Synergic Effect of Methyl-β-Cyclodextrin and Hydrophilic Polymers on Nepafenac Solubilization: Development of a 0.3% Ophthalmic Solution
Abstract
1. Introduction
2. Results
2.1. Characterization of RAMEB-Nepafenac Complex
2.2. Effects of Added Hydrophilic Polymers to Solutions of RAMEB-Nepafenac Complex
2.3. Development of 0.3% Nepafenac Solution Formulation and Preliminary Biological Studies
3. Materials and Methods
3.1. General
3.2. HPLC Analyses
3.3. Real-Time Stability of Solutions Containing 0.1% Nepafenac and Different Cyclodextrins
3.4. Phase-Solubility Study
3.5. Preparation of Nepafenac/RAMEB/Hydrophilic Polymers Complexes
3.6. Stress Study
3.7. Dynamic Light Scattering (DLS) and Zeta Potential Measurements
3.8. Formulation of Ophthalmic Solutions Containing 0.3% (w/v) Nepafenac
3.9. Cell Line
3.10. Cytotoxic Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gamache, D.A.; Graff, G.M.; Brady, T.; Spellman, J.M.; Yanni, J.M. Nepafenac, a unique nonsteroidal prodrug with potential utility in the treatment of trauma-induced ocular inflammation: I. assessment of anti-inflammatory efficacy. Inflammation 2000, 24, 357–370. [Google Scholar] [CrossRef]
- Walters, T.; Raizman, M.; Ernest, P.; Gayton, J.; Lehmann, R. In vivo pharmacokinetics and in vitro pharmacodynamics of nepafenac, amfenac, ketorolac, and bromfenac. J. Cataract. Refract. Surg. 2007, 33, 1539–1545. [Google Scholar] [CrossRef] [PubMed]
- Patel, T.; Cholkar, K.; Agrahari, V.; Mitra, A.K. Ocular drug delivery systems: An overview. World J. Pharmacol. 2013, 2, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Jambhekar, S.S.; Breen, P. Cyclodextrins in pharmaceutical formulations II: Solubilization, binding constant, and complexation efficiency. Drug Discov. Today 2016, 21, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules 2018, 23, 1161. [Google Scholar] [CrossRef]
- EMA Committee for Human Medicinal Products. Background Review for Cyclodextrins Used as Excipients. EMA/CHMP/333892/2013. Available online: https://www.ema.europa.eu/en/documents/report/cyclodextrins-used-excipients-report-published-support-questions-and-answers-cyclodextrins-used-excipients-medicinal-products-human-use_en.pdf (accessed on 5 February 2025).
- Jacob, S.; Nair, A.B. Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug Dev. Res. 2018, 79, 201–217. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, A.; Zhu, L.; Yang, X.; Fang, G.; Tang, B. Cyclodextrin-based ocular drug delivery systems: A comprehensive review. Coord. Chem. Rev. 2023, 476, 214919. [Google Scholar] [CrossRef]
- Shelley, H.; Grant, M.; Smith, F.T.; Abarca, E.M.; Babu, R.J. Improved ocular delivery of nepafenac by cyclodextrin complexation. AAPS PharmSciTech 2018, 19, 2554–2563. [Google Scholar] [CrossRef]
- Shelley, H.; Rodriguez-Galarza, R.M.; Duran, S.H.; Abarca, E.M.; Babu, R.J. In situ gel formulation for enhanced ocular delivery of nepafenac. J. Pharm. Sci. 2018, 107, 3089–3097. [Google Scholar] [CrossRef]
