Luminescent and Optical Thin Film Coatings in Ophthalmic Lenses: Advances, Clinical Applications, and Future Directions
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Question and PICOS Framework
2.2. Eligibility Criteria
2.3. Information Sources
2.4. Search Methods for Identification of Studies
2.5. Data Extraction and Data Items
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Outcomes
3.3.1. Spectacle Lens Coatings
3.3.2. Contact Lens Coatings
3.3.3. Intraocular Lens Coatings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, K.Y.; Khammar, R.; Sheikh, H.; Marchand, M. Innovative Polymeric Biomaterials for Intraocular Lenses in Catarac Surgery. J. Funct. Biomater. 2024, 15, 391. [Google Scholar] [CrossRef]
- Abdulamier, A.A.; Shaker, L.M.; Al-Amiery, A.A. Advancements in the Chemistry of Contact Lenses: Innovations and Applications. Results Chem. 2024, 12, 101872. [Google Scholar] [CrossRef]
- Wu, H.; Wang, J.; Fan, W.; Zhong, Q.; Xue, R.; Li, S.; Song, Z.; Tao, Y. Eye of the Future: Unlocking the Potential Utilization of Hydrogels in Intraocular Lenses. Bioeng. Transl. Med. 2024, 9, e10664. [Google Scholar] [CrossRef]
- Wong, N.A.; Bahmani, H. A Review of the Current State of Research on Artificial Blue Light Safety as It Applies to Digital Devices. Heliyon 2022, 8, e10282. [Google Scholar] [CrossRef]
- Hee Han, D. Development of UV Blocking Lens with Photochromic Function with Refractive Index of 1.67. Int. J. Appl. Eng. Technol. 2021, 3. Available online: https://romanpub.com/resources/ijaet%20v3-2-2021%2001.pdf (accessed on 23 September 2025).
- Citek, K. Anti-Reflective Coatings Reflect Ultraviolet Radiation. Optometry 2008, 79, 143–148. [Google Scholar] [CrossRef]
- Li, L.; Sahi, S.K.; Peng, M.; Lee, E.B.; Ma, L.; Wojtowicz, J.L.; Malin, J.H.; Chen, W. Luminescence- and Nanoparticle-Mediated Increase of Light Absorption by Photoreceptor Cells: Converting UV Light to Visible Light. Sci. Rep. 2016, 6, 20821. [Google Scholar] [CrossRef]
- Popov, I.; Jurenova, D.; Valaskova, J.; Sanchez-Chicharro, D.; Stefanickova, J.; Waczulikova, I.; Krasnik, V. Effect of Blue Light Filtering Intraocular Lenses on Visual Perception. Medicina 2021, 57, 559. [Google Scholar] [CrossRef]
- Downie, L.E.; Keller, P.R. Blue-Light Filtering Intraocular Lenses (IOLs) for Protecting Macular Health. Cochrane Database Syst. Rev. 2018, 5, CD011977. [Google Scholar] [CrossRef]
- Kara-Junior, N.; Espindola, R.F.; Gomes, B.A.F.; Ventura, B.; Smadja, D.; Santhiago, M.R. Effects of Blue Light–Filtering Intraocular Lenses on the Macula, Contrast Sensitivity, and Color Vision after a Long-Term Follow-Up. J. Cataract Refract. Surg. 2011, 37, 2115–2119. [Google Scholar] [CrossRef] [PubMed]
- Kontadakis, G.A.; Plainis, S.; Moschandreas, J.; Tsika, C.; Pallikaris, I.G.; Tsilimbaris, M.K. In Vivo Evaluation of Blue-Light Attenuation with Tinted and Untinted Intraocular Lenses. J. Cataract Refract. Surg. 2011, 37, 1031–1037. [Google Scholar] [CrossRef]
- Kohnen, T.; Hammond, B.R. Blue Light Filtration in Intraocular Lenses: Effects on Visual Function and Systemic Health. Clin. Ophthalmol. 2024, 18, 1575–1586. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Du, Z.; Pan, J.; Huang, Y. Multifunctional Upconversion Nanoparticles Transforming Photoacoustic Imaging: A Review. Nanomaterials 2025, 15, 1074. [Google Scholar] [CrossRef]
