Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (444)

Search Parameters:
Keywords = operational downtime

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1621 KiB  
Article
Integration of Data Analytics and Data Mining for Machine Failure Mitigation and Decision Support in Metal–Mechanical Industry
by Sidnei Alves de Araujo, Silas Luiz Bomfim, Dimitria T. Boukouvalas, Sergio Ricardo Lourenço, Ugo Ibusuki and Geraldo Cardoso de Oliveira Neto
Logistics 2025, 9(3), 109; https://doi.org/10.3390/logistics9030109 (registering DOI) - 7 Aug 2025
Abstract
Background: The growing complexity of production processes in the metal–mechanical industry demands ever more effective strategies for managing machine and equipment maintenance, as unexpected failures can incur high operational costs and compromise productivity by interrupting workflows and delaying deliveries. However, few studies [...] Read more.
Background: The growing complexity of production processes in the metal–mechanical industry demands ever more effective strategies for managing machine and equipment maintenance, as unexpected failures can incur high operational costs and compromise productivity by interrupting workflows and delaying deliveries. However, few studies have combined end-to-end data analytics and data mining methods to proactively predict and mitigate such failures. This study aims to develop and validate a comprehensive framework combining data analytics and data mining to prevent machine failures and support decision-making in a metal–mechanical manufacturing environment. Methods: First, exploratory data analytics were performed on the sensor and logistics data to identify significant relationships and trends between variables. Next, a preprocessing pipeline including data cleaning, data transformation, feature selection, and resampling was applied. Finally, a decision tree model was trained to identify conditions prone to failures, enabling not only predictions but also the explicit representation of knowledge in the form of decision rules. Results: The outstanding performance of the decision tree (82.1% accuracy and a Kappa index of 78.5%), which was modeled from preprocessed data and the insights produced by data analytics, demonstrates its ability to generate reliable rules for predicting failures to support decision-making. The implementation of the proposed framework enables the optimization of predictive maintenance strategies, effectively reducing unplanned downtimes and enhancing the reliability of production processes in the metal–mechanical industry. Full article
22 pages, 3958 KiB  
Article
Detection of Inter-Turn Short-Circuit Faults for Inverter-Fed Induction Motors Based on Negative-Sequence Current Analysis
by Sarvarbek Ruzimov, Jianzhong Zhang, Xu Huang and Muhammad Shahzad Aziz
Sensors 2025, 25(15), 4844; https://doi.org/10.3390/s25154844 - 6 Aug 2025
Abstract
Inter-turn short-circuit faults in induction motors might lead to overheating, torque imbalances, and eventual motor failure. This paper presents a fault detection framework for accurately identifying ITSC faults under various operating conditions. The proposed method integrates negative-sequence current analysis utilizing wavelet-based filtering and [...] Read more.
Inter-turn short-circuit faults in induction motors might lead to overheating, torque imbalances, and eventual motor failure. This paper presents a fault detection framework for accurately identifying ITSC faults under various operating conditions. The proposed method integrates negative-sequence current analysis utilizing wavelet-based filtering and symmetrical component decomposition. A fault detection index to effectively monitor motor health and detect faults is presented. Moreover, the fault location is determined by phase angles of fundamental components of negative-sequence currents. Experimental validations were carried out for an inverter-fed induction motor under variable speed and load cases. These showed that the proposed approach has high sensitivity to early-stage inter-turn short circuits. This makes the framework highly suitable for real-time condition monitoring and predictive maintenance in inverter-fed motor systems, thereby improving system reliability and minimizing unplanned downtime. Full article
Show Figures

