Emulsion and Emulgel-Based Ophthalmic Drug Delivery Systems
Abstract
1. Introduction
2. Ocular Diseases and Drug Delivery
2.1. Ocular Diseases
2.1.1. Conjunctivitis (Pink Eye)
2.1.2. Pterygium
2.1.3. Dry Eye Disease (DED) or Keratoconjunctivitis Sicca
2.1.4. Keratitis
2.1.5. Keratoconus
2.1.6. Uveitis
2.1.7. Cataract
2.1.8. Glaucoma (Ocular Hypertension)
2.1.9. Age-Related Macular Degeneration (AMD)
2.1.10. Diabetic Retinopathy (DR)
2.1.11. Retinitis Pigmentosa (RP)
2.2. Challenges for Topical Ocular Delivery
2.2.1. Pre-Corneal Barriers
Tear Film Barrier
Protein Binding and Metabolism by Enzymes
Reflex Blinking
Limited Capacity of the Cul-De-Sac
Nasolacrimal Drainage and Tear Turnover
2.2.2. Corneal Barriers
2.2.3. Conjunctival Barrier
2.2.4. Scleral Barrier
2.2.5. Vitreous Humor
2.2.6. Retina
2.2.7. Choroid and Bruch’s Membrane Barrier
2.2.8. Efflux Pumps
2.2.9. Melanin Binding
2.2.10. Blood–Ocular Barriers
2.3. Conventional Drug Delivery Systems, Their Limitations, and the Importance of NDDSs, Especially Emulsions
3. Emulsion-Based Ophthalmic Drug Delivery Systems
- Optical transparency, causing no blurred vision.
- Improved aqueous solubility of hydrophobic drugs.
- Delivery of both lipophilic and hydrophilic drugs.
- Enhanced wettability by reducing the contact angle due to surfactants.
- Increased permeability across ocular barriers.
- Prolonged ocular contact time and improved bioavailability.
- A non-invasive route of ocular drug administration.
- Reduced dosing frequency, leading to increased patient compliance.
- Improved physical and chemical stability of the formulation.
- Prolonged shelf life of the loaded drugs.
- Sustained or controlled drug release.
- Avoidance of frequent administration at high concentrations, minimizing potential toxicity.
- Ease of sterilization of the formulation.
- Inhibition of P-gp efflux activity on corneal and retinal epithelial cells when suitable surfactants are used.
- Opening of tight junctions, thereby improving drug penetration.
- Negligible irritation when non-ionic surfactants are incorporated.
- Low viscosity and low ocular retention; hence, gelling agents are introduced to increase the viscosity.
- Potential for ocular cytotoxicity due to the large quantity of surfactants in NEs and MEs.
3.1. Nanoemulsions
3.2. Microemulsions
3.3. Macroemulsions
3.4. Self-Emulsifying Drug Delivery Systems (SEDDSs)
3.4.1. Self-Nanoemulsifying Drug Delivery Systems (SNEDDSs)
3.4.2. Self-Microemulsifying Drug Delivery Systems (SMEDDSs)
4. Emulgels for Ophthalmic Drug Delivery
- Emulgels can improve the ocular bioavailability of hydrophobic drugs by solubilizing them in the oil phase of the emulsion.
- Due to their gel-like consistency and controlled release characteristics, emulgels improve ocular retention, reducing drug loss due to tear drainage and blink reflexes. This results in better therapeutic outcomes.
- Emulgels allow for prolonged and sustained drug release, reducing frequent dosing and enhancing patient compliance.
- The small emulsion droplet size (nano to micro-scale) of emulgels facilitates better penetration of drugs through the corneal barrier compared to plain gel.
- The use of non-ionic surfactants and gelling agents in emulgels minimizes ocular irritation compared to conventional eye drops that may contain higher concentrations of surfactants. This improves the tolerability of the formulation, particularly for long-term use.
- Emulgels can be used to deliver both hydrophilic and lipophilic drugs. Lipophilic drugs are loaded in the oil phase of the emulsion, while hydrophilic drugs can be included in the aqueous phase. This makes emulgels versatile for various therapeutic applications.
- Sometimes, emulgels cause ocular irritation due to the existence of surfactants and cosurfactants in the emulsion systems.
- Emulgels with high viscosity may cause blurred vision or a sticky sensation, leading to low patient compliance.
- Due to the sustained-release property of such emulgels, they may delay therapeutic onset when rapid action is required.
4.1. Nanoemulgels
4.2. Microemulgels
4.3. In Situ-Forming Nano and Microemulgels
5. Examples of Emulsion Systems for Ophthalmic Drug Delivery
6. Mechanism Behind Improved Ocular Bioavailability by Ophthalmic Emulsions
6.1. Stabilization of Tear Film and Interaction
6.2. Controlled and Sustained Drug Release
6.3. Inhibition of Enzymatic Degradation
6.4. Lowering of Contact Angle or Improved Wetting and Spreadability
6.5. Mucoadhesion
6.6. Inhibition of P-gp-Mediated Efflux
6.7. Improved Permeability Due to Nanostructure
6.8. Inhibition of Nasolacrimal Drainage
7. Drug Absorption Pathways of Topically Administered Ophthalmic Emulsion and Emulgel to the Posterior Segment
8. Formulation Strategies of Ophthalmic Emulsions and Emulgels
8.1. High-Energy Methods
8.1.1. Homogenization/High-Pressure Homogenization and High-Speed Homogenization
8.1.2. High-Shear Stirring
8.1.3. Ultrasonication
8.1.4. Magnetic Stirring
8.1.5. Microfluidic Method
8.2. Low-Energy Methods
8.2.1. Spontaneous Emulsification
8.2.2. Phase Inversion Temperature Method
8.2.3. Emulsion-Phase Inversion Method or Emulsion Inversion Point
8.2.4. Phase Inversion Composition Method
8.3. Other Methods
9. Approaches for Selection of Excipients for Ophthalmic Emulsions and Emulgels
9.1. Ocular Biocompatibility
9.2. Solubility of Drug in Excipients
9.3. Physicochemical Properties, Therapeutic Profile, Origin, Types, and Safety Profile of Oil Phase
9.3.1. Refractive Index
9.3.2. Viscosity
9.3.3. Solubility of Drug
9.3.4. Therapeutic Profile of Oil
9.3.5. Origin of Oil
9.3.6. Safety and Biocompatibility Profile of Oil
9.4. Physicochemical Properties, Types, and Toxicity of Surfactants and Cosurfactants
9.4.1. HLB Value of Surfactants
9.4.2. Type of Surfactants
9.4.3. Concentration of Surfactants
9.4.4. Solubility of Drugs in Surfactants
9.4.5. Biocompatibility of Surfactants
9.5. Properties of Gelling Agents
9.5.1. Stimuli-Responsive Gelling Agent
9.5.2. Mucoadhesive Property
9.6. Type of Preservatives and Toxicity Considerations
9.7. Safety Profile, Concentration, and Type of Osmotic Agents
9.8. Properties of Other Excipients
9.9. Volume of Dispersion Medium or Continuous Phase
9.10. Stability
9.11. Regulatory Considerations
10. Design of Experiment Considerations for Optimization of Ophthalmic Emulsions and Emulgels
10.1. Selection of Critical Formulation Factors
10.2. Selection of Response Variables
10.3. Choice of Experimental Design
- Factorial design;
- Response surface methodology (RSM);
- Mixture design.
10.3.1. Factorial Design
10.3.2. Response Surface Methodology (RSM)
10.3.3. Mixture Design
10.4. Model Fitting
10.5. Goal Setting and Optimization
10.6. Validation of the Optimized Formulation
11. Characterizations of Ophthalmic Emulsion and Emulgel Systems
11.1. Characterizations of Ophthalmic Emulsions (NEs, MEs, SEDDSs, SNEDDSs, SMEDDSs)
11.1.1. Organoleptic Properties
11.1.2. pH
11.1.3. Viscosity/Rheology
11.1.4. Osmolality
11.1.5. Surface Tension
11.1.6. Refractive Index (RI)
11.1.7. Impurity Analysis
11.1.8. Polarized Light Microscopy
11.1.9. Percentage Transmittance (%T)
11.1.10. Cloud Point
11.1.11. Conductivity
11.1.12. Robustness to Dilution
11.1.13. Mucoadhesive Strength
11.1.14. Ocular Retention
11.1.15. In Vitro Gelation Study
11.1.16. Dye Test
11.1.17. Globule Size (Zavg), Polydispersity Index (PDI), and Zeta Potential (ZP)
11.1.18. Morphology
11.1.19. Drug Content and Content Uniformity
11.1.20. Entrapment Efficiency
11.1.21. Loading Capacity
11.1.22. Drug–Excipient Compatibility
11.1.23. Stability Studies
11.1.24. Preservative Efficacy
11.1.25. In Vitro Drug Release Study and Release Kinetics
11.1.26. Diffusion Study
11.1.27. Ex Vivo Transcorneal/Scleral Permeation Study
11.1.28. Depth of Permeation by Confocal Laser Scanning Microscopy (CLSM)
11.1.29. Transepithelial Electrical Resistance (TEER) Value Determination
11.1.30. Ocular Biocompatibility, Toxicity, and Irritation Study
In Vitro Methods
Ex Vivo Methods
In Vivo Methods
11.1.31. Cellular Uptake Study
11.1.32. In Vivo Uptake Study
11.1.33. Ocular Pharmacokinetics Study
11.1.34. Sterility Testing
11.1.35. Post-Sterilization Characterization
11.1.36. Pyrogen Test
11.2. Characterization of Ophthalmic Emulgels
11.2.1. Organoleptic Properties
11.2.2. Consistency and Homogeneity
11.2.3. Spreadability
11.2.4. Extrudability
11.2.5. pH
11.2.6. Osmolality
11.2.7. Rheological Studies and Gelation Temperature
11.2.8. Drug Content and Content Uniformity
11.2.9. Syneresis
11.2.10. Swelling Index
11.2.11. Compatibility Study
11.2.12. In Vitro Drug Release and Release Kinetics
11.2.13. Ex Vivo Transcorneal/Scleral Permeation Study of Emulgels
11.2.14. Stability Studies
11.2.15. Ocular Irritation and Toxicity Study
11.2.16. Ocular Pharmacokinetics Study
11.2.17. Therapeutic Efficacy Study
12. Sterilization of Ophthalmic Emulsions and Emulgels
12.1. Sterilization Methods
12.1.1. Moist Heat Sterilization (Autoclaving)
12.1.2. Sterilization by Filtration
12.1.3. Sterilization by Radiation
12.1.4. Chemical Sterilization
12.2. Sterilization Challenges
- Viscosity and stability: The gel phase of emulgels can make it more challenging to sterilize without affecting the viscosity and drug release properties. Thermal methods like autoclaving can degrade gel consistency, while filtration can be difficult for highly viscous formulations.
- Microbial growth post-sterilization: While sterilization kills microbes, post-sterilization contamination can occur if the packaging is not handled properly. Thus, maintaining a sterile manufacturing environment and using sterile packaging are crucial to ensuring product sterility.
- Preservative usage: To prevent microbial contamination during use, ophthalmic emulsions and emulgels often require preservatives (e.g., benzalkonium chloride, phenylmercuric nitrate or acetate, chlorhexidine, chlorobutanol, methylparaben, and propylparaben). However, preservatives are reported to induce conjunctival toxicity, tear film disruption, allergic symptoms, and corneal damage. The symptoms of preservative toxicity include foreign body sensation, discomfort on administration, irritation, burning, dry eye, tearing, and itching. They disrupt the glycocalyx and lead to ocular surface inflammation, allergy, fibrosis, and DED. Thus, the newer, less-toxic preservatives (polyquaternium-1, sorbic acid, polixetonium, sodium perborate) may be considered for reducing ocular toxicity [136].
