Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (39,057)

Search Parameters:
Keywords = operational processing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 6224 KB  
Article
An AIoT Product Development Process with Integrated Sustainability and Universal Design
by Meng-Dar Shieh, Hsu-Chan Hsiao, Jui-Feng Chang, Yu-Ting Hsiao and Yuan-Jyun Jhou
Sustainability 2025, 17(19), 8874; https://doi.org/10.3390/su17198874 (registering DOI) - 4 Oct 2025
Abstract
The rapid development of contemporary artificial intelligence and Internet of Things (IoT) technologies has given rise to the emerging paradigm of the AIoT (Artificial Intelligence of Things), which is profoundly impacting human life and driving the digital transformation of industries and society. The [...] Read more.
The rapid development of contemporary artificial intelligence and Internet of Things (IoT) technologies has given rise to the emerging paradigm of the AIoT (Artificial Intelligence of Things), which is profoundly impacting human life and driving the digital transformation of industries and society. The AIoT not only enhances product functionality and convenience but also accelerates the achievement of the United Nations Sustainable Development Goals (SDGs). However, the widespread adoption of these technologies still poses challenges related to social inclusivity, particularly regarding insufficient accessibility for elderly users, which may exacerbate the digital divide and social inequality, contradicting SDG 10 (reducing inequality). This study integrates AIoT product development processes based on sustainability and universal design principles using methods such as Quality Function Deployment, the Analytic Hierarchy Process, the Scenario Method, the Entropy Weight Method, and Fuzzy Comprehensive Evaluation. The features of this process include ease of operation and high flexibility, making it suitable for cross-departmental product development while prioritizing the needs of diverse age groups throughout the development process. The research findings indicate that the AIoT product concepts proposed can meet the needs of diverse users, contributing to the realization of age-friendly products. This study provides a reference point for future AIoT product development, promoting the inclusive and sustainable development of smart technology. Full article
(This article belongs to the Section Sustainable Products and Services)
16 pages, 1895 KB  
Article
Modernization of Hoisting Operations Through the Design of an Automated Skip Loading System—Enhancing Efficiency and Sustainability
by Keane Baulen Size, Rejoice Moyo, Richard Masethe, Tawanda Zvarivadza and Moshood Onifade
Mining 2025, 5(4), 62; https://doi.org/10.3390/mining5040062 (registering DOI) - 4 Oct 2025
Abstract
This study presents the design and validation of an automated skip loading system for vertical shaft hoisting operations, aimed at addressing inefficiencies in current manual systems that contribute to consistent underperformance in meeting daily production targets. Initial assessments revealed a task completion rate [...] Read more.
This study presents the design and validation of an automated skip loading system for vertical shaft hoisting operations, aimed at addressing inefficiencies in current manual systems that contribute to consistent underperformance in meeting daily production targets. Initial assessments revealed a task completion rate of 91.6%, largely due to delays and inaccuracies in manual ore loading and accounting. To resolve these challenges, an automated system was developed using a bin and conveyor mechanism integrated with a suite of industrial automation components, including a programmable logic controller (PLC), stepper motors, hydraulic cylinders, ultrasonic sensors, and limit switches. The system is designed to transport ore from the draw point, halt when one ton is detected, and activate the hoisting process automatically. Digital simulations demonstrated that the automated system reduced loading time by 12% and increased utilization by 16.6%, particularly by taking advantage of the 2 h post-blast idle period. Financial evaluation of the system revealed a positive Net Present Value (NPV) of $1,019,701, a return on investment (ROI) of 69.7% over four years, and a payback period of 2 years and 11 months. The study concludes that the proposed solution significantly improves operational efficiency and recommends further enhancements to the hoisting infrastructure to fully optimize performance. Full article
(This article belongs to the Special Issue Mine Automation and New Technologies, 2nd Edition)
Show Figures