Figure 1

9 pages, 1238 KiB  
Proceeding Paper
Optimization of Mold Changeover Times in the Automotive Injection Industry Using Lean Manufacturing Tools and Fuzzy Logic to Enhance Production Line Balancing
by Yasmine El Belghiti, Abdelfattah Mouloud, Samir Tetouani, Mehdi El Bouchti, Omar Cherkaoui and Aziz Soulhi
Eng. Proc. 2025, 97(1), 54; https://doi.org/10.3390/engproc2025097054 - 30 Jul 2025
Viewed by 187
Abstract
The main thrust of the study is the need to cut down the time taken for mold changes in plastic injection molding which is fundamental to the productivity and efficiency of the process. The research encompasses Lean Manufacturing, DMAIC, and SMED which are [...] Read more.
The main thrust of the study is the need to cut down the time taken for mold changes in plastic injection molding which is fundamental to the productivity and efficiency of the process. The research encompasses Lean Manufacturing, DMAIC, and SMED which are improved using fuzzy logic and AI for rapid changeover optimization on the NEGRI BOSSI 650 machine. A decrease in downtime by 65% and an improvement in the Process Cycle Efficiency by 46.8% followed the identification of bottlenecks, externalizing tasks, and streamlining workflows. AI-driven analysis could make on-the-fly adjustments, which would ensure that resources are better allocated, and thus sustainable performance is maintained. The findings highlight how integrating Lean methods with advanced technologies enhances operational agility and competitiveness, offering a scalable model for continuous improvement in industrial settings. Full article
Show Figures

Figure 1

28 pages, 1431 KiB  
Article
From Mine to Market: Streamlining Sustainable Gold Production with Cutting-Edge Technologies for Enhanced Productivity and Efficiency in Central Asia
by Mohammad Shamsuddoha, Adil Kaibaliev and Tasnuba Nasir
Logistics 2025, 9(3), 100; https://doi.org/10.3390/logistics9030100 - 29 Jul 2025
Viewed by 274
Abstract
Background: Gold mining is a critical part of the industry of Central Asia, contributing significantly to regional economic growth. However, gold production management faces numerous challenges, including adopting innovative technologies such as AI, using improved logistical equipment, resolving supply chain inefficiencies and [...] Read more.
Background: Gold mining is a critical part of the industry of Central Asia, contributing significantly to regional economic growth. However, gold production management faces numerous challenges, including adopting innovative technologies such as AI, using improved logistical equipment, resolving supply chain inefficiencies and disruptions, and incorporating modernized waste management and advancements in gold bar processing technologies. This study explores how advanced technologies and improved logistical processes can enhance efficiency and sustainability. Method: This paper examines gold production processes in Kyrgyzstan, a gold-producing country in Central Asia. The case study approach combines qualitative interviews with industry stakeholders and a system dynamics (SD) simulation model to compare current operations with a technology-based scenario. Results: The simulation model shows improved outcomes when innovative technologies are applied to ore processing, waste refinement, and gold bar production. The results also indicate an approximate twenty-five percent reduction in transport time, a thirty percent decrease in equipment downtime, a thirty percent reduction in emissions, and a fifteen percent increase in gold extraction when using artificial intelligence, smart logistics, and regional smelting. Conclusions: The study concludes with recommendations to modernize equipment, localize processing, and invest in digital logistics to support sustainable mining and improve operational performance in Kyrgyzstan’s gold sector. Full article
(This article belongs to the Topic Sustainable Supply Chain Practices in A Digital Age)
Show Figures

Figure 1

19 pages, 590 KiB  
Review
Comprehensive Review of Dielectric, Impedance, and Soft Computing Techniques for Lubricant Condition Monitoring and Predictive Maintenance in Diesel Engines
by Mohammad-Reza Pourramezan, Abbas Rohani and Mohammad Hossein Abbaspour-Fard
Lubricants 2025, 13(8), 328; https://doi.org/10.3390/lubricants13080328 - 29 Jul 2025
Viewed by 375
Abstract
Lubricant condition analysis is a valuable diagnostic tool for assessing engine performance and ensuring the reliable operation of diesel engines. While traditional diagnostic techniques—such as Fourier transform infrared spectroscopy (FTIR)—are constrained by slow response times, high costs, and the need for specialized personnel. [...] Read more.
Lubricant condition analysis is a valuable diagnostic tool for assessing engine performance and ensuring the reliable operation of diesel engines. While traditional diagnostic techniques—such as Fourier transform infrared spectroscopy (FTIR)—are constrained by slow response times, high costs, and the need for specialized personnel. In contrast, dielectric spectroscopy, impedance analysis, and soft computing offer real-time, non-destructive, and cost-effective alternatives. This review examines recent advances in integrating these techniques to predict lubricant properties, evaluate wear conditions, and optimize maintenance scheduling. In particular, dielectric and impedance spectroscopies offer insights into electrical properties linked to oil degradation, such as changes in viscosity and the presence of wear particles. When combined with soft computing algorithms, these methods enhance data analysis, reduce reliance on expert interpretation, and improve predictive accuracy. The review also addresses challenges—including complex data interpretation, limited sample sizes, and the necessity for robust models to manage variability in real-world operations. Future research directions emphasize miniaturization, expanding the range of detectable contaminants, and incorporating multi-modal artificial intelligence to further bolster system robustness. Collectively, these innovations signal a shift from reactive to predictive maintenance strategies, with the potential to reduce costs, minimize downtime, and enhance overall engine reliability. This comprehensive review provides valuable insights for researchers, engineers, and maintenance professionals dedicated to advancing diesel engine lubricant monitoring. Full article
Show Figures

