Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (19,913)

Search Parameters:
Keywords = operational factors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2759 KiB  
Article
A Novel Serum-Based Bioassay for Quantification of Cancer-Associated Transformation Activity: A Case–Control and Animal Study
by Aye Aye Khine, Hsuan-Shun Huang, Pao-Chu Chen, Chun-Shuo Hsu, Ying-Hsi Chen, Sung-Chao Chu and Tang-Yuan Chu
Diagnostics 2025, 15(15), 1975; https://doi.org/10.3390/diagnostics15151975 (registering DOI) - 6 Aug 2025
Abstract
Background/Objectives: The detection of ovarian cancer remains challenging due to the lack of reliable serum biomarkers that reflect malignant transformation rather than mere tumor presence. We developed a novel biotest using an immortalized human fallopian tube epithelial cell line (TY), which exhibits [...] Read more.
Background/Objectives: The detection of ovarian cancer remains challenging due to the lack of reliable serum biomarkers that reflect malignant transformation rather than mere tumor presence. We developed a novel biotest using an immortalized human fallopian tube epithelial cell line (TY), which exhibits anchorage-independent growth (AIG) in response to cancer-associated serum factors. Methods: Sera from ovarian and breast cancer patients, non-cancer controls, and ID8 ovarian cancer-bearing mice were tested for AIG-promoting activity in TY cells. Results: TY cells (passage 96) effectively distinguished cancer sera from controls (68.50 ± 2.12 vs. 17.50 ± 3.54 colonies, p < 0.01) and correlated with serum CA125 levels (r = 0.73, p = 0.03) in ovarian cancer patients. Receiver operating characteristic (ROC) analysis showed high diagnostic accuracy (AUC = 0.85, cutoff: 23.75 colonies). The AIG-promoting activity was mediated by HGF/c-MET and IGF/IGF-1R signaling, as inhibition of these pathways reduced phosphorylation and AIG. In an ID8 mouse ovarian cancer model, TY-AIG colonies strongly correlated with tumor burden (r = 0.95, p < 0.01). Conclusions: Our findings demonstrate that the TY cell-based AIG assay is a sensitive and specific biotest for detecting ovarian cancer and potentially other malignancies, leveraging the fundamental hallmark of malignant transformation. Full article
(This article belongs to the Special Issue New Insights into the Diagnosis of Gynecological Diseases)
Show Figures