- Vincze, A.; Facskó, R.; Budai-Szücs, M.; Katona, G.; Gyarmati, B.; Csorba, A.; Zelkó, R.; Szold Nagy, Z.; Szente, L.; Balogh, G.T. Cyclodextrin-enabled nepafenac eye drops with improved absorption open a new therapeutic window. Carbohydr. Polym. 2023, 310, 120717. [Google Scholar] [CrossRef]
- Lorenzo-Veiga, B.; Sigurdsson, H.H.; Loftsson, T. Nepafenac-loaded cyclodextrin/polymer nanoaggregates: A new approach to eye drop formulation. Materials 2019, 12, 229. [Google Scholar] [CrossRef]
- Lorenzo-Veiga, B.; Diaz-Rodriguez, P.; Alvarez-Lorenzo, C.; Loftsson, T.; Sigurdsson, H.H. In vitro and ex vivo evaluation of nepafenac-based cyclodextrin microparticles for treatment of eye inflammation. Nanomaterials 2020, 10, 709. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Li, Q.; Li, Y.; Wang, H.; Liu, D.; Yang, X.; Pan, W. A novel hydrogel with dual temperature and pH responsiveness based on a nanostructured lipid carrier as an ophthalmic delivery system: Enhanced trans-corneal permeability and bioavailability of nepafenac. New J. Chem. 2017, 41, 3920–3929. [Google Scholar] [CrossRef]
- Aleo, D.; Saita, M.G.; Spitaleri, F.; Sanfilippo, C.; Patti, A. Degradation profile of nepafenac in aqueous solution and structural characterization of a novel degradation product. J. Pharm. Biomed. Anal. 2020, 189, 113432. [Google Scholar] [CrossRef] [PubMed]
- Stefánsson, E.; Loftsson, T. Cyclodextrins in eye drop formulations. J. Incl. Phenom. 2002, 44, 23–27. [Google Scholar] [CrossRef]
- Sigurdsson, H.H.; Stefánsson, E.; Gudmundsdóttir, E.; Eysteinsson, T.; Thorsteinsdóttir, M.; Loftsson, T. Cyclodextrin formulation of dorzolamide and its distribution in the eye after topical administration. J. Control. Release 2005, 102, 255–262. [Google Scholar] [CrossRef]
- Loftsson, T.; Sigurdsson, H.H.; Hreinsdóttir, D.; Konrádsdóttir, F.; Stefánsson, E. Dexamethasone delivery to posterior segment of the eye. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 585–589. [Google Scholar] [CrossRef]
- Pradines, B.; Gallard, J.-F.; Iorga, B.I.; Gueutin, C.; Ponchel, G.; Loiseau, P.M.; Bouchemal, K. The unexpected increase of clotrimazole apparent solubility using randomly methylated β-cyclodextrin. J. Mol. Recognit. 2015, 28, 96–102. [Google Scholar] [CrossRef]
- Ding, Y.; Xu, S.; Ding, C.; Zhang, Z.; Xu, Z. Randomly methylated β-cyclodextrin inclusion complex with ketoconazole: Preparation, characterization, and improvement of pharmacological profiles. Molecules 2024, 29, 1915. [Google Scholar] [CrossRef]
- De Gaetano, F.; Mannino, D.; Celesti, C.; Bulzomí, M.; Iraci, N.; Giofrè, S.V.; Esposito, E.; Paterniti, I.; Ventura, C.A. Randomly methylated β-cyclodextrin improves water–solubility, cellular protection and mucosa permeability of idebenone. Int. J. Pharm. 2024, 665, 124718. [Google Scholar] [CrossRef]
- Stella, V.J.; He, Q. Cyclodextrins. Toxicol. Pathol. 2008, 36, 30–42. [Google Scholar] [CrossRef]
