advantages, and challenges, design-of-experiment considerations for optimization, characterizations, and recent advancements in these systems including patents and clinical trials, highlighting their potential for improving the treatment of various ocular diseases. Furthermore, this review explores marketed ophthalmic emulsions and future prospects for integrating these NDDSs into clinical ophthalmology, emphasizing their ability to overcome ocular barriers and enhance therapeutic efficacy. Full article
(This article belongs to the Special Issue Drug Delivery Systems for Ocular Diseases)
Show Figures

Graphical abstract

12 pages, 3780 KB  
Article
Inhibitory Effect of a Novel Ophthalmic Solution on Acanthamoeba castellanii Adhesion and Biofilm Formation on Human Corneal Epithelium
by Francesco D’Oria, Giovanni Petruzzella, Daniel Narvaez, Marta Guerrero, Fedele Passidomo, Enzo D’Ambrosio, Francesco Pignatelli, Giuseppe Addabbo and Giovanni Alessio
Life 2025, 15(11), 1685; https://doi.org/10.3390/life15111685 - 30 Oct 2025
Viewed by 543
Abstract
Background/Objectives: Acanthamoeba keratitis (AK) is a rare but sight-threatening corneal infection, often associated with contact lens wear and resistant to conventional therapies. Preventive strategies capable of reducing Acanthamoeba adhesion to corneal epithelium may represent an important tool for infection control. This study [...] Read more.
Background/Objectives: Acanthamoeba keratitis (AK) is a rare but sight-threatening corneal infection, often associated with contact lens wear and resistant to conventional therapies. Preventive strategies capable of reducing Acanthamoeba adhesion to corneal epithelium may represent an important tool for infection control. This study aimed to evaluate the amebicidal and preventive activity of CORNEIAL MED eye drops against Acanthamoeba castellanii adhesion and early adhesion layer on human corneal epithelium (HCE). Methods: Reconstructed HCE models were exposed to A. castellanii under four experimental conditions: negative control (HCE only), positive control (HCE + A. castellanii), co-incubation with CORNEIAL MED and A. castellanii (Study 1), and treatment with CORNEIAL MED after initial A. castellanii adhesion (Study 2). Adherent amoebae were quantified using EDTA detachment and Neubauer chamber counting. The early adhesion layer was characterized by scanning electron microscopy (SEM). Statistical analysis considered p < 0.05 as significant. Results: In Study 1, simultaneous application of CORNEIAL MED with A. castellanii reduced amoeba adhesion by 33.0 ± 11% compared with controls (p = 0.0529). In Study 2, when the product was applied 3 h after amoeba inoculation, adhesion was significantly reduced by 51.9 ± 6.5% (p < 0.05). SEM confirmed a decrease in amoebic colonization and biofilm density in treated samples. Conclusions: CORNEIAL MED demonstrated a measurable inhibitory effect on A. castellanii adhesion to HCE, particularly when applied after initial pathogen contact. These findings suggest a potential preventive role of CORNEIAL MED in reducing AK risk, although further in vivo studies are warranted. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

24 pages, 2761 KB  
Article
An Explainable AI Framework for Corneal Imaging Interpretation and Refractive Surgery Decision Support
by Mini Han Wang
Bioengineering 2025, 12(11), 1174; https://doi.org/10.3390/bioengineering12111174 - 28 Oct 2025
Cited by 1 | Viewed by 1439
Abstract
This study introduces an explainable neuro-symbolic and large language model (LLM)-driven framework for intelligent interpretation of corneal topography and precision surgical decision support. In a prospective cohort of 20 eyes, comprehensive IOLMaster 700 reports were analyzed through a four-stage pipeline: (1) automated extraction [...] Read more.
This study introduces an explainable neuro-symbolic and large language model (LLM)-driven framework for intelligent interpretation of corneal topography and precision surgical decision support. In a prospective cohort of 20 eyes, comprehensive IOLMaster 700 reports were analyzed through a four-stage pipeline: (1) automated extraction of key parameters—including corneal curvature, pachymetry, and axial biometry; (2) mapping of these quantitative features onto a curated corneal disease and refractive-surgery knowledge graph; (3) Bayesian probabilistic inference to evaluate early keratoconus and surgical eligibility; and (4) explainable multi-model LLM reporting, employing DeepSeek and GPT-4.0, to generate bilingual physician- and patient-facing narratives. By transforming complex imaging data into transparent reasoning chains, the pipeline delivered case-level outputs within ~95 ± 12 s. When benchmarked against independent evaluations by two senior corneal specialists, the framework achieved 92 ± 4% sensitivity, 94 ± 5% specificity, 93 ± 4% accuracy, and an AUC of 0.95 ± 0.03 for early keratoconus detection, alongside an F1 score of 0.90 ± 0.04 for refractive surgery eligibility. The generated bilingual reports were rated ≥4.8/5 for logical clarity, clinical usefulness, and comprehensibility, with representative cases fully concordant with expert judgment. Comparative benchmarking against baseline CNN and ViT models demonstrated superior diagnostic accuracy (AUC = 0.95 ± 0.03 vs. 0.88 and 0.90, p < 0.05), confirming the added value of the neuro-symbolic reasoning layer. All analyses were executed on a workstation equipped with an NVIDIA RTX 4090 GPU and implemented in Python 3.10/PyTorch 2.2.1 for full reproducibility. By explicitly coupling symbolic medical knowledge with advanced language models and embedding explainable artificial intelligence (XAI) principles throughout data processing, reasoning, and reporting, this framework provides a transparent, rapid, and clinically actionable AI solution. The approach holds significant promise for improving early ectatic disease detection and supporting individualized refractive surgery planning in routine ophthalmic practice. Full article
(This article belongs to the Special Issue Bioengineering and the Eye—3rd Edition)
Show Figures