Figure 1

26 pages, 3314 KiB  
Article
Antenna Model with Pattern Optimization Based on Genetic Algorithm for Satellite-Based SAR Mission
by Saray Sánchez-Sevilleja, Marcos García-Rodríguez, José Luis Masa-Campos and Juan Manuel Cuerda-Muñoz
Sensors 2025, 25(15), 4835; https://doi.org/10.3390/s25154835 (registering DOI) - 6 Aug 2025
Abstract
 Synthetic aperture radar (SAR) systems are of paramount importance to remote sensing applications, including Earth observation and environmental monitoring. Accurate calibration of these systems is imperative to ensuring the accuracy and reliability of the acquired data. A central component of the calibration process [...] Read more.
 Synthetic aperture radar (SAR) systems are of paramount importance to remote sensing applications, including Earth observation and environmental monitoring. Accurate calibration of these systems is imperative to ensuring the accuracy and reliability of the acquired data. A central component of the calibration process is the antenna model, which serves as a fundamental reference for characterizing the radiation pattern, gain, and overall performance of SAR systems. The present paper sets out to describe the implementation and validation of a phased-array antenna model for Synthetic Aperture Radar Systems (SARAS) in MATLAB R2024a. The antenna model was developed for utilization in the Spanish Earth observation missions PAZ and PRECURSOR-ECO. The antenna model incorporates a number of functions, which are divided into two primary modules: the first of these is the antenna pattern generation (APG) module, and the second is the antenna excitation generation (AEG) module. The present document focuses on the AEG, the function of which is to generate patterns for all required beams. These patterns are optimized and matched to specific calculated masks using an ad hoc genetic algorithm (GA). In consideration of the aforementioned factors, the AEG module generates a set of complex excitations corresponding to the required beam from different satellite operational beams, based on several radiometrically defined parameters.  Full article
(This article belongs to the Special Issue Recent Advances in Synthetic Aperture Radar (SAR) Remote Sensing)
19 pages, 1185 KiB  
Article
PredictMed-CDSS: Artificial Intelligence-Based Decision Support System Predicting the Probability to Develop Neuromuscular Hip Dysplasia
by Carlo M. Bertoncelli, Federico Solla, Michal Latalski, Sikha Bagui, Subhash C. Bagui, Stefania Costantini and Domenico Bertoncelli
Bioengineering 2025, 12(8), 846; https://doi.org/10.3390/bioengineering12080846 (registering DOI) - 6 Aug 2025
Abstract
Neuromuscular hip dysplasia (NHD) is a common deformity in children with cerebral palsy (CP). Although some predictive factors of NHD are known, the prediction of NHD is in its infancy. We present a Clinical Decision Support System (CDSS) designed to calculate the probability [...] Read more.
Neuromuscular hip dysplasia (NHD) is a common deformity in children with cerebral palsy (CP). Although some predictive factors of NHD are known, the prediction of NHD is in its infancy. We present a Clinical Decision Support System (CDSS) designed to calculate the probability of developing NHD in children with CP. The system utilizes an ensemble of three machine learning (ML) algorithms: Neural Network (NN), Support Vector Machine (SVM), and Logistic Regression (LR). The development and evaluation of the CDSS followed the DECIDE-AI guidelines for AI-driven clinical decision support tools. The ensemble was trained on a data series from 182 subjects. Inclusion criteria were age between 12 and 18 years and diagnosis of CP from two specialized units. Clinical and functional data were collected prospectively between 2005 and 2023, and then analyzed in a cross-sectional study. Accuracy and area under the receiver operating characteristic (AUROC) were calculated for each method. Best logistic regression scores highlighted history of previous orthopedic surgery (p = 0.001), poor motor function (p = 0.004), truncal tone disorder (p = 0.008), scoliosis (p = 0.031), number of affected limbs (p = 0.05), and epilepsy (p = 0.05) as predictors of NHD. Both accuracy and AUROC were highest for NN, 83.7% and 0.92, respectively. The novelty of this study lies in the development of an efficient Clinical Decision Support System (CDSS) prototype, specifically designed to predict future outcomes of neuromuscular hip dysplasia (NHD) in patients with cerebral palsy (CP) using clinical data. The proposed system, PredictMed-CDSS, demonstrated strong predictive performance for estimating the probability of NHD development in children with CP, with the highest accuracy achieved using neural networks (NN). PredictMed-CDSS has the potential to assist clinicians in anticipating the need for early interventions and preventive strategies in the management of NHD among CP patients. Full article
Show Figures

Figure 1

21 pages, 4181 KiB  
Article
Research on Optimal Scheduling of the Combined Cooling, Heating, and Power Microgrid Based on Improved Gold Rush Optimization Algorithm
by Wei Liu, Zhenhai Dou, Yi Yan, Tong Zhou and Jiajia Chen
Electronics 2025, 14(15), 3135; https://doi.org/10.3390/electronics14153135 (registering DOI) - 6 Aug 2025
Abstract
To address the shortcomings of poor convergence and the ease of falling into local optima when using the traditional gold rush optimization (GRO) algorithm to solve the complex scheduling problem of a combined cooling, heating, and power (CCHP) microgrid system, an optimal scheduling [...] Read more.
To address the shortcomings of poor convergence and the ease of falling into local optima when using the traditional gold rush optimization (GRO) algorithm to solve the complex scheduling problem of a combined cooling, heating, and power (CCHP) microgrid system, an optimal scheduling model for a microgrid based on the improved gold rush optimization (IGRO) algorithm is proposed. First, the Halton sequence is introduced to initialize the population, ensuring a uniform and diverse distribution of prospectors, which enhances the algorithm’s global exploration capability. Then, a dynamically adaptive weighting factor is applied during the gold mining phase, enabling the algorithm to adjust its strategy across different search stages by balancing global exploration and local exploitation, thereby improving the convergence efficiency of the algorithm. In addition, a weighted global optimal solution update strategy is employed during the cooperation phase, enhancing the algorithm’s global search capability while reducing the risk of falling into local optima by adjusting the balance of influence between the global best solution and local agents. Finally, a t-distribution mutation strategy is introduced to improve the algorithm’s local search capability and convergence speed. The IGRO algorithm is then applied to solve the microgrid scheduling problem, with the objective function incorporating power purchase and sale cost, fuel cost, maintenance cost, and environmental cost. The example results show that, compared with the GRO algorithm, the IGRO algorithm reduces the average total operating cost of the microgrid by 3.29%, and it achieves varying degrees of cost reduction compared to four other algorithms, thereby enhancing the system’s economic benefits. Full article
Show Figures