13. Recent Patents on Ophthalmic Emulsions and Emulgels
14. Clinical Trials on Ophthalmic Emulsions and Emulgels
15. Marketed Ophthalmic Emulsions
16. Challenges in the Formulation and Development of Ophthalmic Emulsions
16.1. Biocompatibility and Toxicity
16.2. Patient Tolerability
16.3. Preservative Concerns
16.4. Selection of Suitable Animal Models
16.5. Sterilization Challenges
16.6. Stability, Safety, and Sterility Maintenance
16.7. Manufacturing Scale-Up and Reproducibility
16.8. Regulatory Constraints
16.9. Cost-Effectiveness and Clinical Translation
17. Future Perspective and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| %T | Percentage transmittance |
| AFM | Atomic force microscopy |
| AMD | Age-related macular degeneration |
| API | Active pharmaceutical ingredient |
| ARPE-19 | Adult retinal pigment epithelial-19 cells |
| ATR-FTIR | Attenuated total reflectance–Fourier transform infrared spectroscopy |
| AUC | Area under the curve |
| BAB | Blood–aqueous barrier |
| BBD | Box–Behnken designs |
| BC | Bruch’s–choroid |
| BCOP | Bovine corneal opacity and permeability |
| BHT | Butylated hydroxytoluene |
| BRB | Blood–retinal barrier |
| BVB | Blood–vitreous barrier |
| CCD | Central composite design |
| CCK-8 | Cell Counting Kit-8 |
| CLSM | Confocal laser scanning microscopy |
| CMAs | Critical material attributes |
| Cmax | Peak plasma concentration |
| CPPs | Critical processing parameters |
| CQAs | Critical quality attributes |
| CTAB | Cetrimonium bromide |
| CTAB | Cetyl trimethyl ammonium bromide |
| DAPI | 4′,6-diamidino-2-phenylindole |
| DED | Dry eye disease |
| DHA | Docosahexaenoic acid |
| DLS | Dynamic light scattering |
| DoE | Design of Experiment |
| DOPE | 1,2- di-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine |
| DOTAP | 1,2-dioleoyl-3-trimethylammonium propane |
| DR | Diabetic retinopathy |
| DSC | Differential scanning calorimetry |
| DSPE-PEG 2000 | Distearoylphosphatylethanolamine-polyethyleneglycol 2000 |
| EDX | Energy-dispersive X-ray spectroscopy |
| Er | Enhancement ratio |
| FTIR | Fourier transform infrared spectroscopy |
| GHS | Global Harmonized System |
| GRAS | Generally recognized as safe |
| HCE-2 | Human corneal epithelial cells |
| HCECs | Human corneal epithelial cells |
| HCLEs | Human corneal limbal epithelial cells |
| HET-CAM | Hen’s egg test–chorioallantoic membrane |
| HLB | Hydrophilic–lipophilic balance |
| HPLC | High-performance liquid chromatography |
| HPMC | Hydroxypropyl methylcellulose |
| HRSEM | High-resolution scanning electron microscopy |
| HRTEM | High-resolution transmission electron microscopy |
| HUVECs | Human umbilical vein endothelial cells |
| ICE | Isolated chicken eye |
| ICH | International Conference on Harmonization |
| ICR | Institute of Cancer Research |
| IGF | Insulin-like growth factor 1 |
| IL-6 | Interleukin-6 |
| iNOS | Inducible nitric oxide synthase |
| IOP | Intraocular pressure |
| IPM | Isopropyl myristate |
| Jmax | Maximum flux |
| Jss | Steady-state flux |
| kel | Elimination rate constant |
| kp | Permeability coefficient |
| LAL | Limulus amebocyte lysate |
| LC | Loading capacity |
| MC-MS | Liquid chromatography–mass spectrometry |
| MCTs | Medium-chain triglycerides |
| MEs | Microemulsions |
| MMP-14 | Matrix metalloproteinase |
| MNV | Macular neovascularization |
| MRP | Multidrug resistance protein |
| MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
| nAMD | Neovascular age-related macular degeneration |
| NDDSs | Novel drug delivery systems |
| NEs | Nanoemulsions |
| NF-κB | Nuclear factor kappa B |
| NMR | Nuclear magnetic resonance |
| NPDR | Non-proliferative diabetic retinopathy |
| NZW | New Zealand white |
| OECD | Organization for Economic Cooperation and Development |
| P-gp | Permeability glycoprotein |
| PBS | Phosphate-buffered saline |
| PDI | Polydispersity index |
| PDR | Proliferative diabetic retinopathy |
| PDT | Photodynamic therapy |
| PEG | Polyethylene glycol |
| PRP | Panretinal photocoagulation |
| QbD | Quality by Design |
| RBCs | Red blood cells |
| RGCs | Retinal ganglion cells |
| RPE | Retinal pigment epithelium |
| RSM | Response surface methodology |
| SAED | Selected area electron diffraction |
| SEDDSs | Self-emulsifying drug delivery systems |
| SIRC | Statens Seruminstitut rabbit cornea |
| SMEDDSs | Self-microemulsifying drug delivery systems |
| Smix | Surfactant–cosurfactant mixture |
| SNEDDSs | Self-nanoemulsifying drug delivery systems |
| SPM | Scanning probe microscopy |
| STF | Simulated tear fluid |
| t1/2 | Half-life |
| TEER | Transepithelial electrical resistance |
| TEM | Transmission electron microscopy |
| TGA | Thermo-gravimetric analysis |
| Tgel | Gelation temperature |
| Tmax | Time to achieve maximum drug concentration |
| TNF-α | Tumor necrosis factor-α |
| TPGS | D-α-tocopherol polyethylene glycol succinate |
| VEGF | Vascular endothelial growth factor |
| VEGFR1 | Vascular endothelial growth factor receptor 1 |
| VEGFR2 | Vascular endothelial growth factor receptor 2 |
| Zavg | Globule size |
| ZP | Zeta potential |
References
- Onugwu, A.L.; Nwagwu, C.S.; Onugwu, O.S.; Echezona, A.C.; Agbo, C.P.; Ihim, S.A.; Emeh, P.; Nnamani, P.O.; Attama, A.A.; Khutoryanskiy, V.V. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J. Control. Release 2023, 354, 465–488. [Google Scholar] [CrossRef]
- Ashique, S.; Mishra, N.; Mohanto, S.; Gowda, B.J.; Kumar, S.; Raikar, A.S.; Masand, P.; Garg, A.; Goswami, P.; Kahwa, I. Overview of processed excipients in ocular drug delivery: Opportunities so far and bottlenecks. Heliyon 2024, 10, e23810. [Google Scholar] [CrossRef]
- Singh, M.; Bharadwaj, S.; Lee, K.E.; Kang, S.G. Therapeutic nanoemulsions in ophthalmic drug administration: Concept in formulations and characterization techniques for ocular drug delivery. J. Control. Release 2020, 328, 895–916. [Google Scholar] [CrossRef]
- Fernandes, A.R.; Sanchez-Lopez, E.; dos Santos, T.; Garcia, M.L.; Silva, A.M.; Souto, E.B. Development and characterization of nanoemulsions for ophthalmic applications: Role of cationic surfactants. Materials 2021, 14, 7541. [Google Scholar] [CrossRef]
- Smail, S.S.; Ghareeb, M.M.; Omer, H.K.; Al-Kinani, A.A.; Alany, R.G. Studies on surfactants, cosurfactants, and oils for prospective use in formulation of ketorolac tromethamine ophthalmic nanoemulsions. Pharmaceutics 2021, 13, 467. [Google Scholar] [CrossRef]
- Tsung, T.-H.; Chen, Y.-H.; Lu, D.-W. Updates on biodegradable formulations for ocular drug delivery. Pharmaceutics 2023, 15, 734. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, R.; Dubey, V.; Kesavan, K. Ocular self-microemulsifying drug delivery system of prednisolone improves therapeutic effectiveness in the treatment of experimental uveitis. Ocul. Immunol. Inflamm. 2019, 27, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Rupenthal, I.D. Non-aqueous formulations in topical ocular drug delivery—A paradigm shift? Adv. Drug Deliv. Rev. 2023, 198, 114867. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.; Ansari, V.A.; Hussain, Z. Self-Nano Emulsifying Drug delivery system (SNEEDS) for Ocular Administration. Res. J. Pharm. Technol. 2020, 13, 5576–5582. [Google Scholar]
- Serrano, A.C.C.L.; Viana, M.C.; Pinto, N.V.; Lages, E.B.; Carneiro, G.; Borges, G.S.M. The Use of Design of Experiments (DoE) Approaches for the Development of Self-Emulsifying Drug Delivery Systems (SEDDS). Appl. Nano 2025, 6, 4. [Google Scholar] [CrossRef]
- Uttreja, P.; Karnik, I.; Adel Ali Youssef, A.; Narala, N.; Elkanayati, R.M.; Baisa, S.; Alshammari, N.D.; Banda, S.; Vemula, S.K.; Repka, M.A. Self-Emulsifying Drug Delivery Systems (SEDDS): Transition from liquid to solid—a comprehensive review of formulation, characterization, applications, and future trends. Pharmaceutics 2025, 17, 63. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.M.; Kuchekar, A.B.; Pawar, S.R. Emulgel approach to formulation development: A review. Biosci. Biotechnol. Res. Asia 2021, 18, 459–465. [Google Scholar] [CrossRef]
- Jain, S.K.; Bajapi, P.; Modi, S.K.; Gupta, P. A review on emulgel, as a novel trend in topical drug delivery system. Recent Trends Pharm. Sci. Res. 2019, 1, 30–39. [Google Scholar]
- Kumbhar, P.R.; Desai, H.; Desai, V.M.; Priya, S.; Rana, V.; Singhvi, G. Versatility of emulgel in topical drug delivery transforming its expedition from bench to bedside. Expert Opin. Drug Deliv. 2025, 22, 55–68. [Google Scholar] [CrossRef]
- Dhaval, M.; Devani, J.; Parmar, R.; Soniwala, M.; Chavda, J. Formulation and optimization of microemulsion based sparfloxacin in-situ gel for ocular delivery: In vitro and ex vivo characterization. J. Drug Deliv. Sci. Technol. 2020, 55, 101373. [Google Scholar] [CrossRef]
- Choradiya, B.R.; Patil, S.B. A comprehensive review on nanoemulsion as an ophthalmic drug delivery system. J. Mol. Liq. 2021, 339, 116751. [Google Scholar] [CrossRef]
- Dhahir, R.K.; Al-Nima, A.M.; Al-Bazzaz, F. Nanoemulsions as ophthalmic drug delivery systems. Turk. J. Pharm. Sci. 2021, 18, 652–664. [Google Scholar] [CrossRef]
- Kishore, A.; Jain, A.; Asthana, N.; Milan, R.; Lakshmi, S.M.; Gupta, M.; Mahor, A.K.; Kanoujia, J. Selection criteria for oils, surfactants, and co-surfactants in ocular nanoemulsion formulation: A mini review. Curr. Pharm. Des. 2025, 31, 1259–1269. [Google Scholar] [CrossRef]
- Peng, C.; Bengani, L.; Jung, H.; Leclerc, J.; Gupta, C.; Chauhan, A. Emulsions and microemulsions for ocular drug delivery. J. Drug Deliv. Sci. Technol. 2011, 21, 111–121. [Google Scholar] [CrossRef]