Figure 1

19 pages, 845 KB  
Systematic Review
Luminescent and Optical Thin Film Coatings in Ophthalmic Lenses: Advances, Clinical Applications, and Future Directions
by Ana Paula Oliveira and Clara Martinez-Perez
Coatings 2025, 15(11), 1246; https://doi.org/10.3390/coatings15111246 - 27 Oct 2025
Viewed by 1237
Abstract
Ophthalmic lens coatings are increasingly designed to combine optical, mechanical, and biological functions. This systematic review, registered in PROSPERO and conducted according to PRISMA 2020 guidelines, synthesized 54 experimental, preclinical, and clinical studies on coatings for spectacle lenses, contact lenses, and intraocular lenses. [...] Read more.
Ophthalmic lens coatings are increasingly designed to combine optical, mechanical, and biological functions. This systematic review, registered in PROSPERO and conducted according to PRISMA 2020 guidelines, synthesized 54 experimental, preclinical, and clinical studies on coatings for spectacle lenses, contact lenses, and intraocular lenses. Spectacle lens studies consistently showed that anti-reflective and blue-light filtering coatings reduce glare perception, improve contrast sensitivity, and provide UV protection, while laboratory tests demonstrated significant reductions in impact resistance, with fracture energy of CR-39 lenses decreasing by up to 63% when coated. Contact lens research revealed that plasma and polymeric coatings reduce water contact angles from >100° to <20°, enhancing wettability, while antimicrobial strategies such as melamine binding or nanoparticle-based films achieved >80% reductions in bacterial adhesion. Drug-eluting approaches sustained antibiotic or antioxidant release for periods ranging from 24 h to 6 days, with improved ocular bioavailability compared with drops. Intraocular lens studies demonstrated that heparin surface modifications reduced postoperative flare and anterior chamber cells, and phosphorylcholine or alkylphosphocholine coatings suppressed lens epithelial cell proliferation. Drug-loaded coatings with methotrexate, gefitinib, or amikacin significantly inhibited posterior capsule opacification and infection in ex vivo and animal models. Collectively, coatings improve visual comfort, photoprotection, wettability, and biocompatibility, but clinical translation requires solutions to mechanical trade-offs, long-term stability, and regulatory challenges. Full article
(This article belongs to the Special Issue Developments in Optical Coatings and Thin Films)
Show Figures

Figure 1

11 pages, 1477 KB  
Commentary
Pharmacotherapy of Demodex-Associated Blepharitis: Current Trends and Future Perspectives
by Aleksandra Czępińska-Myszura, Małgorzata Maria Kozioł and Beata Rymgayłło-Jankowska
Pharmacy 2025, 13(5), 148; https://doi.org/10.3390/pharmacy13050148 - 15 Oct 2025
Viewed by 3092
Abstract
Demodex-associated blepharitis (DAB) is a common condition in our society. Patients report not only uncomfortable and bothersome symptoms but also decreased self-esteem and confidence. Because of its nonspecific signs, pharmacists are often the first healthcare professionals patients consult. What is most concerning [...] Read more.
Demodex-associated blepharitis (DAB) is a common condition in our society. Patients report not only uncomfortable and bothersome symptoms but also decreased self-esteem and confidence. Because of its nonspecific signs, pharmacists are often the first healthcare professionals patients consult. What is most concerning is that DAB can cause serious complications within the eye, such as dry eye syndrome, corneal scarring, or recurrent styes and chalazia. Therefore, we aimed to compile both standard and innovative therapies and compare their effectiveness and safety. As shown, standard methods remain the recommended approach. Alongside antiparasitic agents such as metronidazole or ivermectin, education and improved eyelid hygiene are crucial. However, in recent years, promising new treatments for Demodex blepharitis have emerged, such as Lotilaner Ophthalmic Solution 0.25%, which has shown positive results in clinical trials. Mechanical techniques, including Intense Pulsed Light (IPL) therapy and eyelid peeling procedures such as Blepharoexfoliation, have also demonstrated promise. Due to the notable effects of tea tree oil, studies have explored the lethal effects of other essential oils, such as sage, peppermint, and bergamot oils. These are just a few of the interesting examples discussed in this paper. Full article
Show Figures