Figure 1

28 pages, 5190 KiB  
Article
Assessing the Coevolution Between Ecosystem Services and Human Well-Being in Ecotourism-Dominated Counties: A Case Study of Chun’an, Zhejiang Province, China
by Weifeng Jiang and Lin Lu
Land 2025, 14(8), 1604; https://doi.org/10.3390/land14081604 (registering DOI) - 6 Aug 2025
Abstract
Investigating the coevolution between ecosystem services (ES) and human well-being (HWB) holds significant implications for achieving the sustainable operation of human–environment systems. However, limited research has focused on ES-HWB interactions in ecotourism-dominated counties. To address this gap, this study takes Chun’an County in [...] Read more.
Investigating the coevolution between ecosystem services (ES) and human well-being (HWB) holds significant implications for achieving the sustainable operation of human–environment systems. However, limited research has focused on ES-HWB interactions in ecotourism-dominated counties. To address this gap, this study takes Chun’an County in Zhejiang Province, China, as a case study, with the research objective of exploring the processes, patterns, and mechanisms of the coevolution between ecosystem services (ES) and human well-being (HWB) in ecotourism-dominated counties. By integrating multi-source heterogeneous data, including land use data, the normalized difference vegetation index (NDVI), and statistical records, and employing methods such as the dynamic equivalent factor method, the PLUS model, the coupling coordination degree model, and comprehensive evaluation, we analyzed the synergistic evolution of ES-HWB in Chun’an County from 2000 to 2020. The results indicate that (1) the ecosystem service value (ESV) fluctuated between 30.15 and 36.85 billion CNY, exhibiting a spatial aggregation pattern centered on the Qiandao Lake waterbody, with distance–decay characteristics. The PLUS model confirms ecological conservation policies optimize ES patterns. (2) The HWB index surged from 0.16 to 0.8, driven by tourism-led economic growth, infrastructure investment, and institutional innovation, facilitating a paradigm shift from low to high well-being at the county level. (3) The ES-HWB interaction evolved through three phases—disordered, antagonism, and coordination—revealing tourism as a key mediator driving coupled human–environment system sustainability via a pressure–adaptation–synergy transmission mechanism. This study not only advances the understanding of ES-HWB coevolution in ecotourism-dominated counties, but also provides a transferable methodological framework for sustainable development in similar regions. Full article
Show Figures