- Gallardo-Rivera, O.; Rivera, A.; Meza Espinoza, L.O.; Lazcano Ortiz, Z. Upconversion-Enhanced Luminescence in PMMA Doped with Rare Earth Ions by Plasmonic Resonance with Metallic Nanoparticles. ACS Omega 2025, 10, 11806–11816. [Google Scholar] [CrossRef]
- Marchini, F.; Chiatti, C.; Fabiani, C.; Pisello, A.L. Development of an Innovative Translucent–Photoluminescent Coating for Smart Windows Applications: An Experimental and Numerical Investigation. Renew. Sustain. Energy Rev. 2023, 184, 113530. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Shea, B.J.; Reeves, B.C.; Wells, G.; Thuku, M.; Hamel, C.; Moran, J.; Moher, D.; Tugwell, P.; Welch, V.; Kristjansson, E.; et al. AMSTAR 2: A Critical Appraisal Tool for Systematic Reviews That Include Randomised or Non-Randomised Studies of Healthcare Interventions, or Both. BMJ 2017, 358, j4008. [Google Scholar] [CrossRef]
- Arthur, S.N.; Peng, Q.; Apple, D.J.; Escobar-Gomez, M.; Bianchi, R.; Pandey, S.K.; Werner, L. Effect of Heparin Surface Modification in Reducing Silicone Oil Adherence to Various Intraocular Lenses. J. Cataract Refract. Surg. 2001, 27, 1662–1669. [Google Scholar] [CrossRef]
- Bachman, W.; Weaver, J. Comparison Between Anti-Reflection Coated and Uncoated Spectacle Lenses for Presbyopic Highway Patrol Troopers. J. Am. Optom. Assoc. 1997, 70, 103–109. [Google Scholar]
- Bozukova, D.; Pagnoulle, C.; Pauw-Gillet, M.-C.; Vertruyen, B.; Jérôme, R.; Jérôme, C. Hydrogel Nanocomposites: A Potential UV/Blue Light Filtering Material for Ophthalmic Lenses. J. Biomater. Sci. Polym. Ed. 2010, 22, 1947–1961. [Google Scholar] [CrossRef]
- Chang, Y.M.; Wang, Y.S.; Chen, H.Y. Controlling Superhydrophobicity on Complex Substrates Based on a Vapor-Phase Sublimation and Deposition Polymerization. ACS Appl. Mater. Interfaces 2023, 15, 48754–48763. [Google Scholar] [CrossRef]
- Cheng, W.; Yang, C.; Ding, X.; Engler, A.C.; Hedrick, J.L.; Yang, Y.Y. Broad-Spectrum Antimicrobial/Antifouling Soft Material Coatings Using Poly(Ethylenimine) as a Tailorable Scaffold. Biomacromolecules 2015, 16, 1967–1977. [Google Scholar] [CrossRef]
- Chou, B.R.; Dain, S.J.; Cheng, B.B. Effect of Ultraviolet Exposure on Impact Resistance of Ophthalmic Lenses. Optom. Vis. Sci. 2015, 92, 1154–1160. [Google Scholar] [CrossRef]
- Chou, B.R.; Gupta, A.; Hovis, J. The Effect of Multiple Antireflective Coatings and Center Thickness on Resistance of Polycarbonate Spectacle Lenses to Penetration by Pointed Missiles. Optom. Vis. Sci. 2005, 82, 964–969. [Google Scholar] [CrossRef]
- Chou, B.R.; Hovis, J.K. Durability of Coated CR-39 Industrial Lenses. Optom. Vis. Sci. 2003, 80, 703–707. [Google Scholar] [CrossRef]
- Chou, B.R.; Hovis, J.K. Effect of Multiple Antireflection Coatings on Impact Resistance of Hoya Phoenix Spectacle Lenses. Clin. Exp. Optom. 2006, 89, 86–89. [Google Scholar] [CrossRef]
- Chou, B.R.; Yuen, G.S.C.; Dain, S.J. Ballistic Impact Resistance of Selected Organic Ophthalmic Lenses. Clin. Exp. Optom. 2011, 94, 568–574. [Google Scholar] [CrossRef]
- Coupland, S.G.; Kirkham, T.H. Improved Contrast Sensitivity with Antireflective Coated Lenses in the Presence of Glare. Can. J. Ophthalmol. 1981, 16, 136–140. [Google Scholar]