Figure 1

23 pages, 853 KB  
Article
Pressure Drops for Turbulent Liquid Single-Phase and Gas–Liquid Two-Phase Flows in Komax Triple Action Static Mixer
by Youcef Zenati, M’hamed Hammoudi, Abderraouf Arabi, Jack Legrand and El-Khider Si-Ahmed
Fluids 2025, 10(10), 259; https://doi.org/10.3390/fluids10100259 (registering DOI) - 4 Oct 2025
Abstract
Static mixers are commonly used for process intensification in a wide range of industrial applications. For the design and selection of a static mixer, an accurate prediction of the hydraulic performance, particularly the pressure drop, is essential. This experimental study examines the pressure [...] Read more.
Static mixers are commonly used for process intensification in a wide range of industrial applications. For the design and selection of a static mixer, an accurate prediction of the hydraulic performance, particularly the pressure drop, is essential. This experimental study examines the pressure drop for turbulent single-phase and gas–liquid two-phase flows through a Komax triple-action static mixer placed on a horizontal pipeline. New values of friction factor and z-factor are reported for fully turbulent liquid single-phase flow (11,700 ≤ ReL ≤ 18,700). For two-phase flow, the pressure drop for stratified and intermittent flows (0.07 m/s ≤ UL ≤ 0.28 m/s and 0.46 m/s ≤ UG ≤ 3.05 m/s) is modeled using the Lockhart–Martinelli approach, with a coefficient, C, correlated to the homogenous void fraction. Conversely, the analysis of power dissipation reveals a dependence on both liquid and gas superficial velocities. For conditions corresponding to intermittent flow upstream of the mixer, flow visualization revealed the emergence of a swirling flow in the Komax static mixer. It is interesting to note that an increase in slug frequency leads to an increase, followed by stabilization of the pressure drop. The results offer valuable insights for improving the design and optimization of Komax static mixers operating under single-phase and two-phase flow conditions. In particular, the reported correlations can serve as practical tools for predicting hydraulic losses during the design and scale-up. Moreover, the observed influence of the slug frequency on the pressure drop provides guidance for selecting operating conditions that minimize energy consumption while ensuring efficient mixing. Full article
(This article belongs to the Special Issue Pipe Flow: Research and Applications, 2nd Edition)
25 pages, 1601 KB  
Article
Evaluating Municipal Solid Waste Incineration Through Determining Flame Combustion to Improve Combustion Processes for Environmental Sanitation
by Jian Tang, Xiaoxian Yang, Wei Wang and Jian Rong
Sustainability 2025, 17(19), 8872; https://doi.org/10.3390/su17198872 (registering DOI) - 4 Oct 2025
Abstract
Municipal solid waste (MSW) refers to solid and semi-solid waste generated during human production and daily activities. The process of incinerating such waste, known as municipal solid waste incineration (MSWI), serves as a critical method for reducing waste volume and recovering resources. Automatic [...] Read more.
Municipal solid waste (MSW) refers to solid and semi-solid waste generated during human production and daily activities. The process of incinerating such waste, known as municipal solid waste incineration (MSWI), serves as a critical method for reducing waste volume and recovering resources. Automatic online recognition of flame combustion status during MSWI is a key technical approach to ensuring system stability, addressing issues such as high pollution emissions, severe equipment wear, and low operational efficiency. However, when manually selecting optimized features and hyperparameters based on empirical experience, the MSWI flame combustion state recognition model suffers from high time consumption, strong dependency on expertise, and difficulty in adaptively obtaining optimal solutions. To address these challenges, this article proposes a method for constructing a flame combustion state recognition model optimized based on reinforcement learning (RL), long short-term memory (LSTM), and parallel differential evolution (PDE) algorithms, achieving collaborative optimization of deep features and model hyperparameters. First, the feature selection and hyperparameter optimization problem of the ViT-IDFC combustion state recognition model is transformed into an encoding design and optimization problem for the PDE algorithm. Then, the mutation and selection factors of the PDE algorithm are used as modeling inputs for LSTM, which predicts the optimal hyperparameters based on PDE outputs. Next, during the PDE-based optimization of the ViT-IDFC model, a policy gradient reinforcement learning method is applied to determine the parameters of the LSTM model. Finally, the optimized combustion state recognition model is obtained by identifying the feature selection parameters and hyperparameters of the ViT-IDFC model. Test results based on an industrial image dataset demonstrate that the proposed optimization algorithm improves the recognition performance of both left and right grate recognition models, with the left grate achieving a 0.51% increase in recognition accuracy and the right grate a 0.74% increase. Full article
(This article belongs to the Section Waste and Recycling)
15 pages, 1603 KB  
Article
EEG-Powered UAV Control via Attention Mechanisms
by Jingming Gong, He Liu, Liangyu Zhao, Taiyo Maeda and Jianting Cao
Appl. Sci. 2025, 15(19), 10714; https://doi.org/10.3390/app151910714 (registering DOI) - 4 Oct 2025
Abstract
This paper explores the development and implementation of a brain–computer interface (BCI) system that utilizes electroencephalogram (EEG) signals for real-time monitoring of attention levels to control unmanned aerial vehicles (UAVs). We propose an innovative approach that combines spectral power analysis and machine learning [...] Read more.
This paper explores the development and implementation of a brain–computer interface (BCI) system that utilizes electroencephalogram (EEG) signals for real-time monitoring of attention levels to control unmanned aerial vehicles (UAVs). We propose an innovative approach that combines spectral power analysis and machine learning classification techniques to translate cognitive states into precise UAV command signals. This method overcomes the limitations of traditional threshold-based approaches by adapting to individual differences and improving classification accuracy. Through comprehensive testing with 20 participants in both controlled laboratory environments and real-world scenarios, our system achieved an 85% accuracy rate in distinguishing between high and low attention states and successfully mapped these cognitive states to vertical UAV movements. Experimental results demonstrate that our machine learning-based classification method significantly enhances system robustness and adaptability in noisy environments. This research not only advances UAV operability through neural interfaces but also broadens the practical applications of BCI technology in aviation. Our findings contribute to the expanding field of neurotechnology and underscore the potential for neural signal processing and machine learning integration to revolutionize human–machine interaction in industries where dynamic relationships between cognitive states and automated systems are beneficial. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Graphical abstract