- Hegde, R.R.; Verma, A.; Ghosh, A. Microemulsion: New insights into the ocular drug delivery. Int. Sch. Res. Not. 2013, 2013, 826798. [Google Scholar] [CrossRef]
- Chauhan, N.; Gupta, N.; Kumar, A. A review on novel nanoemulgel for ocular drug delivery. EPH Int. J. Med. Health Sci. 2024, 10, 1–9. [Google Scholar]
- Cassano, R.; Di Gioia, M.L.; Trombino, S. Gel-based materials for ophthalmic drug delivery. Gels 2021, 7, 130. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, M.F.; Gurnani, B.; Benson, S. Conjunctivitis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Shahraki, T.; Arabi, A.; Feizi, S. Pterygium: An update on pathophysiology, clinical features, and management. Ther. Adv. Ophthalmol. 2021, 13, 25158414211020152. [Google Scholar] [CrossRef] [PubMed]
- Palewski, M.; Budnik, A.; Konopińska, J. Evaluating the efficacy and safety of different pterygium surgeries: A review of the literature. Int. J. Environ. Res. Public Health 2022, 19, 11357. [Google Scholar] [CrossRef]
- Van Acker, S.I.; Van den Bogerd, B.; Haagdorens, M.; Siozopoulou, V.; Ní Dhubhghaill, S.; Pintelon, I.; Koppen, C. Pterygium—The good, the bad, and the ugly. Cells 2021, 10, 1567. [Google Scholar] [CrossRef] [PubMed]
- Sakti, F.K. Updates on the mechanism and management of Pterygium: A Brief Review. Eur. J. Med. Health Sci. 2021, 3, 6–11. [Google Scholar] [CrossRef]
- Bustamante-Arias, A.; Ruiz Lozano, R.E.; Rodriguez-Garcia, A. Dry eye disease, a prominent manifestation of systemic autoimmune disorders. Eur. J. Ophthalmol. 2022, 32, 3142–3162. [Google Scholar] [CrossRef]
- Ting, D.S.J.; Ho, C.S.; Deshmukh, R.; Said, D.G.; Dua, H.S. Infectious keratitis: An update on epidemiology, causative microorganisms, risk factors, and antimicrobial resistance. Eye 2021, 35, 1084–1101. [Google Scholar] [CrossRef]
- Al-mahallawi, A.M.; Ahmed, D.; Hassan, M.; El-Setouhy, D.A. Enhanced ocular delivery of clotrimazole via loading into mucoadhesive microemulsion system: In vitro characterization and in vivo assessment. J. Drug Deliv. Sci. Technol. 2021, 64, 102561. [Google Scholar] [CrossRef]
- Santodomingo-Rubido, J.; Carracedo, G.; Suzaki, A.; Villa-Collar, C.; Vincent, S.J.; Wolffsohn, J.S. Keratoconus: An updated review. Contact Lens Anterior Eye 2022, 45, 101559. [Google Scholar] [CrossRef]
- Singh, R.B.; Koh, S.; Sharma, N.; Woreta, F.A.; Hafezi, F.; Dua, H.S.; Jhanji, V. Keratoconus. Nat. Rev. Dis. Primers 2024, 10, 81. [Google Scholar] [CrossRef]
- Bui, A.D.; Truong, A.; Pasricha, N.D.; Indaram, M. Keratoconus diagnosis and treatment: Recent advances and future directions. Clin. Ophthalmol. 2023, 17, 2705–2718. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elaty, D.M.; Ishak, R.A.; Osman, R.; Geneidi, A.S. Engineering a novel water-in-oil biocompatible microemulsion system for the ocular delivery of dexamethasone sodium phosphate in the treatment of acute uveitis. Int. J. Pharm. 2024, 650, 123704. [Google Scholar] [CrossRef] [PubMed]
- Attia, M.A.; Eleraky, N.E.; Abdelazeem, K.; Safwat, M.A. Prednisolone loaded-cationic nanoemulsion formulation for uveitis management. J. Drug Deliv. Sci. Technol. 2024, 92, 105406. [Google Scholar] [CrossRef]
- Mahran, A.; Ismail, S.; Allam, A.A. Development of triamcinolone acetonide-loaded microemulsion as a prospective ophthalmic delivery system for treatment of uveitis: In vitro and in vivo evaluation. Pharmaceutics 2021, 13, 444. [Google Scholar] [CrossRef] [PubMed]
- Durgapal, S.; Goswami, L.; Nair, A.B.; Juyal, V.; Verma, A. Enhanced anti-cataract effect of microemulsion containing Cineraria maritima: Formulation, optimization and in vivo evaluation. J. Drug Deliv. Sci. Technol. 2022, 77, 103872. [Google Scholar] [CrossRef]
- Althiabi, S.; Aljbreen, A.J.; Alshutily, A.; Althwiny, F.A. Postoperative endophthalmitis after cataract surgery: An update. Cureus 2022, 14, e22003. [Google Scholar] [CrossRef]
- Mohan, S.; Sadeghi, E.; Mohan, M.; Iannetta, D.; Chhablani, J. Suprachoroidal hemorrhage. Ophthalmologica 2023, 246, 255–277. [Google Scholar] [CrossRef]
- Kishore, A.; Mahor, A.K.; Singh, N.K.; Singh, P.P.; Rathore, P.; Bansal, K.K. Oil-in-water nanoemulsions for glaucoma treatment: An insight into the latest trends. Bioimpacts 2024, 15, 30224. [Google Scholar] [CrossRef]
- Talaei, S.; Mahboobian, M.M.; Mohammadi, M. Investigating the ocular toxicity potential and therapeutic efficiency of in situ gel nanoemulsion formulations of brinzolamide. Toxicol. Res. 2020, 9, 578–587. [Google Scholar] [CrossRef]
- Abd El Wahab, L.M.; Essa, E.A.; El Maghraby, G.M.; Arafa, M.F. The development and evaluation of phase transition microemulsion for ocular delivery of acetazolamide for glaucoma treatment. AAPS PharmSciTech 2022, 24, 1. [Google Scholar] [CrossRef]
- Gohil, R.; Patel, A.; Pandya, T.; Dharamsi, A. Optimization of brinzolamide loaded microemulsion using formulation by design approach: Characterization and in-vitro evaluation. Curr. Drug Ther. 2020, 15, 37–52. [Google Scholar]
- Lim, R. The surgical management of glaucoma: A review. Clin. Exp. Ophthalmol. 2022, 50, 213–231. [Google Scholar] [CrossRef]
- Thomas, C.J.; Mirza, R.G.; Gill, M.K. Age-related macular degeneration. Med. Clin. N. Am. 2021, 105, 473–491. [Google Scholar] [CrossRef] [PubMed]
- Burhan, A.M.; Klahan, B.; Cummins, W.; Andrés-Guerrero, V.; Byrne, M.E.; O’Reilly, N.J.; Chauhan, A.; Fitzhenry, L.; Hughes, H. Posterior segment ophthalmic drug delivery: Role of muco-adhesion with a special focus on chitosan. Pharmaceutics 2021, 13, 1685. [Google Scholar] [CrossRef] [PubMed]
- Fleckenstein, M.; Schmitz-Valckenberg, S.; Chakravarthy, U. Age-related macular degeneration: A review. Jama 2024, 331, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Chobisa, D.; Muniyandi, A.; Sishtla, K.; Corson, T.W.; Yeo, Y. Long-Acting Microparticle Formulation of Griseofulvin for Ocular Neovascularization Therapy. Small 2024, 20, 2306479. [Google Scholar] [CrossRef]
- Yang, Z.; Tan, T.-E.; Shao, Y.; Wong, T.Y.; Li, X. Classification of diabetic retinopathy: Past, present and future. Front. Endocrinol. 2022, 13, 1079217. [Google Scholar] [CrossRef]
- Tan, T.-E.; Wong, T.Y. Diabetic retinopathy: Looking forward to 2030. Front. Endocrinol. 2023, 13, 1077669. [Google Scholar] [CrossRef]
- Seo, H.; Park, S.-J.; Song, M. Diabetic retinopathy (DR): Mechanisms, current therapies, and emerging strategies. Cells 2025, 14, 376. [Google Scholar] [CrossRef]
- Stitt, A.W.; Curtis, T.M.; Chen, M.; Medina, R.J.; McKay, G.J.; Jenkins, A.; Gardiner, T.A.; Lyons, T.J.; Hammes, H.-P.; Simo, R.; et al. The progress in understanding and treatment of diabetic retinopathy. Prog. Retin. Eye Res. 2016, 51, 156–186. [Google Scholar] [CrossRef]
- Nguyen, X.-T.-A.; Moekotte, L.; Plomp, A.S.; Bergen, A.A.; van Genderen, M.M.; Boon, C.J. Retinitis pigmentosa: Current clinical management and emerging therapies. Int. J. Mol. Sci. 2023, 24, 7481. [Google Scholar] [CrossRef]
- Cross, N.; van Steen, C.; Zegaoui, Y.; Satherley, A.; Angelillo, L. Retinitis pigmentosa: Burden of disease and current unmet needs. Clin. Ophthalmol. 2022, 16, 1993–2010. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q. Retinitis pigmentosa: Progress and perspective. Asia Pac. J. Ophthalmol. 2016, 5, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, L.; Fu, Y. Nanotechnology-based ocular drug delivery systems: Recent advances and future prospects. J. Nanobiotechnology 2023, 21, 232. [Google Scholar] [CrossRef] [PubMed]
- Agrahari, V.; Mandal, A.; Agrahari, V.; Trinh, H.M.; Joseph, M.; Ray, A.; Hadji, H.; Mitra, R.; Pal, D.; Mitra, A.K. A comprehensive insight on ocular pharmacokinetics. Drug Deliv. Transl. Res. 2016, 6, 735–754. [Google Scholar] [CrossRef]
- Li, M.; Zhang, D.; Jones, R.S.; Cheruzel, L.; Khojasteh, S.C.; Chen, H.-H.; Adaligil, E.; Shwani, T.; Owen, L.A.; Kim, I.K. Characterization of hydrolase activity in ocular tissues of humans and preclinical species. Drug Metab. Dispos. 2025, 53, 100145. [Google Scholar] [CrossRef]
- Duvvuri, S.; Majumdar, S.; Mitra, A.K. Role of metabolism in ocular drug delivery. Curr. Drug Metab. 2004, 5, 507–515. [Google Scholar] [CrossRef]
- Yadav, K.S.; Soni, G.; Choudhary, D.; Khanduri, A.; Bhandari, A.; Joshi, G. Microemulsions for enhancing drug delivery of hydrophilic drugs: Exploring various routes of administration. Med. Drug Discov. 2023, 20, 100162. [Google Scholar] [CrossRef]
- Rudnick, D.E.; Noonan, J.S.; Geroski, D.H.; Prausnitz, M.R.; Edelhauser, H.F. The effect of intraocular pressure on human and rabbit scleral permeability. Invest. Ophthalmol. Vis. Sci. 1999, 40, 3054–3058. [Google Scholar]
- Bachu, R.D.; Chowdhury, P.; Al-Saedi, Z.H.; Karla, P.K.; Boddu, S.H. Ocular drug delivery barriers—Role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics 2018, 10, 28. [Google Scholar] [CrossRef]
- Shastri, D.H.; Silva, A.C.; Almeida, H. Ocular delivery of therapeutic proteins: A review. Pharmaceutics 2023, 15, 205. [Google Scholar] [CrossRef] [PubMed]
- Farkouh, A.; Frigo, P.; Czejka, M. Systemic side effects of eye drops: A pharmacokinetic perspective. Clin. Ophthalmol. 2016, 10, 2433–2441. [Google Scholar] [CrossRef] [PubMed]
- Mehrandish, S.; Mirzaeei, S. A review on ocular novel drug delivery systems of antifungal drugs: Functional evaluation and comparison of conventional and novel dosage forms. Adv. Pharm. Bull. 2020, 11, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, X.; Gu, Y.; Cheng, Y.; Cao, F. Recent advance of nanoparticle-based topical drug delivery to the posterior segment of the eye. Expert Opin. Drug Deliv. 2018, 15, 687–701. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Maria, D.N.; Wang, X.; Simpson, R.N.; Hollingsworth, T.; Jablonski, M.M. Enhanced corneal penetration of a poorly permeable drug using bioadhesive multiple microemulsion technology. Pharmaceutics 2020, 12, 704. [Google Scholar] [CrossRef]