Figure 1

12 pages, 1432 KiB  
Article
Optimizing Gear Selection and Engine Speed to Reduce CO2 Emissions in Agricultural Tractors
by Murilo Battistuzzi Martins, Jessé Santarém Conceição, Aldir Carpes Marques Filho, Bruno Lucas Alves, Diego Miguel Blanco Bertolo, Cássio de Castro Seron, João Flávio Floriano Borges Gomides and Eduardo Pradi Vendruscolo
AgriEngineering 2025, 7(8), 250; https://doi.org/10.3390/agriengineering7080250 (registering DOI) - 6 Aug 2025
Abstract
In modern agriculture, tractors play a crucial role in powering tools and implements. Proper operation of agricultural tractors in mechanized field operations can support sustainable agriculture and reduce emissions of pollutants such as carbon dioxide (CO2). This has been a recurring [...] Read more.
In modern agriculture, tractors play a crucial role in powering tools and implements. Proper operation of agricultural tractors in mechanized field operations can support sustainable agriculture and reduce emissions of pollutants such as carbon dioxide (CO2). This has been a recurring concern associated with agricultural intensification for food production. This study aimed to evaluate the optimization of tractor gears and engine speed during crop operations to minimize CO2 emissions and promote sustainability. The experiment was conducted using a strip plot design with subdivided sections and six replications, following a double factorial structure. The first factor evaluated was the type of agricultural implement (disc harrow, subsoiler, or sprayer), while the second factor was the engine speed setting (nominal or reduced). Operational and energy performance metrics were analyzed, including fuel consumption and CO2 emissions, travel speed, effective working time, wheel slippage, and working depth. Optimized gear selection and engine speeds resulted in a 20 to 40% reduction in fuel consumption and CO2 emissions. However, other evaluated parameters remain unaffected by the reduced engine speed, regardless of the implement used, ensuring the operation’s quality. Thus, optimizing operator training or configuring machines allows for environmental impact reduction, making agricultural practices more sustainable. Full article
(This article belongs to the Collection Research Progress of Agricultural Machinery Testing)
Show Figures

Figure 1

19 pages, 2415 KiB  
Article
Auto Deep Spiking Neural Network Design Based on an Evolutionary Membrane Algorithm
by Chuang Liu and Haojie Wang
Biomimetics 2025, 10(8), 514; https://doi.org/10.3390/biomimetics10080514 (registering DOI) - 6 Aug 2025
Abstract
In scientific research and engineering practice, the design of deep spiking neural network (DSNN) architectures remains a complex task that heavily relies on the expertise and experience of professionals. These architectures often require repeated adjustments and modifications based on factors such as the [...] Read more.
In scientific research and engineering practice, the design of deep spiking neural network (DSNN) architectures remains a complex task that heavily relies on the expertise and experience of professionals. These architectures often require repeated adjustments and modifications based on factors such as the DSNN’s performance, resulting in significant consumption of human and hardware resources. To address these challenges, this paper proposes an innovative evolutionary membrane algorithm for optimizing DSNN architectures. This algorithm automates the construction and design of promising network models, thereby reducing reliance on manual tuning. More specifically, the architecture of DSNN is transformed into the search space of the proposed evolutionary membrane algorithm. The proposed algorithm thoroughly explores the impact of hyperparameters, such as the candidate operation blocks of DSNN, to identify optimal configurations. Additionally, an early stopping strategy is adopted in the performance evaluation phase to mitigate the time loss caused by objective evaluations, further enhancing efficiency. The optimal models identified by the proposed algorithm were evaluated on the CIFAR-10 and CIFAR-100 datasets. The experimental results demonstrate the effectiveness of the proposed algorithm, showing significant improvements in accuracy compared to the existing state-of-the-art methods. This work highlights the potential of evolutionary membrane algorithms to streamline the design and optimization of DSNN architectures, offering a novel and efficient approach to address the challenges in the applications of automated parameter optimization for DSNN. Full article
(This article belongs to the Special Issue Exploration of Bio-Inspired Computing: 2nd Edition)
Show Figures