15 pages, 2159 KB  
Article
Benchmarking Lightweight YOLO Object Detectors for Real-Time Hygiene Compliance Monitoring
by Leen Alashrafi, Raghad Badawood, Hana Almagrabi, Mayda Alrige, Fatemah Alharbi and Omaima Almatrafi
Sensors 2025, 25(19), 6140; https://doi.org/10.3390/s25196140 (registering DOI) - 4 Oct 2025
Abstract
Ensuring hygiene compliance in regulated environments—such as food processing facilities, hospitals, and public indoor spaces—requires reliable detection of personal protective equipment (PPE) usage, including gloves, face masks, and hairnets. Manual inspection is labor-intensive and unsuitable for continuous, real-time enforcement. This study benchmarks three [...] Read more.
Ensuring hygiene compliance in regulated environments—such as food processing facilities, hospitals, and public indoor spaces—requires reliable detection of personal protective equipment (PPE) usage, including gloves, face masks, and hairnets. Manual inspection is labor-intensive and unsuitable for continuous, real-time enforcement. This study benchmarks three lightweight object detection models—YOLOv8n, YOLOv10n, and YOLOv12n—for automated PPE compliance monitoring using a large curated dataset of over 31,000 annotated images. The dataset spans seven classes representing both compliant and non-compliant conditions: glove, no_glove, mask, no_mask, incorrect_mask, hairnet, and no_hairnet. All evaluations were conducted using both detection accuracy metrics (mAP@50, mAP@50–95, precision, recall) and deployment-relevant efficiency metrics (inference speed, model size, GFLOPs). Among the three models, YOLOv10n achieved the highest mAP@50 (85.7%) while maintaining competitive efficiency, indicating strong suitability for resource-constrained IoT-integrated deployments. YOLOv8n provided the highest localization accuracy at stricter thresholds (mAP@50–95), while YOLOv12n favored ultra-lightweight operation at the cost of reduced accuracy. The results provide practical guidance for selecting nano-scale detection models in real-time hygiene compliance systems and contribute a reproducible, deployment-aware evaluation framework for computer vision in hygiene-critical settings. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