- Callender, S.P.; Mathews, J.A.; Kobernyk, K.; Wettig, S.D. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery. Int. J. Pharm. 2017, 526, 425–442. [Google Scholar] [CrossRef]
- Souto, E.B.; Cano, A.; Martins-Gomes, C.; Coutinho, T.E.; Zielińska, A.; Silva, A.M. Microemulsions and nanoemulsions in skin drug delivery. Bioengineering 2022, 9, 158. [Google Scholar] [CrossRef]
- McClements, D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 2012, 8, 1719–1729. [Google Scholar] [CrossRef]
- Cardoso, C.O.; Ferreira-Nunes, R.; Cunha-Filho, M.; Gratieri, T.; Gelfuso, G.M. In situ gelling microemulsion for topical ocular delivery of moxifloxacin and betamethasone. J. Mol. Liq. 2022, 360, 119559. [Google Scholar] [CrossRef]
- Puri, D.; Khatik, G.L.; Shunmugaperumal, T. Studies on olive-and silicone-oils-based Janus macroemulsions containing ginger to manage primary dysmenorrheal pain. Mater. Sci. Eng. C 2019, 100, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Kabalnov, A.; Wennerström, H. Macroemulsion Stability: The oriented wedge theory revisited. Langmuir 1996, 12, 276–292. [Google Scholar] [CrossRef]
- Kadian, R.; Nanda, A. A comprehensive insight on recent advancements in self-emulsifying drug delivery systems. Curr. Drug Deliv. 2023, 20, 1095–1114. [Google Scholar] [CrossRef]
- Kapoor, D.U.; Sharma, D.; Gaur, M.; Prajapati, B.G.; Limmatvapirat, S.; Sriamornsak, P. Overcoming solubility challenges: Self-emulsifying systems for enhancing the delivery of poorly water-soluble antiviral drugs. Pharm. Nanotechnol. 2025, 13, 117–132. [Google Scholar] [CrossRef]
- El Maghraby, G.M.; Arafa, M.F.; Sultan, A.A. Self-emulsifying systems for drug delivery: Advances and challenges. In Advanced and Modern Approaches for Drug Delivery; Academic Press: Cambridge, MA, USA, 2023; pp. 33–75. [Google Scholar]
- Dehghani, M.; Zahir-Jouzdani, F.; Shahbaz, S.; Andarzbakhsh, K.; Dinarvand, S.; Nasab, M.H.F.; Amoli, F.A.; Asgharian, R.; Atyabi, F. Triamcinolone-loaded self nano-emulsifying drug delivery systems for ocular use: An alternative to invasive ocular surgeries and injections. Int. J. Pharm. 2024, 653, 123840. [Google Scholar] [CrossRef] [PubMed]
- Alothaid, H.; Aldughaim, M.S.; Yusuf, A.O.; Yezdani, U.; Alhazmi, A.; Habibullah, M.M.; Khan, M.G. A comprehensive study of the basic formulation of supersaturated self-nanoemulsifying drug delivery systems (SNEDDS) of albendazolum. Drug Deliv. 2021, 28, 2119–2126. [Google Scholar] [CrossRef]
- Gottemukkula, L.D.; Sampathi, S. SNEDDS as lipid-based nanocarrier systems: Concepts and formulation insights. Int. J. Appl. Pharm. 2022, 14, 1–9. [Google Scholar] [CrossRef]
- Divate, M.P.; Bawkar, S.U.; Chakole, R.D.; Charde, M.S. Self nano-emulsifying drug delivery system: A review. J. Adv. Sci. Res. 2021, 12, 1–12. [Google Scholar] [CrossRef]
- Zingale, E.; Bonaccorso, A.; D’Amico, A.G.; Lombardo, R.; D’Agata, V.; Rautio, J.; Pignatello, R. Formulating resveratrol and melatonin self-nanoemulsifying drug delivery systems (SNEDDS) for ocular administration using design of experiments. Pharmaceutics 2024, 16, 125. [Google Scholar] [CrossRef]
- Vikash, B.; Shashi; Pandey, N.K.; Kumar, B.; Wadhwa, S.; Goutam, U.; Alam, A.; Al-Otaibi, F.; Chaubey, P.; Mustafa, G. Formulation and evaluation of ocular self-nanoemulsifying drug delivery system of brimonidine tartrate. J. Drug Deliv. Sci. Technol. 2023, 81, 104226. [Google Scholar] [CrossRef]
- Suyal, J.; Kumar, B.; Jakhmola, V. Novel approach self-nanoemulsifying drug delivery system: A review. Adv. Pharmacol. Pharm. 2023, 11, 131–139. [Google Scholar] [CrossRef]
- Youssef, A.A.A.; Thakkar, R.; Senapati, S.; Joshi, P.H.; Dudhipala, N.; Majumdar, S. Design of topical moxifloxacin mucoadhesive nanoemulsion for the management of ocular bacterial infections. Pharmaceutics 2022, 14, 1246. [Google Scholar] [CrossRef] [PubMed]
- Morsi, N.; Ibrahim, M.; Refai, H.; El Sorogy, H. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. Eur. J. Pharm. Sci. 2017, 104, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Karati, D.; Mukherjee, S.; Singh, S.; Prajapati, B.G.; Basu, B. Biopolymer-based nano-formulations for mitigation of ocular infections: A review. Polym. Bull. 2024, 81, 7631–7658. [Google Scholar] [CrossRef]
- Islam, S.; Giri, Y.; Pattnaik, G. Development and optimization of levofloxacin in-situ emulgel to manage ocular bacterial infections. Not. Sci. Biol. 2025, 17, 12331. [Google Scholar] [CrossRef]
- Donthi, M.R.; Munnangi, S.R.; Krishna, K.V.; Saha, R.N.; Singhvi, G.; Dubey, S.K. Nanoemulgel: A novel nano carrier as a tool for topical drug delivery. Pharmaceutics 2023, 15, 164. [Google Scholar] [CrossRef]
- Ansari, A.; Verma, M.; Majhi, S. Nanoemulgel: A comprehensive review of formulation strategies, characterization, patents and applications. Micro Nanosyst. 2025, 17, 12–26. [Google Scholar] [CrossRef]
- Ahmad, M.Z.; Ahmad, J.; Alasmary, M.Y.; Akhter, S.; Aslam, M.; Pathak, K.; Jamil, P.; Abdullah, M. Nanoemulgel as an approach to improve the biopharmaceutical performance of lipophilic drugs: Contemporary research and application. J. Drug Deliv. Sci. Technol. 2022, 72, 103420. [Google Scholar] [CrossRef]
- Kushwah, P.; Sharma, P.K.; Koka, S.S.; Gupta, A.; Sharma, R.; Darwhekar, G. Microemulgel: A novel approach for topical drug delivery. J. Appl. Pharm. Res. 2021, 9, 14–20. [Google Scholar] [CrossRef]
- Mehta, J.; Shah, C.N.; Upadhyay, U. Novel topical drug delivery system: Microemulgel-A Review. Res. J. Pharm. Dos. Forms Technol. 2022, 14, 171–176. [Google Scholar] [CrossRef]
- Mahboobian, M.M.; Mohammadi, M.; Mansouri, Z. Development of thermosensitive in situ gel nanoemulsions for ocular delivery of acyclovir. J. Drug Deliv. Sci. Technol. 2020, 55, 101400. [Google Scholar] [CrossRef]
- Mazyed, E.A.; Abdelaziz, A.E. Fabrication of transgelosomes for enhancing the ocular delivery of acetazolamide: Statistical optimization, in vitro characterization, and in vivo study. Pharmaceutics 2020, 12, 465. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Nasr, M.; Sammour, O. Nanoemulsion as a feasible and biocompatible carrier for ocular delivery of travoprost: Improved pharmacokinetic/pharmacodynamic properties. Int. J. Pharm. 2020, 583, 119402. [Google Scholar] [CrossRef] [PubMed]
- Porto, D.S.; Port, B.d.C.B.; Conte, J.; Argenta, D.F.; Balleste, M.P.; Micke, G.A.; Campos, Â.M.; Caumo, K.S.; Caon, T. Development of ophthalmic nanoemulsions of β-caryophyllene for the treatment of Acanthamoeba keratitis. Int. J. Pharm. 2024, 659, 124252. [Google Scholar] [CrossRef]
- Choradiya, B.R.; Patil, S.B. Design, development, and characterization of brinzolamide and brimonidine tartrate nanoemulsion for ophthalmic drug delivery. Thai J. Pharm. Sci. 2022, 46, 413–424. [Google Scholar] [CrossRef]
- Mehrandish, S.; Mirzaeei, S. Design of novel nanoemulsion formulations for topical ocular delivery of itraconazole: Development, characterization and in vitro bioassay. Adv. Pharm. Bull. 2021, 12, 93. [Google Scholar] [CrossRef]
- Youssef, A.A.A.; Cai, C.; Dudhipala, N.; Majumdar, S. Design of topical ocular ciprofloxacin nanoemulsion for the management of bacterial keratitis. Pharmaceuticals 2021, 14, 210. [Google Scholar] [CrossRef]
- Yang, J.; Liang, Z.; Lu, P.; Song, F.; Zhang, Z.; Zhou, T.; Li, J.; Zhang, J. Development of a luliconazole nanoemulsion as a prospective ophthalmic delivery system for the treatment of fungal keratitis: In vitro and in vivo evaluation. Pharmaceutics 2022, 14, 2052. [Google Scholar] [CrossRef]
- Nasser, S.T.; Abdulrassol, A.; Ghareeb, M. Design, preparation and in-vitro evaluation of novel ocular antifungal nanoemulsion using posaconazole as a model drug. Int. J. Drug Deliv. Technol. 2021, 11, 1058–1064. [Google Scholar]
- Kassaee, S.N.; Mahboobian, M.M. Besifloxacin-loaded ocular nanoemulsions: Design, formulation and efficacy evaluation. Drug Deliv. Transl. Res. 2022, 12, 229–239. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, J.; Luo, Q.; Shi, J.; Xu, H.; Zhang, J. Preparation and in vitro and in vivo evaluation of an isoliquiritigenin-loaded ophthalmic nanoemulsion for the treatment of corneal neovascularization. Drug Deliv. 2022, 29, 2217–2233. [Google Scholar] [CrossRef]
- Jahromy, M.H.; Qomi, M.; Fazelipour, S.; Sami, N.; Faali, F.; Karimi, M.; Moghadam, F.A. Evaluation of curcumin-based ophthalmic nano-emulsion on atropine-induced dry eye in mice. Heliyon 2024, 10, e29009. [Google Scholar] [CrossRef] [PubMed]
- Gawin-Mikołajewicz, A.; Nawrot, U.; Malec, K.H.; Krajewska, K.; Nartowski, K.P.; Karolewicz, B.L. The effect of high-pressure homogenization conditions on the physicochemical properties and stability of designed fluconazole-loaded ocular nanoemulsions. Pharmaceutics 2023, 16, 11. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.N.R.; Agarwal, N.; Goswami, A.; Sree, A.; Jala, A.; Venuganti, A.; Deka, A.; Borkar, R.M.; Singh, V.; Das, D.; et al. Studies on spray dried topical ophthalmic emulsions containing cyclosporin A (0.05% w/w): Systematic optimization, in vitro preclinical toxicity and in vivo assessments. Drug Deliv. Transl. Res. 2023, 13, 1654–1674. [Google Scholar] [CrossRef] [PubMed]
- Henostroza, M.A.B.; Melo, K.J.C.; Yukuyama, M.N.; Löbenberg, R.; Bou-Chacra, N.A. Cationic rifampicin nanoemulsion for the treatment of ocular tuberculosis. Colloids Surf. A Physicochem. Eng. Asp. 2020, 597, 124755. [Google Scholar] [CrossRef]