Graphical abstract

25 pages, 1696 KiB  
Article
Dual-Level Electric Submersible Pump (ESP) Failure Classification: A Novel Comprehensive Classification Bridging Failure Modes and Root Cause Analysis
by Mostafa A. Sobhy, Gehad M. Hegazy and Ahmed H. El-Banbi
Energies 2025, 18(15), 3943; https://doi.org/10.3390/en18153943 - 24 Jul 2025
Viewed by 324
Abstract
Electric submersible pumps (ESPs) are critical for artificial lift operations; however, they are prone to frequent failures, often resulting in high operational costs and production downtime. Traditional ESP failure classifications are limited by lack of standardization and the conflation of failure modes with [...] Read more.
Electric submersible pumps (ESPs) are critical for artificial lift operations; however, they are prone to frequent failures, often resulting in high operational costs and production downtime. Traditional ESP failure classifications are limited by lack of standardization and the conflation of failure modes with root causes. To address these limitations, this study proposes a new two-step integrated failure modes and root cause (IFMRC) classification system. The new framework clearly distinguishes between failure modes and root causes, providing a systematic, structured approach that enhances fault diagnosis and failure analysis and can lead to better failure prevention strategies. This methodology was validated using a case study of over 4000 ESP installations. The data came from Egypt’s Western Desert, covering a decade of operational data. The sources included ESP databases, workover records, and detailed failure investigation (DIFA) reports. The failure modes were categorized into electrical, mechanical, hydraulic, chemical, and operational types, while root causes were linked to environmental, design, operational, and equipment factors. Statistical analysis, in this case study, revealed that motor short circuits, low flow conditions, and cable short circuits were the most frequent failure modes, with excessive heat, scale deposition, and electrical grounding faults being the dominant root causes. This study underscores the importance of accurate root cause failure classification, robust data acquisition, and expanded failure diagnostics to improve ESP reliability. The proposed IFMRC framework addresses limitations in conventional taxonomies and facilitates ongoing enhancement of ESP design, operation, and maintenance in complex field conditions. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

19 pages, 2311 KiB  
Article
Stochastic Optimization of Quality Assurance Systems in Manufacturing: Integrating Robust and Probabilistic Models for Enhanced Process Performance and Product Reliability
by Kehinde Afolabi, Busola Akintayo, Olubayo Babatunde, Uthman Abiola Kareem, John Ogbemhe, Desmond Ighravwe and Olanrewaju Oludolapo
J. Manuf. Mater. Process. 2025, 9(8), 250; https://doi.org/10.3390/jmmp9080250 - 23 Jul 2025
Viewed by 396
Abstract
This research integrates stochastic optimization techniques with robust modeling and probabilistic modeling approaches to enhance photovoltaic cell manufacturing processes and product reliability. The study employed an adapted genetic algorithm to tackle uncertainties in the manufacturing process, resulting in improved operational efficiency. It consistently [...] Read more.
This research integrates stochastic optimization techniques with robust modeling and probabilistic modeling approaches to enhance photovoltaic cell manufacturing processes and product reliability. The study employed an adapted genetic algorithm to tackle uncertainties in the manufacturing process, resulting in improved operational efficiency. It consistently achieved optimal fitness, with values remaining at 1.0 over 100 generations. The model displayed a dynamic convergence rate, demonstrating its ability to adjust performance in response to process fluctuations. The system preserved resource efficiency by utilizing approximately 2600 units per generation, while minimizing machine downtime to 0.03%. Product reliability reached an average level of 0.98, with a maximum value of 1.02, indicating enhanced consistency. The manufacturing process achieved better optimization through a significant reduction in defect rates, which fell to 0.04. The objective function value fluctuated between 0.86 and 0.96, illustrating how the model effectively managed conflicting variables. Sensitivity analysis revealed that changes in sigma material and lambda failure had a minimal effect on average reliability, which stayed above 0.99, while average defect rates remained below 0.05. This research exemplifies how stochastic, robust, and probabilistic optimization methods can collaborate to enhance manufacturing system quality assurance and product reliability under uncertain conditions. Full article
Show Figures