46 pages, 3080 KB  
Review
Machine Learning for Structural Health Monitoring of Aerospace Structures: A Review
by Gennaro Scarselli and Francesco Nicassio
Sensors 2025, 25(19), 6136; https://doi.org/10.3390/s25196136 (registering DOI) - 4 Oct 2025
Abstract
Structural health monitoring (SHM) plays a critical role in ensuring the safety and performance of aerospace structures throughout their lifecycle. As aircraft and spacecraft systems grow in complexity, the integration of machine learning (ML) into SHM frameworks is revolutionizing how damage is detected, [...] Read more.
Structural health monitoring (SHM) plays a critical role in ensuring the safety and performance of aerospace structures throughout their lifecycle. As aircraft and spacecraft systems grow in complexity, the integration of machine learning (ML) into SHM frameworks is revolutionizing how damage is detected, localized, and predicted. This review presents a comprehensive examination of recent advances in ML-based SHM methods tailored to aerospace applications. It covers supervised, unsupervised, deep, and hybrid learning techniques, highlighting their capabilities in processing high-dimensional sensor data, managing uncertainty, and enabling real-time diagnostics. Particular focus is given to the challenges of data scarcity, operational variability, and interpretability in safety-critical environments. The review also explores emerging directions such as digital twins, transfer learning, and federated learning. By mapping current strengths and limitations, this paper provides a roadmap for future research and outlines the key enablers needed to bring ML-based SHM from laboratory development to widespread aerospace deployment. Full article
(This article belongs to the Special Issue Feature Review Papers in Fault Diagnosis & Sensors)
Show Figures

Figure 1

23 pages, 3697 KB  
Article
From Waste to Resource: Phosphorus Adsorption on Posidonia oceanica Ash and Its Application as a Soil Fertilizer
by Juan A. González, Jesús Mengual and Antonio Eduardo Palomares
AgriEngineering 2025, 7(10), 333; https://doi.org/10.3390/agriengineering7100333 - 3 Oct 2025
Abstract
Phosphorus-based compounds play a crucial role in agricultural productivity. However, excessive phosphorus discharge into water bodies contributes to eutrophication. This study proposes a circular approach for phosphorus recovery and reuse through the thermal valorization of Posidonia oceanica residues, an abundant marine biomass along [...] Read more.
Phosphorus-based compounds play a crucial role in agricultural productivity. However, excessive phosphorus discharge into water bodies contributes to eutrophication. This study proposes a circular approach for phosphorus recovery and reuse through the thermal valorization of Posidonia oceanica residues, an abundant marine biomass along Mediterranean coasts. After energy recovery from this waste (12.3 MJ kg−1), the resulting ash was assessed as an effective adsorbent for aqueous phosphorus removal. Batch experiments were conducted to evaluate adsorption kinetics and equilibrium, considering the influence of key operational variables, such as temperature, pH, and adsorbent dosage. Under optimal conditions, the material achieved a maximum retention of approximately 55–60 mgP g−1. The Freundlich model successfully describes the equilibrium isotherm data, indicating a heterogeneous adsorbent and an overall endothermic process. Phosphorus removal was favored at basic pH values (9.5–10.5), where the monohydrogen phosphate predominates. Leaching tests further revealed that saturated material releases phosphorus and other minerals in a manner clearly dependent on the final pH, with higher phosphorus release under more acidic conditions. These results suggest that Posidonia ash could serve as a low-cost adsorbent while also acting as a potential phosphorus source in soils. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Figure 1