Figure 1

22 pages, 10285 KiB  
Article
Biophysical and Social Constraints of Restoring Ecosystem Services in the Border Regions of Tibet, China
by Lizhi Jia, Silin Liu, Xinjie Zha and Ting Hua
Land 2025, 14(8), 1601; https://doi.org/10.3390/land14081601 (registering DOI) - 6 Aug 2025
Abstract
Ecosystem restoration represents a promising solution for enhancing ecosystem services and environmental sustainability. However, border regions—characterized by ecological fragility and geopolitical complexity—remain underrepresented in ecosystem service and restoration research. To fill this gap, we coupled spatially explicit models (e.g., InVEST and RUSLE) with [...] Read more.
Ecosystem restoration represents a promising solution for enhancing ecosystem services and environmental sustainability. However, border regions—characterized by ecological fragility and geopolitical complexity—remain underrepresented in ecosystem service and restoration research. To fill this gap, we coupled spatially explicit models (e.g., InVEST and RUSLE) with scenario analysis to quantify the ecosystem service potential that could be achieved in China’s Tibetan borderlands under two interacting agendas: ecological restoration and border-strengthening policies. Restoration feasibility was evaluated through combining local biophysical constraints, economic viability (via restoration-induced carbon gains vs. opportunity costs), operational practicality, and simulated infrastructure expansion. The results showed that per-unit-area ecosystem services in border counties (particularly Medog, Cona, and Zayu) exceed that of interior Tibet by a factor of two to four. Combining these various constraints, approximately 4–17% of the border zone remains cost-effective for grassland or forest restoration. Under low carbon pricing (US$10 t−1 CO2), the carbon revenue generated through restoration is insufficient to offset the opportunity cost of agricultural production, constituting a major constraint. Habitat quality, soil conservation, and carbon sequestration increase modestly when induced by restoration, but a pronounced carbon–water trade-off emerges. Planned infrastructure reduces restoration benefits only slightly, whereas raising the carbon price to about US$50 t−1 CO2 substantially expands such benefits. These findings highlight both the opportunities and limits of ecosystem restoration in border regions and point to carbon pricing as the key policy lever for unlocking cost-effective restoration. Full article
(This article belongs to the Special Issue The Role of Land Policy in Shaping Rural Development Outcomes)
Show Figures

Figure 1

13 pages, 2344 KiB  
Article
Study on the Risk of Reservoir Wellbore Collapse Throughout the Full Life Cycle of the Qianmiqiao Bridge Carbonate Rock Gas Storage Reservoir
by Yan Yu, Fuchun Tian, Feixiang Qin, Biao Zhang, Shuzhao Guo, Qingqin Cai, Zhao Chi and Chengyun Ma
Processes 2025, 13(8), 2480; https://doi.org/10.3390/pr13082480 - 6 Aug 2025
Abstract
Underground gas storage (UGS) in heterogeneous carbonate reservoirs is crucial for energy security but frequently faces wellbore instability challenges, which traditional static methods struggle to address due to dynamic full life cycle changes. This study systematically analyzes the dynamic evolution of wellbore stress [...] Read more.
Underground gas storage (UGS) in heterogeneous carbonate reservoirs is crucial for energy security but frequently faces wellbore instability challenges, which traditional static methods struggle to address due to dynamic full life cycle changes. This study systematically analyzes the dynamic evolution of wellbore stress in the Bs8 well (Qianmiqiao carbonate UGS) during drilling, acidizing, and injection-production operations, establishing a quantitative risk assessment model based on the Mohr–Coulomb criterion. Results indicate a significantly higher wellbore instability risk during drilling and initial gas injection stages, primarily manifested as shear failure, with greater severity observed in deeper well sections (e.g., 4277 m) due to higher in situ stresses. During acidizing, while the wellbore acid column pressure can reduce principal stress differences, the process also significantly weakens rock strength (e.g., by approximately 30%), inherently increasing the risk of wellbore instability, though the primary collapse mode remains shallow shear breakout. In the injection-production phase, increasing formation pressure is identified as the dominant factor, shifting the collapse mode from initial shallow shear failure to predominant wide shear collapse, notably at 90°/270° from the maximum horizontal stress direction, thereby significantly expanding the unstable zone. This dynamic assessment method provides crucial theoretical support for full life cycle integrity management and optimizing safe operation strategies for carbonate gas storage wells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