- Corzine, J.C.; Greer, R.B.; Bruess, R.D.; Lee, G.K.; Scaief, A.L.E.E. Effects of Coatings on the Fracture Resistance of Ophthalmic Lenses. Optom. Vis. Sci. 1996, 73, 8–15. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, J.; Zhang, S.; Li, L.; Qu, C.; Chen, J.; Lu, L. Ag/Cu Nanoparticles-Loaded Glycocalyx Biomimetic Corneal Bandage Lenses for Combatting Bacterial Keratitis. J. Control. Release 2024, 376, 382–394. [Google Scholar] [CrossRef]
- Danion, A.; Arsenault, I.; Vermette, P. Antibacterial Activity of Contact Lenses Bearing Surface-Immobilized Layers of Intact Liposomes Loaded with Levofloxacin. J. Pharm. Sci. 2007, 96, 2350–2363. [Google Scholar] [CrossRef]
- Demian, P.; Nagaya, D.; Refaei, R.; Iwai, K.; Hasegawa, D.; Baba, M.; Messersmith, P.B.; Lamrani, M. Enhancing Performance of Silicone Hydrogel Contact Lenses with Hydrophilic Polyphenolic Coatings. J. Funct. Biomater. 2024, 15, 321. [Google Scholar] [CrossRef]
- Dutta, D.; Cole, N.; Kumar, N.; Willcox, M.D.P. Broad Spectrum Antimicrobial Activity of Melimine Covalently Bound to Contact Lenses. Invest. Ophthalmol. Vis. Sci. 2013, 54, 175–182. [Google Scholar] [CrossRef]
- Eibl, K.H.; Wertheimer, C.; Kernt, M.; Wolf, A.; Kook, D.; Haritoglou, C.; Kampik, A. Alkylphosphocholines for Intraocular Lens Coating. J. Cataract Refract. Surg. 2013, 39, 438–445. [Google Scholar] [CrossRef]
- Gu, X.; Ma, J.; He, J. Fabrication of Robust Carbon Dots Containing Coatings with UV-Shielding, Light Conversion, and Antifogging Multiple Functions. Langmuir 2024, 40, 1461–1469. [Google Scholar] [CrossRef]
- Huang, X.; Yuan, Y.; Liu, S.; Zhang, L.; Hong, R. Preparation of Hydrophobic Broadband Antireflective SiO2 Coating on Flexible Poly(Methyl Methacrylate) Substrates. Colloids Surf. A 2018, 538, 519–525. [Google Scholar] [CrossRef]
- Hussain, S.; Donempudi, S.; Tammishetti, S.; Garikapati, K.R.; Bhadra, M.P. Cell Adhesion Resistant, UV Curable, Polymer Zinc Oxide Nanocomposite Materials for Intraocular Lens Application. Polym. Adv. Technol. 2018, 29, 1234–1241. [Google Scholar] [CrossRef]
- Ho, C.-P.; Yasuda, H. Ultrathin Coating of Plasma Polymer of Methane Applied on the Surface of Silicone Contact Lenses. J. Biomed. Mater. Res. 1988, 22, 919–937. [Google Scholar] [CrossRef]
- Kats, M.A.; Blanchard, R.; Genevet, P.; Capasso, F. Nanometre Optical Coatings Based on Strong Interference Effects in Highly Absorbing Media. Nat. Mater. 2013, 12, 20–24. [Google Scholar] [CrossRef]
- Kassumeh, S.A.; Wertheimer, C.M.; von Studnitz, A.; Hillenmayer, A.; Priglinger, C.; Wolf, A.; Mayer, W.J.; Teupser, D.; Holdt, L.M.; Priglinger, S.G.; et al. Poly(Lactic-Co-Glycolic) Acid as a Slow-Release Drug-Carrying Matrix for Methotrexate Coated onto Intraocular Lenses to Conquer Posterior Capsule Opacification. Curr. Eye Res. 2018, 43, 702–708. [Google Scholar] [CrossRef]
- Kassumeh, S.; Kueres, A.; Hillenmayer, A.; von Studnitz, A.; Elhardt, C.; Ohlmann, A.; Priglinger, S.G.; Wertheimer, C.M. Development of a Drug-Eluting Intraocular Lens to Deliver Epidermal Growth Factor Receptor Inhibitor Gefitinib for Posterior Capsule Opacification Prophylaxis. Eur. J. Ophthalmol. 2021, 31, 436–444. [Google Scholar] [CrossRef]