19 pages, 4587 KB  
Article
Wet Media Milling Preparation and Process Simulation of Nano-Ursolic Acid
by Guang Li, Wenyu Yuan, Yu Ying and Yang Zhang
Pharmaceutics 2025, 17(10), 1297; https://doi.org/10.3390/pharmaceutics17101297 - 3 Oct 2025
Abstract
Background/Objectives: Pharmaceutical preparation technologies can enhance the bioavailability of poorly water-soluble drugs. Ursolic acid (UA) has been found to possess anti-cancer and hepatoprotective properties, demonstrating its potential as a therapeutic agent; however, its hydrophobicity and low solubility present challenges in the development [...] Read more.
Background/Objectives: Pharmaceutical preparation technologies can enhance the bioavailability of poorly water-soluble drugs. Ursolic acid (UA) has been found to possess anti-cancer and hepatoprotective properties, demonstrating its potential as a therapeutic agent; however, its hydrophobicity and low solubility present challenges in the development of drug formulations. This study investigates the preparation of a nano-UA suspension by wet grinding, researches the influence of process parameters on particle size, and explores the rules of particle breakage and agglomeration by combining model fitting. Methods: Wet grinding experiments were conducted using a laboratory-scale grinding machine. The particle size distributions (PSDs) of UA suspensions under different grinding conditions were measured using a laser particle size analyzer. A single-factor experimental design was employed to optimize operational conditions. Model parameters for a population balance model considering both breakage and agglomeration were determined by an evolutionary algorithm optimization method. By measuring the degree to which UA inhibits the colorimetric reaction between salicylic acid and hydroxyl radicals, its antioxidant capacity in scavenging hydroxyl radicals was indirectly evaluated. Results: Wet grinding process conditions for nano-UA particles were established, yielding a UA suspension with a D50 particle size of 122 nm. The scavenging rate of the final grinding product was improved to three times higher than that of the UA raw material (D50 = 14.2 μm). Conclusions: Preparing nano-UA suspensions via wet grinding technology can significantly enhance their antioxidant properties. Model regression analysis of PSD data reveals that increasing the grinding mill’s stirring speed leads to more uniform particle size distribution, indicating that grinding speed (power) is a critical factor in producing nanosuspensions. Full article
(This article belongs to the Special Issue Advanced Research on Amorphous Drugs)
Show Figures

Figure 1

15 pages, 577 KB  
Article
Blockchain-Enabled GDPR Compliance Enforcement for IIoT Data Access
by Amina Isazade, Ali Malik and Mohammed B. Alshawki
J. Cybersecur. Priv. 2025, 5(4), 84; https://doi.org/10.3390/jcp5040084 - 3 Oct 2025
Abstract
The General Data Protection Regulation (GDPR) imposes additional demands and obligations on service providers that handle and process personal data. In this paper, we examine how advanced cryptographic techniques can be employed to develop a privacy-preserving solution for ensuring GDPR compliance in Industrial [...] Read more.
The General Data Protection Regulation (GDPR) imposes additional demands and obligations on service providers that handle and process personal data. In this paper, we examine how advanced cryptographic techniques can be employed to develop a privacy-preserving solution for ensuring GDPR compliance in Industrial Internet of Things (IIoT) systems. The primary objective is to ensure that sensitive data from IIoT devices is encrypted and accessible only to authorized entities, in accordance with Article 32 of the GDPR. The proposed system combines Decentralized Attribute-Based Encryption (DABE) with smart contracts on a blockchain to create a decentralized way of managing access to IIoT systems. The proposed system is used in an IIoT use case where industrial sensors collect operational data that is encrypted according to DABE. The encrypted data is stored in the IPFS decentralized storage system. The access policy and IPFS hash are stored in the blockchain’s smart contracts, allowing only authorized and compliant entities to retrieve the data based on matching attributes. This decentralized system ensures that information is stored encrypted and secure until it is retrieved by legitimate entities, whose access rights are automatically enforced by smart contracts. The implementation and evaluation of the proposed system have been analyzed and discussed, showing the promising achievement of the proposed system. Full article
(This article belongs to the Special Issue Data Protection and Privacy)
Show Figures