- Kassem, A.A.; Salama, A.; Mohsen, A.M. Formulation and optimization of cationic nanoemulsions for enhanced ocular delivery of dorzolamide hydrochloride using Box-Behnken design: In vitro and in vivo assessments. J. Drug Deliv. Sci. Technol. 2022, 68, 103047. [Google Scholar] [CrossRef]
- Kalam, M.A.; Alshamsan, A.; Aljuffali, I.A.; Mishra, A.K.; Sultana, Y. Delivery of gatifloxacin using microemulsion as vehicle: Formulation, evaluation, transcorneal permeation and aqueous humor drug determination. Drug Deliv. 2016, 23, 886–897. [Google Scholar] [CrossRef]
- Moghimipour, E.; Farsimadan, N.; Salimi, A. Ocular delivery of quercetin using microemulsion system: Design, characterization, and ex-vivo transcorneal permeation. Iran. J. Pharm. Res. 2022, 21, e127486. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, J.; Zhang, Y.; Zheng, C.; Liang, Z.; Lu, P.; Song, F.; Wang, Y.; Zhang, J. Development of a naringenin microemulsion as a prospective ophthalmic delivery system for the treatment of corneal neovascularization: In vitro and in vivo evaluation. Drug Deliv. 2022, 29, 111–127. [Google Scholar] [CrossRef]
- Shi, J.; Yang, J.; Xu, H.; Luo, Q.; Sun, J.; Zhang, Y.; Liang, Z.; Zhao, N.; Zhang, J. Preparation of a Sunitinib loaded microemulsion for ocular delivery and evaluation for the treatment of corneal neovascularization in vitro and in vivo. Front. Pharmacol. 2023, 14, 1157084. [Google Scholar] [CrossRef]
- Santonocito, M.; Zappulla, C.; Viola, S.; La Rosa, L.R.; Solfato, E.; Abbate, I.; Tarallo, V.; Apicella, I.; Platania, C.B.M.; Maugeri, G.; et al. Assessment of a new nanostructured microemulsion system for ocular delivery of sorafenib to posterior segment of the eye. Int. J. Mol. Sci. 2021, 22, 4404. [Google Scholar] [CrossRef]
- Salimi, A.; Behrouzifar, M. Ocular delivery of ketorolac tromethamine using microemulsion as a vehicle: Design, evaluation, and transcorneal permeation. J. Res. Pharm. 2020, 24, 925–934. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Ji, Y.; Liang, Z.; Wang, Y.; Zhang, J. Development of osthole-loaded microemulsions as a prospective ocular delivery system for the treatment of corneal neovascularization: In vitro and in vivo assessments. Pharmaceuticals 2023, 16, 1342. [Google Scholar] [CrossRef]
- Choudhari, M.; Nayak, K.; Nagai, N.; Nakazawa, Y.; Khunt, D.; Misra, M. Role of mucoadhesive agent in ocular delivery of ganciclovir microemulsion: Cytotoxicity evaluation in vitro and ex vivo. Int. Ophthalmol. 2023, 43, 1153–1167. [Google Scholar] [CrossRef] [PubMed]
- Nayak, K.; Misra, M. Triamcinolone acetonide-loaded PEGylated microemulsion for the posterior segment of eye. ACS Omega 2020, 5, 7928–7939. [Google Scholar] [CrossRef] [PubMed]
- Nayak, K.; Misra, M. PEGylated microemulsion for dexamethasone delivery to posterior segment of eye. J. Biomater. Sci. Polym. Ed. 2020, 31, 1071–1090. [Google Scholar] [CrossRef]
- Kassaee, S.N.; Nili-Ahmadabadi, A.; Mahboobian, M.M. Fabrication of poloxamer based besifloxacin thermosensitive in situ gelling nanoemulsions for ophthalmic delivery. J. Bioact. Compat. Polym. 2023, 38, 298–310. [Google Scholar] [CrossRef]
- Fardous, J.; Inoue, Y.; Yoshida, K.; Ono, F.; Higuchi, A.; Ijima, H. Delivery of hydrophobic drugs to the posterior ocular region by gel-in-water nanoemulsion. Transl. Vis. Sci. Technol. 2022, 11, 16. [Google Scholar] [CrossRef]
- Al-Rubaye, R.A.; Al-Kinani, K.K. Formulation and evaluation of prednisolone acetate microemulsion ocular gel. Egypt. J. Hosp. Med. 2023, 90, 1744–1751. [Google Scholar] [CrossRef]
- Sabry, H.S.; Al-Shohani, A.D.H.; Mahmood, S.Z. Formulation and evaluation of levofloxacin and betamethasone ophthalmic emulgel. J. Pharm. Bioallied Sci. 2021, 13, 205–211. [Google Scholar] [CrossRef]
- Ali, F.; Habibullah, S.; Mohanty, B.; Behera, A.; Giri, Y.; Nayak, B.S. Novel in-situ emulgel of acetazolamide for ocular drug delivery. J. Appl. Pharm. Sci. 2023, 13, 127–135. [Google Scholar] [CrossRef]
- Mohammadi, M.; Elahimehr, Z.; Mahboobian, M.M. Acyclovir-loaded nanoemulsions: Preparation, characterization and irritancy studies for ophthalmic delivery. Curr. Eye Res. 2021, 46, 1646–1652. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, M.; Mahboobian, M.M.; Nouri, F.; Mohammadi, M. Studying the ophthalmic toxicity potential of developed ketoconazole loaded nanoemulsion in situ gel formulation for ophthalmic administration. Toxicol. Mech. Methods 2021, 31, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Rathod, S.; Desai, H.; Patil, R.; Sarolia, J. Non-ionic surfactants as a P-glycoprotein (P-gp) efflux inhibitor for optimal drug delivery—A concise outlook. AAPS PharmSciTech 2022, 23, 55. [Google Scholar] [CrossRef] [PubMed]
- Bairagi, R.D.; Reon, R.R.; Hasan, M.M.; Sarker, S.; Debnath, D.; Rahman, M.T.; Rahman, S.; Islam, M.A.; Siddique, M.A.T.; Bokshi, B.; et al. Ocular drug delivery systems based on nanotechnology: A comprehensive review for the treatment of eye diseases. Discov. Nano 2025, 20, 75. [Google Scholar] [CrossRef]
- Jacob, S.; Kather, F.S.; Boddu, S.H.; Shah, J.; Nair, A.B. Innovations in nanoemulsion technology: Enhancing drug delivery for oral, parenteral, and ophthalmic applications. Pharmaceutics 2024, 16, 1333. [Google Scholar] [CrossRef]
- Guo, P.; Li, N.; Fan, L.; Lu, J.; Liu, B.; Zhang, B.; Wu, Y.; Liu, Z.; Li, J.; Pi, J.; et al. Study of penetration mechanism of labrasol on rabbit cornea by Ussing chamber, RT-PCR assay, Western blot and immunohistochemistry. Asian J. Pharm. Sci. 2019, 14, 329–339. [Google Scholar] [CrossRef]
- Akhter, S.; Anwar, M.; Siddiqui, M.A.; Ahmad, I.; Ahmad, J.; Ahmad, M.Z.; Bhatnagar, A.; Ahmad, F.J. Improving the topical ocular pharmacokinetics of an immunosuppressant agent with mucoadhesive nanoemulsions: Formulation development, in-vitro and in-vivo studies. Colloids Surf. B Biointerfaces 2016, 148, 19–29. [Google Scholar] [CrossRef]
- Malavi, S.; Kumbhar, P.; Manjappa, A.; Chopade, S.; Patil, O.; Kataria, U.; Dwivedi, J.; Disouza, J. Topical emulgel: Basic considerations in development and advanced research. Indian J. Pharm. Sci. 2022, 84, 1105–1115. [Google Scholar] [CrossRef]
- Ajazuddin; Alexander, A.; Khichariya, A.; Gupta, S.; Patel, R.J.; Giri, T.K.; Tripathi, D.K. Recent expansions in an emergent novel drug delivery technology: Emulgel. J. Control. Release 2013, 171, 122–132. [Google Scholar] [CrossRef]
- Hidajat, M.J.; Jo, W.; Kim, H.; Noh, J. Effective droplet size reduction and excellent stability of limonene nanoemulsion formed by high-pressure homogenizer. Colloids Interfaces 2020, 4, 5. [Google Scholar] [CrossRef]
- Tanuku, S.; Velisila, D.; Thatraju, D.; kumar Vadaga, A. Nanoemulsion formulation strategies for enhanced drug delivery. J. Pharma Insights Res. 2024, 2, 125–138. [Google Scholar] [CrossRef]
- Cannas, S.; Usai, D.; Pinna, A.; Benvenuti, S.; Tardugno, R.; Donadu, M.; Zanetti, S.; Kaliamurthy, J.; Molicotti, P. Essential oils in ocular pathology: An experimental study. J. Infect. Dev. Ctries. 2015, 9, 650–654. [Google Scholar] [CrossRef]
- Maiti, S.; Sadhukhan, S.; Bakshi, P. Ocular preservatives: Risks and recent trends in its application in ocular drug delivery (ODD). In Nano-Biomaterials for Ophthalmic Drug Delivery; Springer: Berlin/Heidelberg, Germany, 2016; pp. 253–276. [Google Scholar]
- Tiwari, R.; Pandey, V.; Asati, S.; Soni, V.; Jain, D. Therapeutic challenges in ocular delivery of lipid based emulsion. Egypt. J. Basic Appl. Sci. 2018, 5, 121–129. [Google Scholar] [CrossRef]
- Mohapatra, D.; Senapati, P.C.; Senapati, S.; Pandey, V.; Dubey, P.K.; Singh, S.; Sahu, A.N. Quality-by-design-based microemulsion of disulfiram for repurposing in melanoma and breast cancer therapy. Ther. Deliv. 2024, 15, 521–544. [Google Scholar] [CrossRef] [PubMed]
- Baranowski, P.; Karolewicz, B.; Gajda, M.; Pluta, J. Ophthalmic drug dosage forms: Characterisation and research methods. Sci. World J. 2014, 2014, 861904. [Google Scholar] [CrossRef]
- Srinivasan, B.; Kolli, A.R.; Esch, M.B.; Abaci, H.E.; Shuler, M.L.; Hickman, J.J. TEER measurement techniques for in vitro barrier model systems. J. Lab. Autom. 2015, 20, 107–126. [Google Scholar] [CrossRef]
- Campa, C. Effect of VEGF and anti-VEGF compounds on retinal pigment epithelium permeability: An in vitro study. Eur. J. Ophthalmol. 2013, 23, 690–696. [Google Scholar] [CrossRef]
- Afonso, A.A.; Monroy, D.; Stern, M.E.; Feuer, W.J.; Tseng, S.C.; Pflugfelder, S.C. Correlation of tear fluorescein clearance and Schirmer test scores with ocular irritation symptoms. Ophthalmology 1999, 106, 803–810. [Google Scholar] [CrossRef]
- Brott, N.R.; Zeppieri, M.; Ronquillo, Y. Schirmer test. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Shchedrina, L.; Brutko, L.; Karyakin, A.; Vasil’ev, E.; Borisova, L. Possibilities for the fluorometric detection of bacterial pyrogens. Pharm. Chem. J. 1979, 13, 778–781. [Google Scholar] [CrossRef]
- Shen, Y.; Ling, X.; Jiang, W.; Du, S.; Lu, Y.; Tu, J. Formulation and evaluation of Cyclosporin A emulgel for ocular delivery. Drug Deliv. 2015, 22, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Ashara, K.C.; Paun, J.S.; Soniwala, M.M.; Chavada, J.R.; Mori, N.M. Micro-emulsion based emulgel: A novel topical drug delivery system. Asian Pac. J. Trop. Dis. 2014, 4, S27–S32. [Google Scholar] [CrossRef]
- Tayel, S.A.; El-Nabarawi, M.A.; Tadros, M.I.; Abd-Elsalam, W.H. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: Design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. Int. J. Pharm. 2013, 443, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Google Patents. Available online: https://patents.google.com/patent/US20240041974A1/en (accessed on 4 October 2025).