Graphical abstract

10 pages, 1060 KB  
Article
Cross-Linked Carboxymethyl Cellulose and Silk Proteins in Corneal Re-Epithelialization: A Case Series
by Francesco Boselli, Fabio Scarinci and Romina Fasciani
J. Clin. Med. 2025, 14(18), 6600; https://doi.org/10.3390/jcm14186600 - 19 Sep 2025
Viewed by 887
Abstract
Background/Objectives: Corneal re-epithelialization is a critical process following surgical procedures such as photorefractive keratectomy (PRK), phototherapeutic keratectomy (PTK), and corneal UV cross-linking (CXL), as well as cases of corneal abrasion. Delayed epithelial healing can lead to increased discomfort, a higher risk of infection, [...] Read more.
Background/Objectives: Corneal re-epithelialization is a critical process following surgical procedures such as photorefractive keratectomy (PRK), phototherapeutic keratectomy (PTK), and corneal UV cross-linking (CXL), as well as cases of corneal abrasion. Delayed epithelial healing can lead to increased discomfort, a higher risk of infection, and suboptimal visual outcomes. This retrospective case series aims to evaluate the efficacy of a novel ophthalmic solution containing cross-linked carboxymethyl cellulose (CX-CMC) and silk proteins in promoting corneal re-epithelialization and improving post-surgical recovery. Patients and methods: A total of 15 patients who underwent PRK, PTK, or CXL or who presented with corneal abrasions were included in the study. Along with standard post-surgical treatment, patients received CX-CMC and silk protein-based eye drops (CORDEV, Ophtagon, Rome, Italy) six times a day. Corneal epithelial thickness was assessed using topography at follow-up visits. Results: Corneal re-epithelialization was observed in all subjects within 24 to 48 h post-procedure. The mean corneal epithelial thickness at 48 h was 73.21 µm, which falls within the typical range of a proliferating corneal epithelium. Conclusions: The CX-CMC and silk protein-based formulation accelerated corneal healing, achieving rapid epithelial recovery. This novel ophthalmic solution offers a promising alternative to conventional post-surgical treatments, potentially improving patient outcomes by reducing healing time, minimising discomfort, and lowering the risk of complications associated with delayed re-epithelialization. Full article
(This article belongs to the Special Issue Clinical Diagnosis and Management of Corneal Diseases)
Show Figures