Figure 1

21 pages, 406 KB  
Article
DRBoost: A Learning-Based Method for Steel Quality Prediction
by Yang Song, Shuaida He and Qiyu Wu
Symmetry 2025, 17(10), 1644; https://doi.org/10.3390/sym17101644 - 3 Oct 2025
Abstract
Steel products play an important role in daily production and life as a common production material. Currently, the quality of steel products is judged by manual experience. However, various inspection criteria employed by human operators and complex factors and mechanisms in the steelmaking [...] Read more.
Steel products play an important role in daily production and life as a common production material. Currently, the quality of steel products is judged by manual experience. However, various inspection criteria employed by human operators and complex factors and mechanisms in the steelmaking process may lead to inaccuracies. To address these issues, we propose a learning-based method for steel quality prediction, which is named DRBoost,based on multiple machine learning techniques, including Decision tree, Random forest, and the LSBoost algorithm. In our method, the decision tree clearly captures the nonlinear relationships between features and serves as a solid baseline for making preliminary predictions. Random forest enhances the model’s robustness and avoids overfitting by aggregating multiple decision trees. LSBoost uses gradient descent training to assign contribution coefficients to different kinds of raw materials to obtain more accurate predictions. Five key chemical elements, including carbon, silicon, manganese, phosphorus, and sulfur, which significantly influence the major performance characteristics of steel products, are selected. Steel quality prediction is conducted by predicting the contents of these chemical elements. Multiple models are constructed to predict the contents of five key chemical elements in steel products. These models are symmetrically complementary, meeting the requirements of different production scenarios and forming a more accurate and universal method for predicting the steel product’s quality. In addition, the prediction method provides a symmetric quality control system for steel product production. Experimental evaluations are conducted based on a dataset of 2012 samples from a steel plant in Liaoning Province, China. The input variables include various raw material usages, while the outputs are the content of five key chemical elements that influence the quality of steel products. The experimental results show that the models demonstrate their advantages in different performance metrics and are applicable to practical steelmaking scenarios. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

31 pages, 9679 KB  
Article
Weather-Corrupted Image Enhancement with Removal-Raindrop Diffusion and Mutual Image Translation Modules
by Young-Ho Go and Sung-Hak Lee
Mathematics 2025, 13(19), 3176; https://doi.org/10.3390/math13193176 - 3 Oct 2025
Abstract
Artificial intelligence-based image processing is critical for sensor fusion and image transformation in mobility systems. Advanced driver assistance functions such as forward monitoring and digital side mirrors are essential for driving safety. Degradation due to raindrops, fog, and high-dynamic range (HDR) imbalance caused [...] Read more.
Artificial intelligence-based image processing is critical for sensor fusion and image transformation in mobility systems. Advanced driver assistance functions such as forward monitoring and digital side mirrors are essential for driving safety. Degradation due to raindrops, fog, and high-dynamic range (HDR) imbalance caused by lighting changes impairs visibility and reduces object recognition and distance estimation accuracy. This paper proposes a diffusion framework to enhance visibility under multi-degradation conditions. The denoising diffusion probabilistic model (DDPM) offers more stable training and high-resolution restoration than the generative adversarial networks. The DDPM relies on large-scale paired datasets, which are difficult to obtain in raindrop scenarios. This framework applies the Palette diffusion model, comprising data augmentation and raindrop-removal modules. The data augmentation module generates raindrop image masks and learns inpainting-based raindrop synthesis. Synthetic masks simulate raindrop patterns and HDR imbalance scenarios. The raindrop-removal module reconfigures the Palette architecture for image-to-image translation, incorporating the augmented synthetic dataset for raindrop removal learning. Loss functions and normalization strategies improve restoration stability and removal performance. During inference, the framework operates with a single conditional input, and an efficient sampling strategy is introduced to significantly accelerate the process. In post-processing, tone adjustment and chroma compensation enhance visual consistency. The proposed method preserves fine structural details and outperforms existing approaches in visual quality, improving the robustness of vision systems under adverse conditions. Full article
(This article belongs to the Special Issue Deep Learning in Image Processing and Scientific Computing)
Show Figures