- Google Patents. Available online: https://patents.google.com/patent/US11173112B2/en (accessed on 4 October 2025).
- Google Patents. Available online: https://patents.google.com/patent/US20240307299A1/en (accessed on 4 October 2025).
- Google Patents. Available online: https://patents.google.com/patent/US11690802B2/en (accessed on 4 October 2025).
- Google Patents. Available online: https://patents.google.com/patent/US11234929B2/en (accessed on 4 October 2025).
- Google Patents. Available online: https://patents.google.com/patent/US8273366B2/en (accessed on 4 October 2025).
- Google Patents. Available online: https://patents.google.com/patent/US20210085603A1/en (accessed on 4 October 2025).
- Google Patents. Available online: https://patents.google.com/patent/US20190076354A1/en (accessed on 4 October 2025).
- Google Patents. Available online: https://patents.google.com/patent/KR102204221B1/en (accessed on 4 October 2025).
- Google Patents. Available online: https://patents.google.com/patent/US10555947B2/en (accessed on 4 October 2025).
- Google Patents. Available online: https://patents.google.com/patent/JP7642536B2/en (accessed on 4 October 2025).
- Google Patents. Available online: https://patents.google.com/patent/KR102407735B1/en (accessed on 4 October 2025).
- Google Patents. Available online: https://patents.google.com/patent/AU2013255231B2/en (accessed on 4 October 2025).
- Google Patents. Available online: https://patents.google.com/patent/US9597328B2/en (accessed on 4 October 2025).
- Google Patents. Available online: https://patents.google.com/patent/JP7489965B2/en (accessed on 4 October 2025).
- Google Patents. Available online: https://patents.google.com/patent/CN102159186B/en (accessed on 4 October 2025).
- Google Patents. Available online: https://patents.google.com/patent/JP2021107402A/en (accessed on 4 October 2025).
- Google Patents. Available online: https://patents.google.com/patent/EP2579845B1/en (accessed on 4 October 2025).
- Google Patents. Available online: https://patents.google.com/patent/US20180250313A1/en (accessed on 4 October 2025).
- Google Patents. Available online: https://patents.google.com/patent/JP2020037557A/en (accessed on 4 October 2025).
- Google Patents. Available online: https://patents.google.com/patent/ES2706535T3/en (accessed on 4 October 2025).
- Google Patents. Available online: https://patents.google.com/patent/US20180221278A1/en (accessed on 4 October 2025).
- Google Patents. Available online: https://patents.google.com/patent/US20230293557A1/en (accessed on 4 October 2025).
- Onugwu, A.L.; Ikwuegbu, I.; Ejiofor, C.V.; Nwosu, P.C.; Odo, L.I.; Eze, O.P.; Agu, P.I.; Ugwu, O.K.; Onugwu, S.O.; Akpa, P.A.; et al. Nanoemulsions for the ocular delivery of anti-infectives: Challenges, advances and prospects in treating infectious eye diseases. Nanoscale 2025, 17, 24926–24954. [Google Scholar] [CrossRef]
- Xiao, T.; Ma, X.; Hu, H.; Xiang, F.; Zhang, X.; Zheng, Y.; Dong, H.; Adhikari, B.; Wang, Q.; Shi, A. Advances in emulsion stability: A review on mechanisms, role of emulsifiers, and applications in food. Food Chem. X 2025, 29, 102792. [Google Scholar] [CrossRef] [PubMed]
- Gawin-Mikołajewicz, A.; Nartowski, K.P.; Dyba, A.J.; Gołkowska, A.M.; Malec, K.; Karolewicz, B. Ophthalmic nanoemulsions: From composition to technological processes and quality control. Mol. Pharm. 2021, 18, 3719–3740. [Google Scholar] [CrossRef]
- Dey, H.; Arya, N.; Mathur, H.; Chatterjee, N.; Jadon, R. Exploring the role of artificial intelligence and machine learning in pharmaceutical formulation design. Int. J. Newgen Res. Pharm. Healthc. 2024, 2, 30–41. [Google Scholar] [CrossRef]
- Vora, L.K.; Gholap, A.D.; Jetha, K.; Thakur, R.R.S.; Solanki, H.K.; Chavda, V.P. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 2023, 15, 1916. [Google Scholar] [CrossRef]
- Ali, K.A.; Mohin, S.; Mondal, P.; Goswami, S.; Ghosh, S.; Choudhuri, S. Influence of artificial intelligence in modern pharmaceutical formulation and drug development. Futur. J. Pharm. Sci. 2024, 10, 53. [Google Scholar] [CrossRef]





| Type of Emulsion | Drug | Excipients | Preparation Method | Optimization Tool | In Vitro and In Vivo Experimental Model | Evaluated Therapeutic Use | Overall Outcomes | Reference |
|---|---|---|---|---|---|---|---|---|
| NEs | Travoprost | Lipophile oil Labrafac® Tween® 80 | Low-energy method: Emulsion inversion point | NA | Sub-conjunctival suspension of 0.1% betamethasone-based glaucoma model in New Zealand white (NZW) rabbits Ocular irritancy on the eyes of NZW rabbits Pharmacokinetic study on NZW rabbit eyes | Glaucoma |
| [95] |
| NEs | β-caryophyllene | Medium-chain triglycerides (MCTs) Cetrimonium bromide (CTAB) Sorbitan monooleate 80 Polysorbate 80 Phosal® 50 SA+ | Spontaneous emulsification | NA | In vitro activity against Acanthamoeba castellanii trophozoites by AlamarBlue™ assay Ex vivo permeation across the porcine cornea ATR-FTIR for ex vivo corneal interaction | Acanthamoeba keratitis |
| [96] |
| NEs | Brinzolamide and brimonidine tartrate | Polysorbate 80 Castor oil Glycerol Benzalkonium chloride Tris buffer | Spontaneous emulsification | Full factorial design | Preservative efficacy study against Staphylococcus aureus and Pseudomonas aeruginosa Hen’s egg test–chorioallantoic membrane (HET-CAM) for irritation study Ex vivo ocular permeability against goat cornea | -- |
| [97] |
| NEs | Itraconazole | Benzyl benzoate Eumulgin® CO40 Propylene glycol | Spontaneous emulsification method | Mixture design | In vitro drug release In vitro antifungal activity against Candida albicans | Fungal infection |
| [98] |
| NEs | Ciprofloxacin | Oleic acid Labrafac® Lipophile WL 1349 Tween® 80 Poloxamer 188 | Hot homogenization and ultrasonication | -- | Ex vivo transcorneal permeation across the rabbit cornea | Bacterial keratitis |
| [99] |
| NEs | Luliconazole | Capryol 90 Ethoxylated hydrogenated castor oil Transcutol® P | Gentle mixing | Central composite design | In vivo ocular irritation in NZW rabbit’s eye by Draize test In vivo ocular pharmacokinetics in rabbit eyes In vitro antifungal activity against Fusarium and Aspergillus | Fungal keratitis |
| [100] |
| NEs | Posaconazole | Isopropyl myristate Labrasol® Transcutol® P | Vortexing and stirring, followed by probe sonication | -- | Ex vivo permeability study across goat cornea In vivo ocular irritation study in NZW rabbits by Draize test Antifungal activity against C. albicans and A. niger by well-diffusion assay | Fungal eye infection |
| [101] |
| NEs | Besifloxacin | Triacetin Cremophor® RH 40 Transcutol® P | Low-energy emulsification | -- | HET-CAM for irritation study Ex vivo transcorneal permeation study through bovine cornea In vitro antimicrobial activity against P. aeruginosa and S. aureus | Bacterial infection |
| [102] |
| NEs | Isoliquiritigenin | Propylene glycol dicaprylate Cremophor® EL Polyethylene glycol 400 Sodium hyaluronate | Water titration method | Central composite design | Ex vivo corneal permeation study across freshly isolated rabbit corneas Cytotoxicity against human corneal epithelial cells by CCK-8 assay Ocular irritation study and pharmacokinetic study in NZW rabbit’s eye Alkali burn (NaOH solution)-based corneal NV in BALB/c mice eyes | Corneal neovascularization |
| [103] |
| NEs | Curcumin | Vegetable oil Polyethylene glycol 400 Polysorbate 80 Alpha-tocopherol acetate Ascorbic acid | Self-nano emulsification method | -- | Atropine-induced dry eye in Balb/c mice | DED |
| [104] |
| NEs | Fluconazole | Oleic acid Kolliphor EL Tween® 80 Tween® 20 Pluronic® F127 Polyethylene glycol 200 Propylene glycol | High-pressure homogenization | -- | In vitro antifungal activity against C. albicans, C. parapsilosis, C. glabrata, and C. tropicalis by disk diffusion method | -- |
| [105] |
| Cationic NEs | Cyclosporin A | Castor oil, chitosan, Poloxamer 188, glycerin | Magnetic stirring followed by high-shear homogenization | Screening of factors by Taguchi OA design and optimization using central composite design | Cytotoxicity and cellular uptake study using human corneal epithelial cells (HCE-2) HET-CAM for irritation study Ocular biodistribution study in albino rabbit eyes | -- |
| [106] |
| Cationic NEs | Rifampicin | Oleic acid Polysorbate 80 Poloxamer 188 Chitosan Polymyxin B | High-pressure homogenization | 23 full factorial design | In vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against Mycobacterium tuberculosis | Ocular tuberculosis |
| [107] |
| Cationic NEs | Dorzolamide hydrochloride | Isopropyl myristate Tween® 80 Cetyl trimethyl ammonium bromide | High-speed homogenizer | Box–Behnken design | Glaucoma model on male NZW rabbits Draize test for ocular irritancy assessment using NZW rabbits | Glaucoma |
| [108] |
| Cationic NEs | Prednisolone | Tween® 80 Propylene glycol Cremophor® RH40 Polyethylene glycol 600 Glycerin Cetalkonium chloride | Mixing followed by probe sonication | -- | Ex vivo corneal permeability across rabbit cornea Bovine serum albumin-induced uveitis model on NZW rabbit eye | Uveitis |
| [35] |
| Mucoadhesive NEs | Moxifloxacin | Oleic acid Tween® 80 Glycerin HPMC K4M PVP K29/32 | Hot homogenization coupled with probe sonication | -- | Ex vivo transcorneal permeation across the rabbit eye Antimicrobial activity against methicillin-resistant S. aureus | Ocular bacterial infections |
| [84] |
| SNEDDSs | Triamcinolone | Castor oil Polysorbate 80 PEG 400 Polyoxyethylene 35 Glycerol Propylene glycol | Low-energy method: Self-nanoemulsion method | Manual optimization | MTT assay on RPE cells In vitro cellular uptake study on RPE cells In vivo ocular irritation study | -- |
| [77] |
| SNEDDSs | Resveratrol melatonin | Capryol® Tween® 80 PGMC Transcutol® P | Simple mixing | Simplex lattice design for ternary-phase diagrams and I-optimal design for formulation optimization | In vitro cytocompatibility on SIRC cells by MTT assay | -- |
| [81] |
| MEs | Dexamethasone sodium phosphate | Capryol® PGMC D-α-tocopherol polyethylene glycol succinate (TPGS) Plantacare® (coco-Glycosides) | -- | Manual optimization | Endotoxin-induced uveitis rat model Ex vivo trans corneal permeation via bovine eyeballs Ex vivo mucoadhesion in bovine cornea Ocular irritancy by Draize test using rabbit eyeballs | Uveitis |
| [34] |
| MEs | Gatifloxacin | Isopropyl myristate (IPM) Tween® 80 Transcutol® P | Spontaneous emulsification with simple vortexing | NA | Ex vivo transcorneal permeability across goat cornea In vivo ocular irritation on NZW rabbits by Draize’s test Corneal retention by gamma scintigraphy and pharmacokinetic studies on NZW rabbits Antimicrobial activity using agar diffusion assay against Bacillus subtilis, S. aureus, and Escherichia coli | Ocular bacterial infections |