- Fenyvesi, E.; Szemán, J.; Csabai, K.; Malanga, M.; Szente, L. Methyl-beta-Cyclodextrins: The role of number and types of substituents in solubilizing power. J. Pharm. Sci. 2014, 103, 1443–1452. [Google Scholar] [CrossRef]
- Loftsson, T.; Jarho, P.; Másson, M.; Järvinen, T. Cyclodextrins in drug delivery. Expert Opin. Drug Deliv. 2005, 2, 335–351. [Google Scholar] [CrossRef]
- Loftsson, T.; Masson, M. The effects of water-soluble polymers on cyclodextrins and cyclodextrin solubilization of drugs. J. Drug Deliv. Sci. Technol. 2004, 14, 35–43. [Google Scholar] [CrossRef]
- Crestani de Miranda, J.; Martins, T.E.A.; Veiga, F.; Ferraz, H.G. Cyclodextrins and ternary complexes: Technology to improve solubility of poorly soluble drugs. Braz. J. Pharm. Sci. 2011, 47, 665–681. [Google Scholar] [CrossRef]
- Suvarna, P.; Chaudhari, P.; Lewis, S.A. Cyclodextrin-based supramolecular ternary complexes: Emerging role of ternary agents on drug solubility, stability, and bioavailability. Crit. Rev. Ther. Drug Carr. Syst. 2022, 39, 1–50. [Google Scholar] [CrossRef] [PubMed]
- Mane, P.T.; Wakure, B.S.; Wakte, P.S. Ternary inclusion complex of docetaxel using β-cyclodextrin and hydrophilic polymer: Physicochemical characterization and in-vitro anticancer activity. J. Appl. Pharm. Sci. 2022, 12, 150–161. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- ICH Harmonised Tripartite Guideline. Guideline Stability Testing of New Drug Substances and Products Q1(R2). 2003. Available online: https://database.ich.org/sites/default/files/Q1A%28R2%29%20Guideline.pdf (accessed on 5 February 2025).
- Campolo, A.; Crary, M.; Shannon, P. A review of the containers available for multi-dose preservative-free eye drops. Biomed. J. Sci. Tech. Res. 2022, 45, 007130. [Google Scholar] [CrossRef]
- Baudouin, C.; Labbé, A.; Liang, H.; Pauly, A.; Brignole-Baudouin, F. Preservatives in eyedrops: The good, the bad and the ugly. Prog. Retin. Eye Res. 2010, 29, 312–334. [Google Scholar] [CrossRef]
- Goldstein, M.H.; Silva, F.Q.; Blender, N.; Tran, T.; Vantipalli, S. Ocular benzalkonium chloride exposure: Problems and solutions. Eye 2022, 36, 361–368. [Google Scholar] [CrossRef]
- Liu, H.; Routley, I.; Teichmann, K.D. Toxic endothelial cell destruction from intraocular benzalkonium chloride. J. Cataract Refract. Surg. 2001, 27, 1746–1750. [Google Scholar] [CrossRef]
- Guo, Y.; Satpathy, M.; Wilson, G.; Srinivas, S.P. Benzalkonium chloride induces dephosphorylation of myosin light chain in cultured corneal epithelial cells. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2001–2008. [Google Scholar] [CrossRef]
- Wong, W. Topical Nepafenac Formulations. U.S. Patent US7834059B2, 16 November 2010. Available online: https://patents.google.com/patent/US7834059B2/en (accessed on 5 February 2025).
Solution | Cyclodextrin (% w/v) | Additive (% w/v) c | Months | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 3 | 6 | 9 | 12 | 18 | 24 | |||