Figure 1

19 pages, 3859 KB  
Article
PP-Based Blends with PVP-I Additive: Mechanical, Thermal, and Barrier Properties for Packaging of Iodophor Pharmaceutical Formulations
by Melania Leanza, Domenico Carmelo Carbone, Giovanna Poggi, Marco Rapisarda, Marilena Baiamonte, Emanuela Teresa Agata Spina, David Chelazzi, Piero Baglioni, Francesco Paolo La Mantia and Paola Rizzarelli
Polymers 2025, 17(18), 2442; https://doi.org/10.3390/polym17182442 - 9 Sep 2025
Cited by 2 | Viewed by 1697
Abstract
The influence of minor components on leaching molecular iodine (I2) through polypropylene (PP)-based packaging from a povidone iodine-based (PVP-I) formulation, simulating an ophthalmic application, was evaluated. I2 is a cheap, broad-spectrum, and multi-target antiseptic. Nevertheless, it is volatile, and the [...] Read more.
The influence of minor components on leaching molecular iodine (I2) through polypropylene (PP)-based packaging from a povidone iodine-based (PVP-I) formulation, simulating an ophthalmic application, was evaluated. I2 is a cheap, broad-spectrum, and multi-target antiseptic. Nevertheless, it is volatile, and the prolonged storage of I2-based formulations is demanding in plastic packaging because of transmission through the material. Therefore, we explored the possibility of moderating the loss of I2 from an iodophor formulation by introducing small amounts of molecular iodine into the polymer material commonly used in eyedropper caps, i.e., PP. Thus, PP was blended via an extrusion process with a polymeric complex containing iodine (such as PVP-I) or with a second polymeric component able to complex the I2 released from an iodophor solution. The aim of this work was to introduce I2 into PP-based polymer matrices without using organic solvents and indirectly, i.e., through the addition of components that could generate molecular iodine or complex it in the solid phase, as I2 is heat-sensitive. To increase the miscibility between PP and PVP-I, poly(N-vinylpyrrolidone) (PVP) or a vinyl pyrrolidone vinyl acetate copolymer 55/45 (Sokalan) were added as compatibilizers. The PP-based binary and ternary blends, in granular or sheet form, were characterized thermally (Differential Scanning Calorimetry, DSC, and Thermogravimetric analysis, TGA), mechanically (tensile tests), morphologically (scanning electron microscopy (SEM)), and chemically (attenuated total reflectance Fourier transform infrared (ATR-FTIR)). Additionally, the variation in wettability induced by the introduction of the hydrophilic minority components was determined by static contact angle measurements (static contact angle (SCA)), and tests were carried out to determine the barrier properties against oxygen (oxygen transmission rate (OTR)) and molecular iodine. The I2 leaching of the different blends was compared with that of PP by monitoring the I2 retention in a buffered PVP-I solution via UV-vis spectroscopy. Overall, the experimental data showed the capability of the minority components in the blends to increase thermal stability as well as act as a barrier to oxygen. Additionally, the PP blend with PVP-I induced a reduction in molecular iodine leaching in comparison with PP. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

16 pages, 1422 KB  
Article
Prototype-Guided Promptable Retinal Lesion Segmentation from Coarse Annotations
by Qinji Yu and Xiaowei Ding
Electronics 2025, 14(16), 3252; https://doi.org/10.3390/electronics14163252 - 15 Aug 2025
Viewed by 1069
Abstract
Accurate segmentation of retinal lesions is critical for the diagnosis and management of ophthalmic diseases, but pixel-level annotation is labor-intensive and demanding in clinical scenarios. To address this, we introduce a promptable segmentation approach based on prototype learning that enables precise retinal lesion [...] Read more.
Accurate segmentation of retinal lesions is critical for the diagnosis and management of ophthalmic diseases, but pixel-level annotation is labor-intensive and demanding in clinical scenarios. To address this, we introduce a promptable segmentation approach based on prototype learning that enables precise retinal lesion segmentation from low-cost, coarse annotations. Our framework treats clinician-provided coarse masks (such as ellipses) as prompts to guide the extraction and refinement of lesion and background feature prototypes. A lightweight U-Net backbone fuses image content with spatial priors, while a superpixel-guided prototype weighting module is employed to mitigate background interference within coarse prompts. We simulate coarse prompts from fine-grained masks to train the model, and extensively validate our method across three datasets (IDRiD, DDR, and a private clinical set) with a range of annotation coarseness levels. Experimental results demonstrate that our prototype-based model significantly outperforms fully supervised and non-prototypical promptable baselines, achieving more accurate and robust segmentation, particularly for challenging and variable lesions. The approach exhibits excellent adaptability to unseen data distributions and lesion types, maintaining stable performance even under highly coarse prompts. This work highlights the potential of prompt-driven, prototype-based solutions for efficient and reliable medical image segmentation in practical clinical settings. Full article
(This article belongs to the Special Issue AI-Driven Medical Image/Video Processing)
Show Figures