Figure 1

19 pages, 1406 KiB  
Article
A Comparative Study of Dimensionality Reduction Methods for Accurate and Efficient Inverter Fault Detection in Grid-Connected Solar Photovoltaic Systems
by Shahid Tufail and Arif I. Sarwat
Electronics 2025, 14(14), 2916; https://doi.org/10.3390/electronics14142916 - 21 Jul 2025
Viewed by 279
Abstract
The continuous, effective operation of grid-connected photovoltaic (GCPV) systems depends on dependable inverter failure detection. Early, precise fault diagnosis improves general system dependability, lowers maintenance costs, and saves downtime. Although computing efficiency remains a difficulty, particularly in resource-limited contexts, machine learning-based fault detection [...] Read more.
The continuous, effective operation of grid-connected photovoltaic (GCPV) systems depends on dependable inverter failure detection. Early, precise fault diagnosis improves general system dependability, lowers maintenance costs, and saves downtime. Although computing efficiency remains a difficulty, particularly in resource-limited contexts, machine learning-based fault detection presents interesting prospects in accuracy and responsiveness. By streamlining data complexity and allowing faster and more effective fault diagnosis, dimensionality reduction methods play vital role. Using dimensionality reduction and ML techniques, this work explores inverter fault detection in GCPV systems. Photovoltaic inverter operational data was normalized and preprocessed. In the next step, dimensionality reduction using Principal Component Analysis (PCA) and autoencoder-based feature extraction were explored. For ML training four classifiers which include Random Forest (RF), logistic regression (LR), decision tree (DT), and K-Nearest Neighbors (KNN) were used. Trained on the whole standardized dataset, the RF model routinely produced the greatest accuracy of 99.87%, so efficiently capturing complicated feature interactions but requiring large processing resources and time of 36.47sec. LR model showed reduction in accuracy, but very fast training time compared to other models. Further, PCA greatly lowered computing demands, especially improving inference speed for LR and KNN. High accuracy of 99.23% across all models was maintained by autoencoder-derived features. Full article
Show Figures

Figure 1

14 pages, 691 KiB  
Article
Availability of Hydropressor Systems: Redundancy and Multiple Failure Modes
by Ricardo Enguiça and Sérgio Lopes
AppliedMath 2025, 5(3), 94; https://doi.org/10.3390/appliedmath5030094 - 18 Jul 2025
Viewed by 242
Abstract
Hydropressor systems are of paramount importance in keeping water supplies running properly. A typical such device consists of two (or more) identical electropumps operating alternately, so as to avoid downtime as much as possible. We consider a dual pump configuration to identify the [...] Read more.
Hydropressor systems are of paramount importance in keeping water supplies running properly. A typical such device consists of two (or more) identical electropumps operating alternately, so as to avoid downtime as much as possible. We consider a dual pump configuration to identify the ideal usage proportion of each pump (from 0%-100%, meaning interchange only upon failure, to 50%-50%, where each pump works half the time) in order to improve availability, accounting solely for corrective maintenance. We also address the possibility of improving the availability of a single pump under the hazard of failure in three different ways (with their own occurrence frequencies), while also accounting for preventive maintenance. Both settings are tackled through Monte Carlo simulation and the models are implemented with the Python 3.12 programming language. The results indicate that significant improvements to standard industry practices can be made. Full article
(This article belongs to the Special Issue Advances in Intelligent Control for Solving Optimization Problems)
Show Figures