Figure 1

33 pages, 5950 KB  
Article
Fault Point Search with Obstacle Avoidance for Machinery Diagnostic Robots Using Hierarchical Fuzzy Logic Control
by Rui Mu, Ryojun Ikeura, Hongtao Xue, Chengxiang Zhao and Peng Chen
Sensors 2025, 25(19), 6127; https://doi.org/10.3390/s25196127 - 3 Oct 2025
Abstract
Higher requirements have been placed on fault detection for continuously operating machines in modern factories. Manual inspection faces challenges related to timeliness, leading to the emergence of autonomous diagnostic robots. To overcome the safety limitations of existing diagnostic robots in factory environments, a [...] Read more.
Higher requirements have been placed on fault detection for continuously operating machines in modern factories. Manual inspection faces challenges related to timeliness, leading to the emergence of autonomous diagnostic robots. To overcome the safety limitations of existing diagnostic robots in factory environments, a hierarchical fuzzy logic-based navigation and obstacle avoidance algorithm is proposed in this study. The algorithm is constructed based on zero-order Takagi–Sugeno type fuzzy control, comprising subfunctions for navigation, static obstacle avoidance, and dynamic obstacle avoidance. Coordinated navigation and equipment protection are achieved by jointly considering the information of the fault point and surrounding equipment. The concept of a dynamic safety boundary is introduced, wherein the normalized breached level is used to replace the traditional distance-based input. In the inference process for dynamic obstacle avoidance, the relative speed direction is additionally considered. A Mamdani-type fuzzy inference system is employed to infer the necessity of obstacle avoidance and determine the priority target for avoidance, thereby enabling multi-objective planning. Simulation results demonstrate that the proposed algorithm can guide the diagnostic robot to within 30 cm of the fault point while ensuring collision avoidance with both equipment and obstacles, enhancing the completeness and safety of the fault point searching process. Full article
(This article belongs to the Special Issue Feature Papers in Fault Diagnosis & Sensors 2025)
Show Figures