Reference | HP-β-CD (6.0) | HA (0.10) | 97 | 92 | 84 | -- d | -- | -- | -- |
1 | HP-β-CD (4.0) | HA (0.15) | 96 | 91 | 80 | -- d | -- | -- | -- |
2 | RAMEB (4.0) | HA (0.10) | 100 | 99 | 98 | 97 | 96 | 95 | 94 |
3 | RAMEB (3.0) | -- | 100 | 98 | 97 | 96 | 95 | 93 | 92 |
4 | SBE-β-CD (6.0) | HA (0.10) | 97 | 90 | ppt e | -- | -- | -- | -- |
5 | SBE-β-CD (4.0) | HA (0.10) | 96 | ppt e | -- | -- | -- | -- | -- |
Sample Code | Polymer (% w/v) | Nepafenac % c | pH | Presence of Solid |
---|---|---|---|---|
S1 | none | 97.2 | 7.5 | - d |
S2 | PVP (0.5) | 97.3 | 7.5 | – |
S3 | PVP (1.0) | 98.6 | 7.5 | – |
S4 | PVA (0.5) | 97.7 | 7.5 | – |
S5 | PVA (1.0) | 98.3 | 7.5 | – |
S6 | HPMC (0.5) | 96.3 | 7.4 | – |
S7 | HPMC (1.0) | 95.2 | 7.2 | + |
Entry | Sample Composition | DH (nm) | I % | PDI | Z (mV) |
---|---|---|---|---|---|
1 | 5% RAMEB b | 1.83 ± 0.01 | 54.82 ± 1.26 | 0.56 ± 0.03 | −19.67 ± 1.54 |
212.2 ± 5.86 | 44.2 ± 0.98 | ||||
2 | 0.5% PVP/5%RAMEB b | 2.35 ± 0.29 | 20.7 ± 1.95 | 0.56 ± 0.01 | −9.57 ± 0.10 |
27.38 ± 2.09 | 78.51 ± 3.07 | ||||
3 | S2 | 2.28 ± 0.11 | 26.28 ± 0.42 | 0.14 ± 0.01 | −12.34 ± 3.64 |
25.71 ± 2.75 | 73.72 ± 0.42 | ||||
4 | 1% PVP/5%RAMEB b | 2.54 ± 0.05 | 7.16 ± 0.61 | 0.30 ± 0.03 | −11.38 ± 1.19 |
18.22 ± 1.50 | 92.96 ± 3.66 | ||||
5 | S3 | 2.6 ± 0.32 | 10.7 ± 1.68 | 0.34 ± 0.05 | −15.25 ± 3.78 |
19.34 ± 0.66 | 88.5 ± 1.83 | ||||
6 | 0.5% PVA/5%RAMEB b | 1.98 ± 0.11 | 13.7 ± 0.54 | 0.48 ± 0.01 | −12.82 ± 3.00 |
23.77 ± 0.58 | 84.0 ± 0.40 | ||||
7 | S4 | 2.36 ± 0.05 | 25.77 ± 0.40 | 0.54 ± 0.01 | −17.78 ± 0.83 |
25.19 ± 0.89 | 71.77 ± 0.56 | ||||
8 | 1% PVA/5%RAMEB b | 1.78 ± 0.12 | 5.6 ± 0.35 | 0.28 ± 0.03 | −7.28 ± 1.29 |
27.8 ± 1.37 | 92.8 ± 1.14 | ||||
9 | S5 | 1.93 ± 0.15 | 7.5 ± 0.53 | 0.40 ± 0.02 | −19.56 ± 3.84 |
28.84 ± 0.52 | 87.86 ± 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saita, M.G.; Spitaleri, F.; Mangano, K.; Aleo, D.; Patti, A. Synergic Effect of Methyl-β-Cyclodextrin and Hydrophilic Polymers on Nepafenac Solubilization: Development of a 0.3% Ophthalmic Solution. Molecules 2025, 30, 3090. https://doi.org/10.3390/molecules30153090
Saita MG, Spitaleri F, Mangano K, Aleo D, Patti A. Synergic Effect of Methyl-β-Cyclodextrin and Hydrophilic Polymers on Nepafenac Solubilization: Development of a 0.3% Ophthalmic Solution. Molecules. 2025; 30(15):3090. https://doi.org/10.3390/molecules30153090
Chicago/Turabian StyleSaita, Maria Grazia, Fabiola Spitaleri, Katia Mangano, Danilo Aleo, and Angela Patti. 2025. "Synergic Effect of Methyl-β-Cyclodextrin and Hydrophilic Polymers on Nepafenac Solubilization: Development of a 0.3% Ophthalmic Solution" Molecules 30, no. 15: 3090. https://doi.org/10.3390/molecules30153090
APA StyleSaita, M. G., Spitaleri, F., Mangano, K., Aleo, D., & Patti, A. (2025). Synergic Effect of Methyl-β-Cyclodextrin and Hydrophilic Polymers on Nepafenac Solubilization: Development of a 0.3% Ophthalmic Solution. Molecules, 30(15), 3090. https://doi.org/10.3390/molecules30153090