| [109] |
| MEs | Quercetin | Oleic acid Transcutol® P Span® 20 Tween® 80 Propylene glycol | Spontaneous emulsification: Stirring | Full factorial design | Ex vivo corneal permeation across NZW rabbits’ eyes | -- |
| [110] |
| MEs | Cineraria maritima extract | Ethyl oleate Tween® 80 Span® 20 | Water titration method | -- | In vivo anticataract on intravitreally injected sodium selenite-induced NZW rabbit model Ocular irritation studies in NZW rabbit model by Draize test Ex vivo permeability across goat cornea | Cataract |
| [37] |
| MEs | Naringenin | Triacetin Cremophor® RH40 PEG400 | Spontaneous emulsion method | Central composite design | Ex vivo corneal permeation Toxicity study against Human corneal epithelial cells (HCECs) Ex vivo corneal permeation study on rabbit corneas Ocular irritation study on NZW rabbits using Draize test Ocular pharmacokinetic study on NZW rabbits Alkali (NaOH solution)-induced corneal NV mice model | Corneal neovascularization |
| [111] |
| MEs | Sunitinib | Oleic acid Cremophor® RH40 Transcutol® P Sodium hyaluronate | Phase inversion emulsification method | -- | In vitro cytotoxicity to human corneal epithelial cells Ocular irritation by Draize test, ocular pharmacokinetics on NZW rabbits Inhibitory effects on CNV were evaluated in vitro and in vivo Alkali (NaOH solution) burn-induced corneal NV in BALB/c mouse model | Corneal neovascularization |
| [112] |
| MEs | Sorafenib | Proprietary drug delivery system (NaMESys) | -- | -- | In vitro cytotoxicity on SIRC cells In vivo ocular tolerability study in NZW rabbits by Draize test Efficacy study in Brown Norway adult rats retinal ischemia–reperfusion injury model; streptozotocin-induced DR model in Sprague–Dawley rats; and CNV model on C57Bl6/J mice | Diabetic retinopathy |
| [113] |
| MEs | Ketorolac tromethamine | Oleic acid Transcutol® P Span® 20 Tween® 80 Propylene glycol | -- | Full factorial design | Corneal permeation across the rabbit cornea | -- |
| [114] |
| MEs | Osthole | Capryol® 90 Cremophor® EL Transcutol® P Sodium hyaluronate | Phase inversion emulsification | Central composite design | In vitro cytotoxicity against HCECs by CCK-8 assay In vivo ocular irritation on NZW rabbit eye by Draize eye test Ocular pharmacokinetics in rabbits Corneal NV mouse model using BALB/c mice by the alkali burn (NaOH solution) method | Corneal neovascularization |
| [115] |
| MEs | Triamcinolone acetonide | Oleic acid Cremophor® EL Propylene glycol | Simple mixing | -- | In vivo ocular irritation on domestic rabbits using the Draize eye test Bovine serum albumin-induced Uveitis rabbit model | Uveitis |
| [36] |
| MEs | Acetazolamide | Castor oil Olive oil Tween® 80 | Simple mixing | -- | Dexamethasone-induced ocular hypertension in NZW male albino rabbits Ocular irritation study on rabbit’s eye using phenol red thread test | Glaucoma |
| [42] |
| MEs | Brinzolamide | Isopropyl myristate Tween® 80 Transcutol® P | Water titration method: Simple stirring | D-optimal mixture design | Ocular irritation study on isolated goat cornea by histopathology | Glaucoma |
| [43] |
| Mucoadhesive MEs | Ganciclovir | Capmul MCM EP Labrasol® Transcutol® P Chitosan | Water titration method | -- | Ex vivo goat corneal permeation In vitro cytotoxicity against SIRC and ARPE-19 by Alamar Blue assay Ex vivo corneal irritation study on goat cornea by histopathological observation In vitro mucoadhesion measurement by zeta potential and ex vivo mucoadhesion by spectroscopy method on goat cornea | -- |
| [116] |
| Cationic MEs | Clotrimazole | Oleic acid Transcutol® HP Cremophor® EL Chitosan | Spontaneous emulsification with stirring | 22 × 31 full factorial design | In vivo ocular tolerance and histopathological studies of male albino rabbits Candida albicans susceptibility test | Fungal keratitis |
| [30] |
| PEGylated MEs | Triamcinolone Acetonide | Capmul MCM C8 AccononMC8-2 Transcutol® DSPE-PEG 2000 | Water titration | -- | Ocular biocompatibility using RBCs, HET-CAM study, histopathology study In vitro cytotoxicity study against SIRC and ARPE-19 cells Transepithelial electrical resistance In vivo pharmacokinetic study on Sprague–Dawley rats | -- |
| [117] |
| PEGylated MEs | Dexamethasone | Capmul MCM EP Tween® 80 Kolliphor RH40 Labrasol® DSPE-PEG 2000 Transcutol® HP | NA | Ocular biocompatibility using RBCs, HET-CAM study, histopathology study In vitro cytotoxicity study against SIRC and ARPE-19 cells Transepithelial electrical resistance on SIRC cells Pharmacokinetic study on Sprague–Dawley rats | -- |
| [118] | |
| Bioadhesive Multiple MEs | Ribavirin | Capryol 90 Labrafac® Lipophile WL1349 Labrasol® Soybean lecithin Cremophor® EL Propylene glycol | Simple vortexing | NA | In vitro cell viability of human corneal limbal epithelial cells (HCLEs) by MTT assay Transcorneal permeability against NZW rabbit eyes In vivo ocular tolerance on Dutch belted rabbit eye by modified Draize test | -- |
| [67] |
| In situ gelling MEs | Moxifloxacin and betamethasone | Ethyl oleate Cremophor® EL Plurol® oleique Poloxamer 407 | Ultrasonication | NA | Ex vivo ocular penetration using porcine cornea | Intraocular surgery |
| [71] |
| In situ gelling MEs | Sparfloxacin | Labrafil M1944 CS Acrysol–140 Transcutol® P Poloxamer 407 | Spontaneous emulsification | Simplex lattice design | HET-CAM eye irritation study In vitro antimicrobial efficacy study via cup plate (agar plate) method | DED and corneal ulcer |
| [15] |
| Thermoresponsive in situ gel of NEs | Acyclovir | Triacetin as oil Transcutol® P Poloxamer 407 Poloxamer188 | Low-energy method: Stirring | -- | Ex vivo transcorneal permeation using bovine eye Ocular irritation test in NZW rabbit eye using Draize test HET-CAM test for ocular irritancy | Herpes simplex keratitis infection |
| [93] |
| Thermosensitive in situ gelling NEs | Besifloxacin | Triacetin Cremophor® RH 40 Transcutol® P Poloxamer 188 Poloxamer 407 | Spontaneous emulsification method | -- | HET-CAM test for ocular irritancy Ex vivo transcorneal permeation across bovine cornea Antibacterial efficacy against P. aeruginosa and S. aureus by agar diffusion test | Ocular bacterial infections |
| [119] |
| In situ gel NEs | Brinzolamide | Triacetin, Transcutol® P Tween® 80 Poloxamer 188 Pluronic® 407 | Mixing and stirring | -- | In vitro cytotoxicity by MTT assay on the human RPE cells HET-CAM study for ocular irritancy In vivo ocular irritation by modified Draize method in NZW rabbit eye In vivo therapeutic efficacy study in NZW rabbits in terms of maximum IOP decrease rate (Emax%), area under the curve (AUC0–6h), and time to achieve maximum IOP reduction (Tmax) | Glaucoma |
| [41] |
| Gel-in-Water NEs | Beeswax dissolved in castor oil Polyoxyethylene hydrogenated castor oil-60 | Ultrasonication | -- | In vitro biocompatibility against rat hepatocytes and human umbilical vein endothelial cells (HUVECs) In vivo ocular irritation on ICR mice using the Draize technique In vivo corneal permeability using Institute of Cancer Research (ICR) mice | -- |
| [120] | |
| Microemulsion ocular gel | Prednisolone acetate | Oleic acid IPM Tween® 80 Propylene glycol Ethanol Carbopol 934 Benzalkonium chloride | -- | -- | Ex vivo ocular permeation across sheep cornea | -- |
| [121] |
| In situ emulgel | Levofloxacin | Sunflower oil Tween® 80 Span® 80 Chitosan, HPMC, poloxamers, gellan gum, sodium alginate | Stirring | -- | Ex vivo drug permeation across goat cornea In vitro anti-microbial activity against S. aureus and E. coli | Ocular bacterial infections |
| [87] |
| Emulgel | Levofloxacin and betamethasone | Castor oil Poloxamer 188 Xanthan gum Carbopol 934 Methyl cellulose Glycerin | Stirring | -- | In vitro antibacterial activity against E. coli and S. aureus | Bacterial eye infections |
| [122] |
| Emulgel | Acetazolamide | Corn oil Tween® 80 Span® 80 Pectin Gellan gum | Homogenization | -- | Ex vivo corneal permeability across the goat cornea In vivo glaucoma study in rabbits using 5% glucose Ocular irritation study using albino rabbits by Draize parameters | Glaucoma |
| [123] |
| Characterization Parameter | Acceptance Criteria | Relevance to Ophthalmic Performance | References |
|---|---|---|---|
| pH | Close to pH of tear fluid (pH 7.4) Acceptable range: pH 6.5–8.5 | Minimizes irritation and maximizes patient compliance | [16,17] |
| Viscosity | Viscosity within 15–150 mPa·s | Optimum viscosity allows prolonged ocular retention and maximizes the absorption | [16] |
| Osmolarity | Should be close to the osmolarity of tear fluid: 270–310 mOsm/L | Minimizes irritation, retains ocular tissue integrity, and maximizes patient compliance | [16] |
| Surface tension | Within 40–50 mN/m | Influences drop size, amount of drug/dose, spreading behavior, tear film stability, and ocular comfort | [3,4,17] |
| Refractive index | A very close RI value to that of tear fluid (1.340 to 1.360) or a value less than 1.476 | Affects the transparency/visual clarity, isotropy, and optical compatibility | [3,17] |
| Transmittance | A value greater than 98% | Minimizes blurring or haziness and offers clear vision and visual comfort after instillation | [17] |
| Globule size | Below 200 nm | Allows effective drug permeation across ocular barriers by receptor-mediated endocytosis | [84] |
| Polydispersity | Below 0.3 | Homogeneity and narrow size distribution/particles of uniform size | [84] |
| Zeta potential | Greater than ±30 mV | Offers more repulsive force between globules, avoids aggregation/coalescence, and offers prolonged stability | [84] |
| Drug content and content uniformity | Content within 85–115% (±15%) | Offers dose accuracy and therapeutic consistency and maintains product efficacy | [16] |
| Entrapment efficiency | In general, high entrapment efficiency (>90%) | Offers improved ocular bioavailability and reduces dosing volume and dosing frequency | |
| Loading capacity | In general, high loading capacity | Necessary to load maximum drug in limited amount of excipients that ultimately reduce excipient-related issues (irritation or toxicity) | |
| Drug–excipient compatibility | No shifting or disappearance of characteristic spectra (vibrational or thermal peaks) of drug | Necessary to observe possible interactions between the selected excipients and the drug | [34,37,112,117] |
| Stability | Should remain stable in the prescribed storage conditions for prolonged time period | Ensures safety, efficacy, and quality throughout the product’s shelf life | [139] |
| Transcorneal/scleral permeability | Should permeate required quantity of drugs to achieve therapeutic activity | Improves ocular drug bioavailability and therapeutic efficacy | [95,99] |