- Kim, K.C. Effective Graded Refractive-Index Anti-Reflection Coating for High Refractive-Index Polymer Ophthalmic Lenses. Mater. Lett. 2015, 160, 158–161. [Google Scholar] [CrossRef]
- Krall, E.M.; Arlt, E.M.; Jell, G.; Strohmaier, C.; Bachernegg, A.; Emesz, M.; Grabner, G.; Dexl, A.K. Intraindividual Aqueous Flare Comparison after Implantation of Hydrophobic Intraocular Lenses with or without a Heparin-Coated Surface. J. Cataract Refract. Surg. 2014, 40, 1363–1370. [Google Scholar] [CrossRef]
- Leung, T.W.; Li, R.W.H.; Kee, C.S. Blue-Light Filtering Spectacle Lenses: Optical and Clinical Performances. PLoS ONE 2017, 12, e0169114. [Google Scholar] [CrossRef]
- Li, K.; Yu, L.; Ma, L.; Xia, J.; Peng, J.; Hu, P.; Liu, G.; Ye, J. Surface Modification of Commercial Intraocular Lens by Zwitterionic and Antibiotic-Loaded Coating for Preventing Postoperative Endophthalmitis. Colloids Surf. B Biointerfaces 2023, 222, 113093. [Google Scholar] [CrossRef]
- Liou, J.-C.; Teng, M.-C.; Tsai, Y.-S.; Lin, E.-C.; Chen, B.-Y. UV-Blocking Spectacle Lens Protects against UV-Induced Decline of Visual Performance. Mol. Vis. 2015, 21, 846–856. [Google Scholar]
- Lundberg, F.; Gouda, I.; Larm, O.; Galin, M.A.; Sa Ljungh, A. A New Model to Assess Staphylococcal Adhesion to Intraocular Lenses under in Vitro Flow Conditions. Biomaterials 1998, 19, 1727–1733. [Google Scholar] [CrossRef]
- Okajima, Y.; Saika, S.; Sawa, M. Effect of Surface Coating an Acrylic Intraocular Lens with Poly(2-Methacryloyloxyethyl Phosphorylcholine) Polymer on Lens Epithelial Cell Line Behavior. J. Cataract Refract. Surg. 2006, 32, 666–671. [Google Scholar] [CrossRef]
- Paulson, C.A.; Price, J.J.; Koch, K.W.; Kim, C.-G.; Oh, J.-H.; Lin, L.; Subramanian, A.N.; Zhang, B.; Amin, J.; Mayolet, A.; et al. Industrial-Grade Anti-Reflection Coatings with Extreme Scratch Resistance. Opt. Lett. 2019, 44, 5977–5980. [Google Scholar] [CrossRef]
- Peng, C.C.; Fajardo, N.P.; Razunguzwa, T.; Radke, C.J. In Vitro Spoilation of Silicone-Hydrogel Soft Contact Lenses in a Model-Blink Cell. Optom. Vis. Sci. 2015, 92, 768–780. [Google Scholar] [CrossRef]
- Quiroga, J.A.; Canga, I.; Alonso, J.; Crespo, D. Reversible Photoalignment of Liquid Crystals: A Path toward the Creation of Rewritable Lenses. Sci. Rep. 2020, 10, 5739. [Google Scholar] [CrossRef]
- Refaei, R.; Lee, K.; Lee, G.A.; Demian, P.; El Mansouri, F.; Messersmith, P.B.; Lamrani, M.; Khaddor, M.; Allali, N. Functionalized Surface Coatings for Rigid Contact Lenses. J. Funct. Biomater. 2024, 15, 154. [Google Scholar] [CrossRef]
- Rickert, C.A.; Wittmann, B.; Fromme, R.; Lieleg, O. Highly Transparent Covalent Mucin Coatings Improve the Wettability and Tribology of Hydrophobic Contact Lenses. ACS Appl. Mater. Interfaces 2020, 12, 28024–28033. [Google Scholar] [CrossRef]
- Rosenhek-Goldian, I.; Kampf, N.; Klein, J. Trapped Aqueous Films Lubricate Highly Hydrophobic Surfaces. ACS Nano 2018, 12, 10075–10083. [Google Scholar] [CrossRef]
- Ross, J.; Bradley, A. Visual Performance and Patient Preference: A Comparison of Anti-Reflection Coated and Uncoated Spectacle Lenses. J. Am. Optom. Assoc. 1997, 68, 361–366. [Google Scholar] [PubMed]