Figure 1

24 pages, 5008 KiB  
Article
A Sustainable Production Model with Quality Improvement and By-Product Management
by Sunita Yadav, Sarla Pareek, Young-joo Ahn, Rekha Guchhait and Mitali Sarkar
Sustainability 2025, 17(14), 6573; https://doi.org/10.3390/su17146573 - 18 Jul 2025
Viewed by 288
Abstract
Reducing setup costs and improving product quality are critical objectives in a sustainable production processes. The significance of these goals lies in their direct impact on efficiency. It affects competitiveness and customer satisfaction. Businesses can reduce setup costs to maximize resource usage. It [...] Read more.
Reducing setup costs and improving product quality are critical objectives in a sustainable production processes. The significance of these goals lies in their direct impact on efficiency. It affects competitiveness and customer satisfaction. Businesses can reduce setup costs to maximize resource usage. It can reduce downtime between production runs and improve overall operational agility. Sustained performance and expansion in contemporary manufacturing environments focus on setup cost reduction and product quality improvement. The present paper discusses a production inventory model for the product, which produces by-products as secondary products from the same manufacturing process. Setup cost is reduced for the setup of production and refining processes. A production process may change from being under control to an uncontrolled one. As a result of this, imperfect products are formed. This paper considers product quality improvement for both produced and processed items. The outcome shows that dealing with by-products helps make the system more profitable. Sensitivity analysis is performed for various costs and parameters. Mathematica 11 software was used for calculation and graphical work. Full article
Show Figures

Figure 1

31 pages, 2113 KiB  
Article
Electric Multiple Unit Spare Parts Vendor-Managed Inventory Contract Mechanism Design
by Ziqi Shao, Jie Xu and Cunjie Lei
Systems 2025, 13(7), 585; https://doi.org/10.3390/systems13070585 - 15 Jul 2025
Viewed by 175
Abstract
As electric multiple unit (EMU) operations and maintenance demands have expanded, spare parts supply chain management has become increasingly crucial. This study emphasizes the supply challenges of EMU spare parts, including inadequate minimum inventory levels and prolonged response times. Redesigning the OEM–railway bureau [...] Read more.
As electric multiple unit (EMU) operations and maintenance demands have expanded, spare parts supply chain management has become increasingly crucial. This study emphasizes the supply challenges of EMU spare parts, including inadequate minimum inventory levels and prolonged response times. Redesigning the OEM–railway bureau vendor-managed inventory (VMI) model contract incentive and penalty system is the key goal. Connecting the spare parts supply system with its characteristics yields a game theory model. This study analyzes and compares the equilibrium strategies and profits of supply chain members under different mechanisms for managing critical spare parts. The findings demonstrate that mechanism contracts can enhance supply chain performance in a Pareto-improving manner. An in-depth analysis of downtime loss costs, procurement challenges, and order losses reveals their effects on supply chain coordination and profit allocation, providing railway bureaus and OEMs with a theoretical framework for supply chain decision-making. This study offers theoretical justification and a framework for decision-making on cooperation between OEMs and railroad bureaus in the management of spare parts supply chains, particularly for extensive EMU operations. Full article
(This article belongs to the Section Supply Chain Management)
Show Figures