Figure 1

9 pages, 455 KB  
Article
Effectiveness of a Newly Developed Instillation Aid for Unit-Dose Ophthalmic Solutions
by Airi Takahashi, Yuka Kasai, Masako Sakamoto, Yuji Matsuda, Yuka Ito, Hirotaka Haro and Kenji Kashiwagi
J. Clin. Med. 2025, 14(15), 5243; https://doi.org/10.3390/jcm14155243 - 24 Jul 2025
Viewed by 1601
Abstract
Background/Objectives: To evaluate the effectiveness and limitations of a newly developed unit-dose eye drop instillation aid in patients with glaucoma. Methods: Hospitalized adult glaucoma patients at the University of Yamanashi were enrolled if they had self-administered glaucoma eye drops for at least six [...] Read more.
Background/Objectives: To evaluate the effectiveness and limitations of a newly developed unit-dose eye drop instillation aid in patients with glaucoma. Methods: Hospitalized adult glaucoma patients at the University of Yamanashi were enrolled if they had self-administered glaucoma eye drops for at least six months, had no upper limb impairments or cognitive decline, and had corrected visual acuity of ≥20/200 in at least one eye. This study used 0.1% hyaluronic acid mini-ophthalmic drops. Eye drop instillation was performed in the following order: without aid in the sitting position, with aid in the sitting position, without aid in the supine position, and with aid in the supine position. One practice trial with the device was conducted beforehand. Successful instillation was defined as delivery of a drop into the conjunctival sac without contact with the ocular surface, eyelashes, or face. Patients were also surveyed regarding the perceived usefulness of the device. Results: Sixty-three patients (37 males, 26 females; mean age 71.3 ± 11.2 years) participated. In the sitting position, the success rate improved significantly from 70.3% without the aid to 89.1% with the aid (p = 0.0005). Success rates decreased with age but improved more markedly in older patients. In the supine position, the rate was 76.6% without the aid and 100% with the aid (p < 0.0001). Conclusions: Unit-dose eye drop aids significantly increase the success rate of instillation, especially among elderly patients, and may contribute to better adherence and treatment outcomes in glaucoma care. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

13 pages, 887 KB  
Article
Synergic Effect of Methyl-β-Cyclodextrin and Hydrophilic Polymers on Nepafenac Solubilization: Development of a 0.3% Ophthalmic Solution
by Maria Grazia Saita, Fabiola Spitaleri, Katia Mangano, Danilo Aleo and Angela Patti
Molecules 2025, 30(15), 3090; https://doi.org/10.3390/molecules30153090 - 23 Jul 2025
Viewed by 981
Abstract
Nepafenac is an anti-inflammatory drug used in ophthalmology, marketed as a suspension due to its low aqueous solubility. A solution formulation could provide better bioavailability than suspension and facilitate single unit doses, avoiding the use of preservatives which are required to maintain sterility [...] Read more.
Nepafenac is an anti-inflammatory drug used in ophthalmology, marketed as a suspension due to its low aqueous solubility. A solution formulation could provide better bioavailability than suspension and facilitate single unit doses, avoiding the use of preservatives which are required to maintain sterility in multidose packaging. In this study, solubilization of nepafenac was achieved in the presence of randomly methylated β-cyclodextrin (RAMEB) and the actual complexation was assessed by NMR and phase-solubility studies. It was also found that the addition of hydrophilic polymers plays an important role in allowing increased solubilization of nepafenac at the same cyclodextrin concentration. Compared to complexes of nepafenac with other cyclodextrins, only 5% RAMEB was sufficient to solubilize 0.3% (w/v) nepafenac, enabling for the first time the development of an ophthalmic solution that proved chemically and physically stable for 12 months at 25 °C. The formulated solutions of nepafenac were tested for cytotoxicity on human corneal epithelial cells (HCE-2) and the results suggest their potential as a valuable and safe alternative to the commercially available 0.3% (w/v) suspension of the drug. Full article
Show Figures

Figure 1

14 pages, 1055 KB  
Review
Tear Film and Keratitis in Space: Fluid Dynamics and Nanomedicine Strategies for Ocular Protection in Microgravity
by Ryung Lee, Rahul Kumar, Jainam Shah, Joshua Ong, Ethan Waisberg and Alireza Tavakkoli
Pharmaceutics 2025, 17(7), 847; https://doi.org/10.3390/pharmaceutics17070847 - 28 Jun 2025
Viewed by 919
Abstract
Spaceflight-associated dry eye syndrome (SADES) has been reported among astronauts during both International Space Station (ISS) and Space Transportation System (STS) missions. As future missions extend beyond low Earth orbit, the physiological challenges of spaceflight include microgravity, radiation, and environmental stressors, which may [...] Read more.
Spaceflight-associated dry eye syndrome (SADES) has been reported among astronauts during both International Space Station (ISS) and Space Transportation System (STS) missions. As future missions extend beyond low Earth orbit, the physiological challenges of spaceflight include microgravity, radiation, and environmental stressors, which may further exacerbate the development of ocular surface disease. A deeper understanding of the underlying pathophysiology, along with the exploration of innovative countermeasures, is critical. In this review, we examine nanomedicine as a promising countermeasure for managing ophthalmic conditions in space, with the goal of enhancing visual health and mission readiness for long-duration exploration-class missions. Full article
(This article belongs to the Special Issue Drug Delivery Systems for Ocular Diseases)
Show Figures

Figure 1

Back to TopTop