Figure 1

37 pages, 10966 KB  
Article
Contextual Real-Time Optimization on FPGA by Dynamic Selection of Chaotic Maps and Adaptive Metaheuristics
by Rabab Ouchker, Hamza Tahiri, Ismail Mchichou, Mohamed Amine Tahiri, Hicham Amakdouf and Mhamed Sayyouri
Appl. Sci. 2025, 15(19), 10695; https://doi.org/10.3390/app151910695 - 3 Oct 2025
Abstract
In dynamic and information-rich contexts, systems must be capable of making instantaneous, context-aware decisions. Such scenarios require optimization methods that are both fast and flexible. This paper introduces an innovative hardware-based intelligent optimization framework, deployed on FPGAs, designed to support autonomous decisions in [...] Read more.
In dynamic and information-rich contexts, systems must be capable of making instantaneous, context-aware decisions. Such scenarios require optimization methods that are both fast and flexible. This paper introduces an innovative hardware-based intelligent optimization framework, deployed on FPGAs, designed to support autonomous decisions in real-time systems. In contrast to conventional methods based on a single chaotic map, our scheme brings together six separate chaotic generators in simultaneous operation, orchestrated by an adaptive voting system based on past results. The system, in conjunction with the Secretary Bird Optimization Algorithm (SBOA), constantly adjusts its optimization approach according to the changing profile of the objective function. This delivers first-rate, timely solutions with improved convergence, resistance to local minima, and a high degree of adaptability to a variety of decision-making contexts. Simulations carried out on reference standards and engineering problems have demonstrated the scalability, responsiveness, and efficiency of the proposed model. These characteristics make it particularly suitable for use in embedded intelligence applications in sectors such as intelligent production, robotics, and IoT-based infrastructures. The suggested solution was tested using post-synthesis simulations on Vivado 2022.2 and experimented on three concrete engineering challenges: welded beam design, pressure equipment design, and tension/compression spring refinement. In each situation, the adaptive selection process dynamically determined the most suitable chaotic map, such as the logistics map for the Welded Beam Design Problem (WBDP) and the Tent map for the Pressure Vessel Design Problem (PVDP). This led to ideal results that exceed both conventional static methods and recent references in the literature. The post-synthesis results on the Nexys 4 DDR (Artix-7 XC7A100T, Digilent Inc., Pullman, WA, USA) show that the initial Q16.16 implementation exceeded the device resources (128% LUTs and 100% DSPs), whereas the optimized Q4.8 representation achieved feasible deployment with 80% LUT utilization, 72% DSP usage, and 3% FF occupancy. This adjustment reduced resource consumption by more than 25% while maintaining sufficient computational accuracy. Full article
23 pages, 838 KB  
Article
Applied with Caution: Extreme-Scenario Testing Reveals Significant Risks in Using LLMs for Humanities and Social Sciences Paper Evaluation
by Hua Liu, Ling Dai and Haozhe Jiang
Appl. Sci. 2025, 15(19), 10696; https://doi.org/10.3390/app151910696 - 3 Oct 2025
Abstract
The deployment of large language models (LLMs) in academic paper evaluation is increasingly widespread, yet their trustworthiness remains debated; to expose fundamental flaws often masked under conventional testing, this study employed extreme-scenario testing to systematically probe the lower performance boundaries of LLMs in [...] Read more.
The deployment of large language models (LLMs) in academic paper evaluation is increasingly widespread, yet their trustworthiness remains debated; to expose fundamental flaws often masked under conventional testing, this study employed extreme-scenario testing to systematically probe the lower performance boundaries of LLMs in assessing the scientific validity and logical coherence of papers from the humanities and social sciences (HSS). Through a highly credible quasi-experiment, 40 high-quality Chinese papers from philosophy, sociology, education, and psychology were selected, for which domain experts created versions with implanted “scientific flaws” and “logical flaws”. Three representative LLMs (GPT-4, DeepSeek, and Doubao) were evaluated against a baseline of 24 doctoral candidates, following a protocol progressing from ‘broad’ to ‘targeted’ prompts. Key findings reveal poor evaluation consistency, with significantly low intra-rater and inter-rater reliability for the LLMs, and limited flaw detection capability, as all models failed to distinguish between original and flawed papers under broad prompts, unlike human evaluators; although targeted prompts improved detection, LLM performance remained substantially inferior, particularly in tasks requiring deep empirical insight and logical reasoning. The study proposes that LLMs operate on a fundamentally different “task decomposition-semantic understanding” mechanism, relying on limited text extraction and shallow semantic comparison rather than the human process of “worldscape reconstruction → meaning construction and critique”, resulting in a critical inability to assess argumentative plausibility and logical coherence. It concludes that current LLMs possess fundamental limitations in evaluations requiring depth and critical thinking, are not reliable independent evaluators, and that over-trusting them carries substantial risks, necessitating rational human-AI collaborative frameworks, enhanced model adaptation through downstream alignment techniques like prompt engineering and fine-tuning, and improvements in general capabilities such as logical reasoning. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

Back to TopTop