Figure 1

27 pages, 9802 KiB  
Article
Flight-Safe Inference: SVD-Compressed LSTM Acceleration for Real-Time UAV Engine Monitoring Using Custom FPGA Hardware Architecture
by Sreevalliputhuru Siri Priya, Penneru Shaswathi Sanjana, Rama Muni Reddy Yanamala, Rayappa David Amar Raj, Archana Pallakonda, Christian Napoli and Cristian Randieri
Drones 2025, 9(7), 494; https://doi.org/10.3390/drones9070494 - 14 Jul 2025
Cited by 1 | Viewed by 487
Abstract
Predictive maintenance (PdM) is a proactive strategy that enhances safety, minimizes unplanned downtime, and optimizes operational costs by forecasting equipment failures before they occur. This study presents a novel Field Programmable Gate Array (FPGA)-accelerated predictive maintenance framework for UAV engines using a Singular [...] Read more.
Predictive maintenance (PdM) is a proactive strategy that enhances safety, minimizes unplanned downtime, and optimizes operational costs by forecasting equipment failures before they occur. This study presents a novel Field Programmable Gate Array (FPGA)-accelerated predictive maintenance framework for UAV engines using a Singular Value Decomposition (SVD)-optimized Long Short-Term Memory (LSTM) model. The model performs binary classification to predict the likelihood of imminent engine failure by processing normalized multi-sensor data, including temperature, pressure, and vibration measurements. To enable real-time deployment on resource-constrained UAV platforms, the LSTM’s weight matrices are compressed using Singular Value Decomposition (SVD), significantly reducing computational complexity while preserving predictive accuracy. The compressed model is executed on a Xilinx ZCU-104 FPGA and uses a pipelined, AXI-based hardware accelerator with efficient memory mapping and parallelized gate calculations tailored for low-power onboard systems. Unlike prior works, this study uniquely integrates a tailored SVD compression strategy with a custom hardware accelerator co-designed for real-time, flight-safe inference in UAV systems. Experimental results demonstrate a 98% classification accuracy, a 24% reduction in latency, and substantial FPGA resource savings—specifically, a 26% decrease in BRAM usage and a 37% reduction in DSP consumption—compared to the 32-bit floating-point SVD-compressed FPGA implementation, not CPU or GPU. These findings confirm the proposed system as an efficient and scalable solution for real-time UAV engine health monitoring, thereby enhancing in-flight safety through timely fault prediction and enabling autonomous engine monitoring without reliance on ground communication. Full article
(This article belongs to the Special Issue Advances in Perception, Communications, and Control for Drones)
Show Figures

Figure 1

20 pages, 1753 KiB  
Article
Hybrid Cloud-Based Information and Control System Using LSTM-DNN Neural Networks for Optimization of Metallurgical Production
by Kuldashbay Avazov, Jasur Sevinov, Barnokhon Temerbekova, Gulnora Bekimbetova, Ulugbek Mamanazarov, Akmalbek Abdusalomov and Young Im Cho
Processes 2025, 13(7), 2237; https://doi.org/10.3390/pr13072237 - 13 Jul 2025
Viewed by 731
Abstract
A methodology for detecting systematic errors in sets of equally accurate, uncorrelated, aggregate measurements is proposed and applied within the automatic real-time dispatch control system of a copper concentrator plant (CCP) to refine the technical and economic performance indicators (EPIs) computed by the [...] Read more.
A methodology for detecting systematic errors in sets of equally accurate, uncorrelated, aggregate measurements is proposed and applied within the automatic real-time dispatch control system of a copper concentrator plant (CCP) to refine the technical and economic performance indicators (EPIs) computed by the system. This work addresses and solves the problem of selecting and obtaining reliable measurement data by exploiting the redundant measurements of process streams together with the balance equations linking those streams. This study formulates an approach for integrating cloud technologies, machine learning methods, and forecasting into information control systems (ICSs) via predictive analytics to optimize CCP production processes. A method for combining the hybrid cloud infrastructure with an LSTM-DNN neural network model has been developed, yielding a marked improvement in TEP for copper concentration operations. The forecasting accuracy for the key process parameters rose from 75% to 95%. Predictive control reduced energy consumption by 10% through more efficient resource use, while the copper losses to tailings fell by 15–20% thanks to optimized reagent dosing and the stabilization of the flotation process. Equipment failure prediction cut the amount of unplanned downtime by 30%. As a result, the control system became adaptive, automatically correcting the parameters in real time and lessening the reliance on operator decisions. The architectural model of an ICS for metallurgical production based on the hybrid cloud and the LSTM-DNN model was devised to enhance forecasting accuracy and optimize the EPIs of the CCP. The proposed model was experimentally evaluated against alternative neural network architectures (DNN, GRU, Transformer, and Hybrid_NN_TD_AIST). The results demonstrated the superiority of the LSTM-DNN in forecasting accuracy (92.4%), noise robustness (0.89), and a minimal root-mean-square error (RMSE = 0.079). The model shows a strong capability to handle multidimensional, non-stationary time series and to perform adaptive measurement correction in real time. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