20 pages, 1279 KiB  
Article
A Framework for Quantifying Hyperloop’s Socio-Economic Impact in Smart Cities Using GDP Modeling
by Aleksejs Vesjolijs, Yulia Stukalina and Olga Zervina
Economies 2025, 13(8), 228; https://doi.org/10.3390/economies13080228 - 6 Aug 2025
Abstract
Hyperloop ultra-high-speed transport presents a transformative opportunity for future mobility systems in smart cities. However, assessing its socio-economic impact remains challenging due to Hyperloop’s unique technological, modal, and operational characteristics. As a novel, fifth mode of transportation—distinct from both aviation and rail—Hyperloop requires [...] Read more.
Hyperloop ultra-high-speed transport presents a transformative opportunity for future mobility systems in smart cities. However, assessing its socio-economic impact remains challenging due to Hyperloop’s unique technological, modal, and operational characteristics. As a novel, fifth mode of transportation—distinct from both aviation and rail—Hyperloop requires tailored evaluation tools for policymakers. This study proposes a custom-designed framework to quantify its macroeconomic effects through changes in gross domestic product (GDP) at the city level. Unlike traditional economic models, the proposed approach is specifically adapted to Hyperloop’s multimodality, infrastructure, speed profile, and digital-green footprint. A Poisson pseudo-maximum likelihood (PPML) model is developed and applied at two technology readiness levels (TRL-6 and TRL-9). Case studies of Glasgow, Berlin, and Busan are used to simulate impacts based on geo-spatial features and city-specific trade and accessibility indicators. Results indicate substantial GDP increases driven by factors such as expanded 60 min commute catchment zones, improved trade flows, and connectivity node density. For instance, under TRL-9 conditions, GDP uplift reaches over 260% in certain scenarios. The framework offers a scalable, reproducible tool for policymakers and urban planners to evaluate the economic potential of Hyperloop within the context of sustainable smart city development. Full article
(This article belongs to the Section International, Regional, and Transportation Economics)
Show Figures