| Ocular biocompatibility, toxicity, and irritancy | Should be non-toxic, non-irritant, and biocompatible with ocular tissue | Ensures safety, improved tolerability, and regulatory compliance | [3] |
| Ocular pharmacokinetics | Formulation should provide improved pharmacokinetic profile compared to drug solution or suspension | Provides understanding on drug absorption, distribution, and clearance in ocular tissues | [103,111,112] |
| Sterility | Should be completely free from microbial contaminants | Ensures the absence of microbial contamination | [16,117] |
| Presence of pyrogens | Should be free from pyrogens (metabolic byproducts of microorganisms) | Ensures safety and regulatory compliance | [16] |
| Patent Title | Description | Patent No. | Publication Date | Type of Formulation | Therapeutic Use/Disease Target | Reference |
|---|---|---|---|---|---|---|
| Nanoemulsion ophthalmic composition comprising cyclosporine and menthol, and preparation method thereof | Provides a nanoemulsion ophthalmic composition comprising cyclosporine with improved stability, bioavailability, and eye irritation, as well as a method for preparing the same. | US20240041974A1 | 8 February 2024 | o/w NEs | DED | [148] |
| Ophthalmic preparations | Ophthalmic formulations containing cyclosporine and methods for preparing the formulation. | US11173112B2 | 16 November 2021 | o/w NEs | DED | [149] |
| Self-emulsifying drug delivery (SEDD) for ophthalmic drug delivery | Ophthalmic self-emulsifying systems with their methods of preparation and their use for delivering poorly water-soluble drugs. | US20240307299A1 | 19 September 2024 | SEDDSs | Ocular drug delivery | [150] |
| Ophthalmic emulsion | The emulsion includes a mucoadhesive polymer (galactomannan polymer) that aids in delivering a lipid to the ocular surface. | US11690802B2 | 4 July 2023 | o/w emulsion with mucoadhesive polymer | DED | [151] |
| Ophthalmic emulsion | Provides a process for producing a stable emulsion with a small mean droplet in the presence of a mucoadhesive polymer. | US11234929B2 | 1 February 2022 | o/w emulsion | DED | [152] |
| Ophthalmic drug delivery system | Ophthalmic drug delivery system comprising microemulsion and liposome nanodroplet-laden contact lens. | US8273366B2 | 25 September 2012 | o/w MEs | Ophthalmic drug delivery | [153] |
| Microemulsion for ophthalmic drug delivery | Formulation for ophthalmic delivery of a therapeutic agent and its use for the treatment of ocular conditions. | US20210085603A1 | 25 March 2021 | o/w MEs | Ophthalmic drug delivery | [154] |
| Ophthalmic preparations | Ophthalmic formulations of cyclosporine, methods for formulation development, and their use | US20190076354A1 | 16 November 2021 | o/w NEs and cationic emulsion | DED | [155] |
| Eye composition containing a cyclosporine and a method of preparing the same | Nanoemulsion ophthalmic formulation in which the solubility of cyclosporine is increased and the stability of the ophthalmic composition is improved. | KR102204221B1 | 18 January 2021 | NEs | DED | [156] |
| Ophthalmic compositions and methods of use | Provides a method for using ophthalmic composition to treat an eye disorder. | US10555947B2 | 11 February 2020 | o/w NEs | DED | [157] |
| Nanoemulsion compositions with enhanced permeability | Nanoemulsion compositions that are administered topically, mucosally (intranasal, ocular, oral, vaginal), intravaginally, or intranasally and have enhanced permeability. | JP7642536B2 | 10 March 2025 | o/w NEs | DED | [158] |
| Compositions of nanoemulsion delivery systems | Enhanced drug delivery using topical, ocular, and transdermal routes. | KR102407735B1 | 10 June 2022 | NEs | DED | [159] |
| Cyclosporine-containing, non-irritative nanoemulsion ophthalmic composition | Ophthalmic emulsion containing cyclosporine for dry eye disease. | AU2013255231B2 | 13 August 2015 | NEs | DED | [160] |
| Methods and compositions for treating dry eye disease and other eye disorders | Ophthalmic formulations containing an alpha 2 adrenergic agonist for the treatment of ocular disorders, including dry eye syndrome and Meibomian gland dysfunction. | US9597328B2 | 25 August 2016 | o/w NEs | DED | [161] |
| Emulsion formulation of multikinase inhibitor | The use of multikinase inhibitors, such as nintedanib, axitinib, or pazopanib, and the compositions are emulsions, such as NEs, for topical administration to the eye to treat diseases affecting the anterior eye segment. | JP7489965B2 | 24 May 2024 | NEs | Diseases affecting the anterior segment | [162] |
| An ophthalmic flurbiprofen ester nanoemulsion in situ gel formulation and the preparation method thereof | Preparation method of the flurbiprofen axetil ophthalmic nanoemulsion—in situ gel preparation. | CN102159186B | 20 May 2015 | NE-based in situ-forming gel | Anterior segment inflammation | [163] |
| Self-emulsifying drug delivery systems (SEDDSs) for ophthalmic drug delivery | The self-emulsifying non-aqueous formulation and its use and preparation method are described. | JP2021107402A | 22 July 2022 | SNEDDSs | Ocular drug delivery | [164] |
| Ophthalmic compositions for the administration of liposoluble active ingredients | Ophthalmic microemulsions or self-emulsifying systems for the administration of lipophilic active ingredients on the ocular surface. | EP2579845B1 | 29 April 2020 | MEs and self-emulsifying systems | Ocular drug delivery | [165] |
| Compounds and formulations for treating ophthalmic diseases | Formulation compositions and methods of use thereof in the treatment and prevention of ocular conditions, like cataracts and presbyopia. | US20180250313A1 | 6 September 2018 | o/w NEs | Cataract and presbyopia | [166] |
| Pharmaceutical oil-in-water nanoemulsion | Pharmaceutical oil-in-water nanoemulsion compositions for enhancing the delivery of lipophilic drugs and a process for preparing said compositions. | JP2020037557A | 12 March 2020 | o/w NEs | Reducing intraocular pressure | [167] |
| Ophthalmic compositions comprising castor oil and medium-chain triglycerides | Ophthalmic compositions and their use for the treatment of eye diseases. | ES2706535T3 | 29 March 2019 | o/w NEs | Ocular drug delivery | [168] |
| Sustained-release ophthalmic formulation and methods for using the same | Provides methods for treating dry eye syndrome using a sustained release o/w nanoemulsion and alpha 2 adrenergic agonists, pharmaceutically acceptable salt, or a mixture thereof. | US20180221278A1 | 9 August 2018 | o/w NEs | DED | [169] |
| Compositions and methods for treating ophthalmic conditions | Provides methods of treating ophthalmic conditions in a patient, such as dry eye disease, inflammation, pain, or conjunctivitis. | US20230293557A1 | 21 September 2023 | MEs | DED, inflammation, pain, or conjunctivitis | [170] |
| Clinical Trial No. | Study Design/Allocation | Total Number of Participants | Active Pharmaceutical Ingredient | Type of Formulation | Phase of Clinical Trial | Therapeutic Use/Disease Target |
|---|---|---|---|---|---|---|
| NCT03785340 | Randomized | 252 | Brimonidine tartrate | NEs | Phase 3 | DED |
| NCT04246801 | Randomized | 211 | Clobetasol propionate | NEs | Phase 3 | Inflammation and pain associated with cataract surgery |
| NCT04249076 | Randomized | 215 | Clobetasol propionate | NEs | Phase 3 | Inflammation and pain associated with cataract surgery |
| NCT04426240 | Randomized | 40 | Cyclosporine | MEs | Phase 4 | Prevention of post-cataract surgery dry eye syndrome |
| NCT04918823 | N/A | 10 | Cyclosporine | Emulsion-based device | Phase 1 Phase 2 | Application of prosthetic replacement of the ocular surface ecosystem (PROSE) lens reservoir for the management of patients with ocular surface disease |
| NCT00827255 | Observational | 35 | Cyclosporine | Emulsion | Observational | DED |
| NCT06144918 | Randomized | 56 | SBI-100 | Emulsion | Phase 2 | Elevated intraocular pressure |
| NCT01254370 | Randomized | 105 | Latanoprost Travatan Z | Emulsion | Phase 2 | Glaucoma and ocular surface disease |
| NCT04812951 | Randomized | 101 | Cyclosporine | Emulsion | Early phase 1 | Prophylactic treatment in cataract surgery |
| NCT01368198 | Randomized | 50 | Systane balance lubricating eye drops | Emulsion | N/A | Dry eye disease |
| NCT00406887 | Randomized | 140 | Difluprednate | Emulsion | Phase 3 | Anterior uveitis (including panuveitis) |
| NCT01207752 | Randomized | 69 | Systane balance | Emulsion | N/A | Meibomian gland dysfunction |
| NCT00407056 | Non-randomized | 20 | Difluprednate | Emulsion | Phase 3 | Severe uveitis |
| NCT01109056 | Randomized | 115 | Cyclosporine | Emulsion | Phase 2 | Pterygium |
| NCT03693989 | Randomized | 178 | Difluprednate | Emulsion | Phase 3 | Inflammation and pain after phacoemulsification |
| NCT06174181 | Randomized | 42 | Preservative-free ophthalmic lubricant | Emulsion | N/A | Dry eye in patients receiving repeated intravitreal injections for age-related macular degeneration |
| NCT02139033 | N/A | 42 | Retaine™ | Emulsion | Phase 4 | DED |
| Name of Product | Manufacturer | Type of Formulation | Active Pharmaceutical Ingredient | Therapeutic Use/Disease Target | Year of Approval | Reference |
|---|---|---|---|---|---|---|
| Restasis® | AbbVie Corporation | Nanoemulsion | Cyclosporine A | Dry eye disease | 2002 | [1] |
| Durezol® | Novartis Pharmaceuticals | Nanoemulsion | Difluprednate | Postoperative ocular inflammation | 2008 | [1] |
| Cationorm® | Novagali Pharma | Cationic NE | Mineral oils, glycerol, tyloxapol, Poloxamer 188, tris hydrochloride, tromethamine, cetalkonium chloride | Hydrating and lubricating emulsion | 2019 | [3] |
| Ikervis® | Santen Pharmaceutical | Cationic NE | Cyclosporin A | Keratitis | 2015 | [3] |
| Xelpros® | Sun Pharma | Microemulsion | Latanoprost | Glaucoma | 2018 | [1] |
| Verkazia® | Santen Pharmaceutical | Nanoemulsion | Cyclosporine | Vernal keratoconjunctivitis | 2021 | [1] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohapatra, D.; Yang, E.; Corson, T.W. Emulsion and Emulgel-Based Ophthalmic Drug Delivery Systems. Pharmaceutics 2025, 17, 1504. https://doi.org/10.3390/pharmaceutics17121504
Mohapatra D, Yang E, Corson TW. Emulsion and Emulgel-Based Ophthalmic Drug Delivery Systems. Pharmaceutics. 2025; 17(12):1504. https://doi.org/10.3390/pharmaceutics17121504
Chicago/Turabian StyleMohapatra, Debadatta, Eleen Yang, and Timothy W. Corson. 2025. "Emulsion and Emulgel-Based Ophthalmic Drug Delivery Systems" Pharmaceutics 17, no. 12: 1504. https://doi.org/10.3390/pharmaceutics17121504
APA StyleMohapatra, D., Yang, E., & Corson, T. W. (2025). Emulsion and Emulgel-Based Ophthalmic Drug Delivery Systems. Pharmaceutics, 17(12), 1504. https://doi.org/10.3390/pharmaceutics17121504