42 pages, 13901 KiB  
Article
Hybrid Explainable AI for Machine Predictive Maintenance: From Symbolic Expressions to Meta-Ensembles
by Nikola Anđelić, Sandi Baressi Šegota and Vedran Mrzljak
Processes 2025, 13(7), 2180; https://doi.org/10.3390/pr13072180 - 8 Jul 2025
Viewed by 419
Abstract
Machine predictive maintenance plays a critical role in reducing unplanned downtime, lowering maintenance costs, and improving operational reliability by enabling the early detection and classification of potential failures. Artificial intelligence (AI) enhances these capabilities through advanced algorithms that can analyze complex sensor data [...] Read more.
Machine predictive maintenance plays a critical role in reducing unplanned downtime, lowering maintenance costs, and improving operational reliability by enabling the early detection and classification of potential failures. Artificial intelligence (AI) enhances these capabilities through advanced algorithms that can analyze complex sensor data with high accuracy and adaptability. This study introduces an explainable AI framework for failure detection and classification using symbolic expressions (SEs) derived from a genetic programming symbolic classifier (GPSC). Due to the imbalanced nature and wide variable ranges in the original dataset, we applied scaling/normalization and oversampling techniques to generate multiple balanced dataset variations. Each variation was used to train the GPSC with five-fold cross-validation, and optimal hyperparameters were selected using a Random Hyperparameter Value Search (RHVS) method. However, as the initial Threshold-Based Voting Ensembles (TBVEs) built from SEs did not achieve a satisfactory performance for all classes, a meta-dataset was developed from the outputs of the obtained SEs. For each class, a meta-dataset was preprocessed, balanced, and used to train a Random Forest Classifier (RFC) with hyperparameter tuning via RandomizedSearchCV. For each class, a TBVE was then constructed from the saved RFC models. The resulting ensemble demonstrated a near-perfect performance for failure detection and classification in most classes (0, 1, 3, and 5), although Classes 2 and 4 achieved a lower performance, which could be attributed to an extremely low number of samples and a hard-to-detect type of failure. Overall, the proposed method presents a robust and explainable AI solution for predictive maintenance, combining symbolic learning with ensemble-based meta-modeling. Full article
Show Figures

Figure 1

26 pages, 20735 KiB  
Article
The Study of the Effect of Blade Sharpening Conditions on the Lifetime of Planar Knives During Industrial Flatfish Skinning Operations
by Paweł Sutowski, Bartosz Zieliński and Krzysztof Nadolny
Materials 2025, 18(13), 3191; https://doi.org/10.3390/ma18133191 - 6 Jul 2025
Viewed by 388
Abstract
Users of technical blades expect new generations of tools to feature reduced power requirements for process and maximized tool life. The second aspect is reflected in the reduction in costs associated with the purchase of tools and in the reduction in process line [...] Read more.
Users of technical blades expect new generations of tools to feature reduced power requirements for process and maximized tool life. The second aspect is reflected in the reduction in costs associated with the purchase of tools and in the reduction in process line downtime due to tool replacement. Meeting these demands is particularly challenging in cutting operations involving heterogeneous materials, especially when the processed raw material contains inclusions and impurities significantly harder than the material itself. This situation occurs, among others, during flatfish skinning operations analyzed in this paper, a common process in the fish processing industry. These fish, due to their natural living environment and behavior, contain a significant proportion of hard inclusions and impurities (shell fragments, sand grains) embedded in their skin. Contact between the tool and hard inclusions causes deformation, wrapping, crushing, and even chipping of the cutting edge of planar knives, resulting in non-uniform blade wear, which manifests as areas of uncut skin on the fish fillet. This necessitates frequent tool changes, resulting in higher tooling costs and longer operating times. This study provides a unique opportunity to review the results of in-service pre-implementation tests of planar knives in the skinning operation conducted under industrial conditions. The main objective was to verify positive laboratory research results regarding the extension of technical blade tool life through optimization of sharpening conditions during grinding. Durability test results are presented for the skinning process of fillets from plaice (Pleuronectes platessa) and flounder (Platichthys flesus). The study also examined the effect of varying cooling and lubrication conditions in the grinding zone on the tool life of technical planar blades. Sharpening knives under flood cooling conditions and using the hybrid method (combining minimum quantity lubrication and cold compressed air) increased their service life in the plaice skinning process (Pleuronectes platessa) by 12.39% and 8.85%, respectively. The increase in effective working time of knives during flounder (Platichthys flesus) skinning was even greater, reaching 17.7% and 16.3% for the flood cooling and hybrid methods, respectively. Full article
Show Figures

Figure 1

Back to TopTop