Figure 1

28 pages, 4243 KiB  
Article
Electric Bus Battery Energy Consumption Estimation and Influencing Features Analysis Using a Two-Layer Stacking Framework with SHAP-Based Interpretation
by Runze Liu, Jianming Cai, Lipeng Hu, Benxiao Lou and Jinjun Tang
Sustainability 2025, 17(15), 7105; https://doi.org/10.3390/su17157105 - 5 Aug 2025
Abstract
The widespread adoption of electric buses represents a major step forward in sustainable transportation, but also brings new operational challenges, particularly in terms of improving their efficiency and controlling costs. Therefore, battery energy consumption management is a key approach for addressing these issues. [...] Read more.
The widespread adoption of electric buses represents a major step forward in sustainable transportation, but also brings new operational challenges, particularly in terms of improving their efficiency and controlling costs. Therefore, battery energy consumption management is a key approach for addressing these issues. Accurate prediction of energy consumption and interpretation of the influencing factors are essential for improving operational efficiency, optimizing energy use, and reducing operating costs. Although existing studies have made progress in battery energy consumption prediction, challenges remain in achieving high-precision modeling and conducting a comprehensive analysis of the influencing features. To address these gaps, this study proposes a two-layer stacking framework for estimating the energy consumption of electric buses. The first layer integrates the strengths of three nonlinear regression models—RF (Random Forest), GBDT (Gradient Boosted Decision Trees), and CatBoost (Categorical Boosting)—to enhance the modeling capacity for complex feature relationships. The second layer employs a Linear Regression model as a meta-learner to aggregate the predictions from the base models and improve the overall predictive performance. The framework is trained on 2023 operational data from two electric bus routes (NO. 355 and NO. W188) in Changsha, China, incorporating battery system parameters, driving characteristics, and environmental variables as independent variables for model training and analysis. Comparative experiments with various ensemble models demonstrate that the proposed stacking framework exhibits superior performance in data fitting. Furthermore, XGBoost (Extreme Gradient Boosting) is introduced as a surrogate model to approximate the decision logic of the stacking framework, enabling SHAP (SHapley Additive exPlanations) analysis to quantify the contribution and marginal effects of influencing features. The proposed stacked and surrogate models achieved superior battery energy consumption prediction accuracy (lowest MSE, RMSE, and MAE), significantly outperforming benchmark models on real-world datasets. SHAP analysis quantified the overall contributions of feature categories (battery operation parameters: 56.5%; driving characteristics: 42.3%; environmental data: 1.2%), further revealing the specific contributions and nonlinear influence mechanisms of individual features. These quantitative findings offer specific guidance for optimizing battery system control and driving behavior. Full article
(This article belongs to the Section Sustainable Transportation)
25 pages, 4069 KiB  
Article
Forest Volume Estimation in Secondary Forests of the Southern Daxing’anling Mountains Using Multi-Source Remote Sensing and Machine Learning
by Penghao Ji, Wanlong Pang, Rong Su, Runhong Gao, Pengwu Zhao, Lidong Pang and Huaxia Yao
Forests 2025, 16(8), 1280; https://doi.org/10.3390/f16081280 - 5 Aug 2025
Abstract
Forest volume is an important information for assessing the economic value and carbon sequestration capacity of forest resources and serves as a key indicator for energy flow and biodiversity. Although remote sensing technology is applied to estimate volume, optical remote sensing data have [...] Read more.
Forest volume is an important information for assessing the economic value and carbon sequestration capacity of forest resources and serves as a key indicator for energy flow and biodiversity. Although remote sensing technology is applied to estimate volume, optical remote sensing data have limitations in capturing forest vertical height information and may suffer from reflectance saturation. While LiDAR data can provide more detailed vertical structural information, they come with high processing costs and limited observation range. Therefore, improving the accuracy of volume estimation through multi-source data fusion has become a crucial challenge and research focus in the field of forest remote sensing. In this study, we integrated Sentinel-2 multispectral data, Resource-3 stereoscopic imagery, UAV-based LiDAR data, and field survey data to quantitatively estimate the forest volume in Saihanwula Nature Reserve, located in Inner Mongolia, China, on the southern part of Daxing’anling Mountains. The study evaluated the performance of multi-source remote sensing features by using recursive feature elimination (RFE) to select the most relevant factors and applied four machine learning models—multiple linear regression (MLR), k-nearest neighbors (kNN), random forest (RF), and gradient boosting regression tree (GBRT)—to develop volume estimation models. The evaluation metrics include the coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (rRMSE). The results show that (1) forest Canopy Height Model (CHM) data were strongly correlated with forest volume, helping to alleviate the reflectance saturation issues inherent in spectral texture data. The fusion of CHM and spectral data resulted in an improved volume estimation model with R2 = 0.75 and RMSE = 8.16 m3/hm2, highlighting the importance of integrating multi-source canopy height information for more accurate volume estimation. (2) Volume estimation accuracy varied across different tree species. For Betula platyphylla, we obtained R2 = 0.71 and RMSE = 6.96 m3/hm2; for Quercus mongolica, R2 = 0.74 and RMSE = 6.90 m3/hm2; and for Populus davidiana, R2 = 0.51 and RMSE = 9.29 m3/hm2. The total forest volume in the Saihanwula Reserve ranges from 50 to 110 m3/hm2. (3) Among the four machine learning models, GBRT consistently outperformed others in all evaluation metrics, achieving the highest R2 of 0.86, lowest RMSE of 9.69 m3/hm2, and lowest rRMSE of 24.57%, suggesting its potential for forest biomass estimation. In conclusion, accurate estimation of forest volume is critical for evaluating forest management practices and timber resources. While this integrated approach shows promise, its operational application requires further external validation and uncertainty analysis to support policy-relevant decisions. The integration of multi-source remote sensing data provides valuable support for forest resource accounting, economic value assessment, and monitoring dynamic changes in forest ecosystems. Full article
(This article belongs to the Special Issue Mapping and Modeling Forests Using Geospatial Technologies)
Show Figures

Figure 1

19 pages, 474 KiB  
Article
Differential and Integral Equations Involving Multivariate Special Polynomials with Applications in Computer Modeling
by Mohra Zayed, Taghreed Alqurashi, Shahid Ahmad Wani, Dixon Salcedo and Mohammad Esmael Samei
Fractal Fract. 2025, 9(8), 512; https://doi.org/10.3390/fractalfract9080512 - 5 Aug 2025
Abstract
This work introduces a new family of multivariate hybrid special polynomials, motivated by their growing relevance in mathematical modeling, physics, and engineering. We explore their core properties, including recurrence relations and shift operators, within a unified structural framework. By employing the factorization method, [...] Read more.
This work introduces a new family of multivariate hybrid special polynomials, motivated by their growing relevance in mathematical modeling, physics, and engineering. We explore their core properties, including recurrence relations and shift operators, within a unified structural framework. By employing the factorization method, we derive various governing equations such as differential, partial differential, and integrodifferential equations. Additionally, we establish a related fractional Volterra integral equation, which broadens the theoretical foundation and potential applications of these polynomials. To support the theoretical development, we carry out computational simulations to approximate their roots and visualize the distribution of their zeros, offering practical insights into their analytical behavior. Full article
Show Figures