- Santos, L.; Rodrigues, D.; Lira, M.; Oliveira, R.; Yebra-Pimentel Vilar, E. The Influence of Surface Treatment on Hydrophobicity, Protein Adsorption and Microbial Colonisation of Silicone Hydrogel Contact Lenses. Contact Lens Anterior Eye 2007, 30, 183–188. [Google Scholar] [CrossRef]
- Schottner, G.; Rose, K.; Posset, U. Scratch and Abrasion Resistant Coatings on Plastic Lenses—State of the Art, Current Developments and Perspectives. J. Sol-Gel Sci. Technol. 2003, 27, 71–79. [Google Scholar] [CrossRef]
- Shi, J.; Xu, L.; Qiu, D. Effective Antifogging Coating from Hydrophilic/Hydrophobic Polymer Heteronetwork. Adv. Sci. 2022, 9, 2200072. [Google Scholar] [CrossRef]
- Singh, A.; Li, P.; Beachley, V.; McDonnell, P.; Elisseeff, J.H. A Hyaluronic Acid-Binding Contact Lens with Enhanced Water Retention. Cont. Lens Anterior Eye 2015, 38, 79–84. [Google Scholar] [CrossRef]
- Shin, H.S.; Jang, J.K.; Kwon, Y.S.; Mah, K.C. Surface Modification of Rigid Gas Permeable Contact Lens Treated by Using a Low-Temperature Plasma in Air. J. Korean Phys. Soc. 2009, 55, 2436–2440. [Google Scholar] [CrossRef]
- Stroud, J.S. Localized Defects in Ophthalmic Lenses. Optom. Vis. Sci. 1989, 66, 141–145. [Google Scholar] [CrossRef]
- Tam, C.H.; Alexander, M.S.; Sanderson, J.; Qi, S. Selectively Coated Contact Lenses by Nanoelectrospray (NES) to Fabricate Drug-Eluting Contact Lenses for Treating Ocular Diseases. Med. Eng. Phys. 2024, 124, 104110. [Google Scholar] [CrossRef]
- Tsai, H.Y.; Hsieh, Y.C.; Lin, Y.H.; Chang, H.C.; Tang, Y.H.; Huang, K.C. Fabrication of Hydrophilic Surface on Rigid Gas Permeable Contact Lenses to Enhance the Wettability Using Ultraviolet Laser System. Micromachines 2019, 10, 394. [Google Scholar] [CrossRef]
- Vivero-Lopez, M.; Pereira-Da-Mota, A.F.; Carracedo, G.; Huete-Toral, F.; Parga, A.; Otero, A.; Concheiro, A.; Alvarez-Lorenzo, C. Phosphorylcholine-Based Contact Lenses for Sustained Release of Resveratrol: Design, Antioxidant and Antimicrobial Performances, and in Vivo Behavior. ACS Appl. Mater. Interfaces 2022, 14, 55431–55446. [Google Scholar] [CrossRef]
- Wang, T.J.; Lin, W.P.; Guo, S.P. Increased Hydrophilicity and Anti-Fouling Effect of Orthokeratology Lenses Coated with NVP and PEGMA by Plasma-Enhanced Chemical Vapor Deposition. J. Coat. Technol. Res. 2024, 21, 737–745. [Google Scholar] [CrossRef]
- Werner, L.; Legeais, J.M.; Nagel, M.D.; Renard, G. Evaluation of Teflon-Coated Intraocular Lenses in an Organ Culture Method. J. Biomed. Mater. Res. 1999, 46, 347–354. [Google Scholar] [CrossRef]
- Willis, S.L.; Court, J.L.; Redman, R.P.; Wang, J.-H.; Leppard, S.W.; O’Byrne, V.J.; Small, S.A.; Lewis, A.L.; Jones, S.A.; Stratford, P.W. A Novel Phosphorylcholine-Coated Contact Lens for Extended Wear Use. Biomaterials 2001, 22, 3261–3272. [Google Scholar] [CrossRef]
- Xu, L.; Geng, Z.; He, J.; Zhou, G. Mechanically Robust, Thermally Stable, Broadband Antireflective, and Superhydrophobic Thin Films on Glass Substrates. ACS Appl. Mater. Interfaces 2014, 6, 9029–9035. [Google Scholar] [CrossRef]
- Yamasaki, K.; Nakagawa, H.; Motohiro, C.; Jones, L.; Hui, A. The Impact of a Hyaluronic Acid Derivative-Containing Care System on the Wettability of PEG-Coated Rigid Lenses. Cont. Lens Anterior Eye 2025, 102490. [Google Scholar] [CrossRef]
- Yin, S.; Wang, Y.; Ren, L.; Zhao, L.; Kuang, T.; Chen, H.; Qu, J. Surface Modification of Fluorosilicone Acrylate RGP Contact Lens via Low-Temperature Argon Plasma. Appl. Surf. Sci. 2008, 255, 483–485. [Google Scholar] [CrossRef]
- Yu, Y.; Macoon, R.; Chauhan, A. Improving Wettability and Lubricity of Commercial Contact Lenses by Polymerizing a Thin Film of Dimethylacryamide. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123974. [Google Scholar] [CrossRef]
- Samson, F. Ophthalmic Lens Coatings. Surf. Coat. Technol. 1996, 81, 79–86. [Google Scholar] [CrossRef]
- Martinez-Perez, C.; Oliveira, A.P. Meta-Analysis of Materials and Treatments Used in Ophthalmic Lenses: Implications for Lens Characteristics. Materials 2024, 17, 5949. [Google Scholar] [CrossRef]
- Franco, P.; De Marco, I. Contact Lenses as Ophthalmic Drug Delivery Systems: A Review. Polymers 2021, 13, 1102. [Google Scholar] [CrossRef]
- Nguyen, D.C.T.; Dowling, J.; Ryan, R.; McLoughlin, P.; Fitzhenry, L. Pharmaceutical-Loaded Contact Lenses as an Ocular Drug Delivery System: A Review of Critical Lens Characterization Methodologies with Reference to ISO Standards. Cont. Lens Anterior Eye 2021, 44, 101487. [Google Scholar] [CrossRef]
- Zhao, L.; Song, J.; Du, Y.; Ren, C.; Guo, B.; Bi, H. Therapeutic Applications of Contact Lens-Based Drug Delivery Systems in Ophthalmic Diseases. Drug Deliv. 2023, 30, 2219419. [Google Scholar] [CrossRef]
- Rykowska, I.; Nowak, I.; Nowak, R.; Michałkiewicz, O. Biodegradable Contact Lenses for Targeted Ocular Drug Delivery: Recent Advances, Clinical Applications, and Translational Perspectives. Molecules 2025, 30, 2542. [Google Scholar] [CrossRef]
- Ciolino, J.B.; Hoare, T.R.; Iwata, N.G.; Behlau, I.; Dohlman, C.H.; Langer, R.; Kohane, D.S. A Drug-Eluting Contact Lens. Invest. Ophthalmol. Vis. Sci. 2009, 50, 3346–3352. [Google Scholar] [CrossRef]
- Gao, D.; Yan, C.; Wang, Y.; Yang, H.; Liu, M.; Wang, Y.; Li, C.; Li, C.; Cheng, G.; Zhang, L. Drug-Eluting Contact Lenses: Progress, Challenges, and Prospects. Biointerphases 2024, 19, 040801. [Google Scholar] [CrossRef]
- Baghban, R.; Talebnejad, M.R.; Meshksar, A.; Heydari, M.; Khalili, M.R. Recent Advancements in Nanomaterial-Laden Contact Lenses for Diagnosis and Treatment of Glaucoma, Review and Update. J. Nanobiotechnol. 2023, 21, 402. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, A.P.; Martinez-Perez, C. Luminescent and Optical Thin Film Coatings in Ophthalmic Lenses: Advances, Clinical Applications, and Future Directions. Coatings 2025, 15, 1246. https://doi.org/10.3390/coatings15111246
Oliveira AP, Martinez-Perez C. Luminescent and Optical Thin Film Coatings in Ophthalmic Lenses: Advances, Clinical Applications, and Future Directions. Coatings. 2025; 15(11):1246. https://doi.org/10.3390/coatings15111246
Chicago/Turabian StyleOliveira, Ana Paula, and Clara Martinez-Perez. 2025. "Luminescent and Optical Thin Film Coatings in Ophthalmic Lenses: Advances, Clinical Applications, and Future Directions" Coatings 15, no. 11: 1246. https://doi.org/10.3390/coatings15111246
APA StyleOliveira, A. P., & Martinez-Perez, C. (2025). Luminescent and Optical Thin Film Coatings in Ophthalmic Lenses: Advances, Clinical Applications, and Future Directions. Coatings, 15(11), 1246. https://doi.org/10.3390/coatings15111246