Figure 1

21 pages, 21837 KiB  
Article
Decoding China’s Transport Decarbonization Pathways: An Interpretable Spatio-Temporal Neural Network Approach with Scenario-Driven Policy Implications
by Yanming Sun, Kaixin Liu and Qingli Li
Sustainability 2025, 17(15), 7102; https://doi.org/10.3390/su17157102 - 5 Aug 2025
Abstract
The transportation sector, as a major source of carbon emissions, plays a crucial role in the realization of dual carbon goals worldwide. In this study, an improved least absolute shrinkage and selection operator (LASSO) is used to identify six key factors affecting transportation [...] Read more.
The transportation sector, as a major source of carbon emissions, plays a crucial role in the realization of dual carbon goals worldwide. In this study, an improved least absolute shrinkage and selection operator (LASSO) is used to identify six key factors affecting transportation carbon emissions (TCEs) in China. Aiming at the spatio-temporal characteristics of transportation carbon emissions, a CNN-BiLSTM neural network model is constructed for the first time for prediction, and an improved whale optimization algorithm (EWOA) is introduced for hyperparameter optimization, finding that the prediction model combining spatio-temporal characteristics has a more significant prediction accuracy, and scenario forecasting was carried out using the prediction model. Research indicates that over the past three decades, TCEs have demonstrated a rapid growth trend. Under the baseline, green, low-carbon, and high-carbon scenarios, peak carbon emissions are expected in 2035, 2031, 2030, and 2040. The adoption of a low-carbon scenario represents the most advantageous pathway for the sustainable progression of China’s transportation sector. Consequently, it is imperative for China to accelerate the formulation and implementation of low-carbon policies, promote the application of clean energy and facilitate the green transformation of the transportation sector. These efforts will contribute to the early realization of dual-carbon goals with a positive impact on global sustainable development. Full article
Show Figures

Figure 1

17 pages, 2283 KiB  
Article
A Remote Strawberry Health Monitoring System Performed with Multiple Sensors Approach
by Xiao Du, Jun Steed Huang, Qian Shi, Tongge Li, Yanfei Wang, Haodong Liu, Zhaoyuan Zhang, Ni Yu and Ning Yang
Agriculture 2025, 15(15), 1690; https://doi.org/10.3390/agriculture15151690 - 5 Aug 2025
Abstract
Temperature is a key physiological indicator of plant health, influenced by factors including water status, disease and developmental stage. Monitoring changes in multiple factors is helpful for early diagnosis of plant growth. However, there are a variety of complex light interference phenomena in [...] Read more.
Temperature is a key physiological indicator of plant health, influenced by factors including water status, disease and developmental stage. Monitoring changes in multiple factors is helpful for early diagnosis of plant growth. However, there are a variety of complex light interference phenomena in the greenhouse, so traditional detection methods cannot meet effective online monitoring of strawberry health status without manual intervention. Therefore, this paper proposes a leaf soft-sensing method based on a thermal infrared imaging sensor and adaptive image screening Internet of Things system, with additional sensors to realize indirect and rapid monitoring of the health status of a large range of strawberries. Firstly, a fuzzy comprehensive evaluation model is established by analyzing the environmental interference terms from the other sensors. Secondly, through the relationship between plant physiological metabolism and canopy temperature, a growth model is established to predict the growth period of strawberries based on canopy temperature. Finally, by deploying environmental sensors and solar height sensors, the image acquisition node is activated when the environmental interference is less than the specified value and the acquisition is completed. The results showed that the accuracy of this multiple sensors system was 86.9%, which is 30% higher than the traditional model and 4.28% higher than the latest advanced model. It makes it possible to quickly and accurately assess the health status of plants by a single factor without in-person manual intervention, and provides an important indication of the early, undetectable state of strawberry disease, based on remote operation. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop