Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (17,863)

Search Parameters:
Keywords = operation strategy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5451 KiB  
Article
Study of Efficient and Clean Combustion of Diesel–Natural Gas Engine at High Loads with TAC-HCCI Combustion
by Min Zhang, Wenyu Gu, Zhi Jia and Wanhua Su
Energies 2025, 18(15), 4121; https://doi.org/10.3390/en18154121 (registering DOI) - 3 Aug 2025
Abstract
This study proposes an innovative Thermodynamic Activity Controlled Homogeneous Charge Compression Ignition (TAC-HCCI) strategy for diesel–natural gas dual-fuel engines, aiming to achieve high thermal efficiency while maintaining low emissions. By employing numerical simulation methods, the effects of the intake pressure, intake temperature, EGR [...] Read more.
This study proposes an innovative Thermodynamic Activity Controlled Homogeneous Charge Compression Ignition (TAC-HCCI) strategy for diesel–natural gas dual-fuel engines, aiming to achieve high thermal efficiency while maintaining low emissions. By employing numerical simulation methods, the effects of the intake pressure, intake temperature, EGR rate, intake valve closing timing, diesel injection timing, diesel injection pressure, and diesel injection quantity on engine combustion, energy distribution, and emission characteristics were systematically investigated. Through a comprehensive analysis of optimized operating conditions, a high-efficiency and low-emission TAC-HCCI combustion technology for dual-fuel engines was developed. The core mechanism of TAC-HCCI combustion control was elucidated through an analysis of the equivalence ratio and temperature distribution of the in-cylinder mixture. The results indicate that under the constraints of PCP ≤ 30 ± 1 MPa and RI ≤ 5 ± 0.5 MW/m2, the TAC-HCCI technology achieves a gross indicated mean effective pressure (IMEPg) of 24.0 bar, a gross indicated thermal efficiency (ITEg) of up to 52.0%, and indicated specific NOx emissions (ISNOx) as low as 1.0 g/kW∙h. To achieve low combustion loss, reduced heat transfer loss, and high thermal efficiency, it is essential to ensure the complete combustion of the mixture while maintaining low combustion temperatures. Moreover, a reduced diesel injection quantity combined with a high injection pressure can effectively suppress NOx emissions. Full article
Show Figures

Figure 1

48 pages, 16562 KiB  
Article
Dense Matching with Low Computational Complexity for   Disparity Estimation in the Radargrammetric Approach of SAR Intensity Images
by Hamid Jannati, Mohammad Javad Valadan Zoej, Ebrahim Ghaderpour and Paolo Mazzanti
Remote Sens. 2025, 17(15), 2693; https://doi.org/10.3390/rs17152693 (registering DOI) - 3 Aug 2025
Abstract
Synthetic Aperture Radar (SAR) images and optical imagery have high potential for extracting digital elevation models (DEMs). The two main approaches for deriving elevation models from SAR data are interferometry (InSAR) and radargrammetry. Adapted from photogrammetric principles, radargrammetry relies on disparity model estimation [...] Read more.
Synthetic Aperture Radar (SAR) images and optical imagery have high potential for extracting digital elevation models (DEMs). The two main approaches for deriving elevation models from SAR data are interferometry (InSAR) and radargrammetry. Adapted from photogrammetric principles, radargrammetry relies on disparity model estimation as its core component. Matching strategies in radargrammetry typically follow local, global, or semi-global methodologies. Local methods, while having higher accuracy, especially in low-texture SAR images, require larger kernel sizes, leading to quadratic computational complexity. Conversely, global and semi-global models produce more consistent and higher-quality disparity maps but are computationally more intensive than local methods with small kernels and require more memory (RAM). In this study, inspired by the advantages of local matching algorithms, a computationally efficient and novel model is proposed for extracting corresponding pixels in SAR-intensity stereo images. To enhance accuracy, the proposed two-stage algorithm operates without an image pyramid structure. Notably, unlike traditional local and global models, the computational complexity of the proposed approach remains stable as the input size or kernel dimensions increase while memory consumption stays low. Compared to a pyramid-based local normalized cross-correlation (NCC) algorithm and adaptive semi-global matching (SGM) models, the proposed method maintains good accuracy comparable to adaptive SGM while reducing processing time by up to 50% relative to pyramid SGM and achieving a 35-fold speedup over the local NCC algorithm with an optimal kernel size. Validated on a Sentinel-1 stereo pair with a 10 m ground-pixel size, the proposed algorithm yields a DEM with an average accuracy of 34.1 m. Full article
14 pages, 18722 KiB  
Article
Safe Autonomous UAV Target-Tracking Under External Disturbance, Through Learned Control Barrier Functions
by Promit Panja, Madan Mohan Rayguru and Sabur Baidya
Robotics 2025, 14(8), 108; https://doi.org/10.3390/robotics14080108 (registering DOI) - 3 Aug 2025
Abstract
Ensuring the safe operation of Unmanned Aerial Vehicles (UAVs) is crucial for both mission-critical and safety-critical tasks. In scenarios where UAVs must track airborne targets, they need to follow the target’s path while maintaining a safe distance, even in the presence of unmodeled [...] Read more.
Ensuring the safe operation of Unmanned Aerial Vehicles (UAVs) is crucial for both mission-critical and safety-critical tasks. In scenarios where UAVs must track airborne targets, they need to follow the target’s path while maintaining a safe distance, even in the presence of unmodeled dynamics and environmental disturbances. This paper presents a novel collision avoidance strategy for dynamic quadrotor UAVs during target-tracking missions. We propose a safety controller that combines a learning-based Control Barrier Function (CBF) with standard sliding mode feedback. Our approach employs a neural network that learns the true CBF constraint, accounting for wind disturbances, while the sliding mode controller addresses unmodeled dynamics. This unified control law ensures safe leader-following behavior and precise trajectory tracking. By leveraging a learned CBF, the controller offers improved adaptability to complex and unpredictable environments, enhancing both the safety and robustness of the system. The effectiveness of our proposed method is demonstrated through the AirSim platform using the PX4 flight controller. Full article
(This article belongs to the Special Issue Applications of Neural Networks in Robot Control)
11 pages, 1859 KiB  
Article
Epitaxial Graphene/n-Si Photodiode with Ultralow Dark Current and High Responsivity
by Lanxin Yin, Xiaoyue Wang and Shun Feng
Nanomaterials 2025, 15(15), 1190; https://doi.org/10.3390/nano15151190 (registering DOI) - 3 Aug 2025
Abstract
Graphene’s exceptional carrier mobility and broadband absorption make it promising for ultrafast photodetection. However, its low optical absorption limits responsivity, while the absence of a bandgap results in high dark current, constraining the signal-to-noise ratio and efficiency. Although silicon (Si) photodetectors normally offer [...] Read more.
Graphene’s exceptional carrier mobility and broadband absorption make it promising for ultrafast photodetection. However, its low optical absorption limits responsivity, while the absence of a bandgap results in high dark current, constraining the signal-to-noise ratio and efficiency. Although silicon (Si) photodetectors normally offer fabrication compatibility, their performance is severely hindered by interface trap states and optical shading. To overcome these limitations, we demonstrate an epitaxial graphene/n-Si heterojunction photodiode. This device utilizes graphene epitaxially grown on germanium integrated with a transferred Si thin film, eliminating polymer residues and interface defects common in transferred graphene. As a result, the fabricated photodetector achieves an ultralow dark current of 1.2 × 10−9 A, a high responsivity of 1430 A/W, and self-powered operation at room temperature. This work provides a strategy for high-sensitivity and low-power photodetection and demonstrates the practical integration potential of graphene/Si heterostructures for advanced optoelectronics. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

18 pages, 594 KiB  
Article
Leveraging Dynamic Pricing and Real-Time Grid Analysis: A Danish Perspective on Flexible Industry Optimization
by Sreelatha Aihloor Subramanyam, Sina Ghaemi, Hessam Golmohamadi, Amjad Anvari-Moghaddam and Birgitte Bak-Jensen
Energies 2025, 18(15), 4116; https://doi.org/10.3390/en18154116 (registering DOI) - 3 Aug 2025
Abstract
Flexibility is advocated as an effective solution to address the growing need to alleviate grid congestion, necessitating efficient energy management strategies for industrial operations. This paper presents a mixed-integer linear programming (MILP)-based optimization framework for a flexible asset in an industrial setting, aiming [...] Read more.
Flexibility is advocated as an effective solution to address the growing need to alleviate grid congestion, necessitating efficient energy management strategies for industrial operations. This paper presents a mixed-integer linear programming (MILP)-based optimization framework for a flexible asset in an industrial setting, aiming to minimize operational costs and enhance energy efficiency. The method integrates dynamic pricing and real-time grid analysis, alongside a state estimation model using Extended Kalman Filtering (EKF) that improves the accuracy of system state predictions. Model Predictive Control (MPC) is employed for real-time adjustments. A real-world case studies from aquaculture industries and industrial power grids in Denmark demonstrates the approach. By leveraging dynamic pricing and grid signals, the system enables adaptive pump scheduling, achieving a 27% reduction in energy costs while maintaining voltage stability within 0.95–1.05 p.u. and ensuring operational safety. These results confirm the effectiveness of grid-aware, flexible control in reducing costs and enhancing stability, supporting the transition toward smarter, sustainable industrial energy systems. Full article
(This article belongs to the Section F1: Electrical Power System)
24 pages, 1751 KiB  
Article
Robust JND-Guided Video Watermarking via Adaptive Block Selection and Temporal Redundancy
by Antonio Cedillo-Hernandez, Lydia Velazquez-Garcia, Manuel Cedillo-Hernandez, Ismael Dominguez-Jimenez and David Conchouso-Gonzalez
Mathematics 2025, 13(15), 2493; https://doi.org/10.3390/math13152493 (registering DOI) - 3 Aug 2025
Abstract
This paper introduces a robust and imperceptible video watermarking framework designed for blind extraction in dynamic video environments. The proposed method operates in the spatial domain and combines multiscale perceptual analysis, adaptive Just Noticeable Difference (JND)-based quantization, and temporal redundancy via multiframe embedding. [...] Read more.
This paper introduces a robust and imperceptible video watermarking framework designed for blind extraction in dynamic video environments. The proposed method operates in the spatial domain and combines multiscale perceptual analysis, adaptive Just Noticeable Difference (JND)-based quantization, and temporal redundancy via multiframe embedding. Watermark bits are embedded selectively in blocks with high perceptual masking using a QIM strategy, and the corresponding DCT coefficients are estimated directly from the spatial domain to reduce complexity. To enhance resilience, each bit is redundantly inserted across multiple keyframes selected based on scene transitions. Extensive simulations over 21 benchmark videos (CIF, 4CIF, HD) validate that the method achieves superior performance in robustness and perceptual quality, with an average Bit Error Rate (BER) of 1.03%, PSNR of 50.1 dB, SSIM of 0.996, and VMAF of 97.3 under compression, noise, cropping, and temporal desynchronization. The system outperforms several recent state-of-the-art techniques in both quality and speed, requiring no access to the original video during extraction. These results confirm the method’s viability for practical applications such as copyright protection and secure video streaming. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

17 pages, 462 KiB  
Article
Knowledge-Guided Cyber Threat Intelligence Summarization via Term-Oriented Input Construction
by Junmei Ding and Yueming Lu
Electronics 2025, 14(15), 3096; https://doi.org/10.3390/electronics14153096 (registering DOI) - 3 Aug 2025
Abstract
Cyber threat intelligence summarization plays a critical role in enhancing threat awareness and operational response in cybersecurity. However, existing summarization models often fail to capture essential threat elements due to the unstructured nature of cyber threat intelligence documents and the lack of domain-specific [...] Read more.
Cyber threat intelligence summarization plays a critical role in enhancing threat awareness and operational response in cybersecurity. However, existing summarization models often fail to capture essential threat elements due to the unstructured nature of cyber threat intelligence documents and the lack of domain-specific knowledge. This paper presents a knowledge-guided cyber threat intelligence summarization framework via term-oriented input construction, designed to improve summary fidelity, semantic relevance, and model robustness. The proposed approach consists of two key components: a hybrid term construction pipeline that combines unsupervised keyword extraction and supervised term generation with rule-based refinement, and a knowledge-injected input construction paradigm that explicitly incorporates structured terms into the model input. This strategy enhances the model’s understanding of critical threat semantics without altering its architecture. Extensive experiments conducted on cyber threat intelligence summarization benchmarks under both zero-shot and supervised settings demonstrate that the proposed method consistently improves summarization performance across different models, offering strong generalization and deployment flexibility. Full article
Show Figures

Figure 1

23 pages, 28189 KiB  
Article
Landslide Susceptibility Prediction Using GIS, Analytical Hierarchy Process, and Artificial Neural Network in North-Western Tunisia
by Manel Mersni, Dhekra Souissi, Adnen Amiri, Abdelaziz Sebei, Mohamed Hédi Inoubli and Hans-Balder Havenith
Geosciences 2025, 15(8), 297; https://doi.org/10.3390/geosciences15080297 (registering DOI) - 3 Aug 2025
Abstract
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. [...] Read more.
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. The used database covers 286 landslides, including ten landslide factor maps: rainfall, slope, aspect, topographic roughness index, lithology, land use and land cover, distance from streams, drainage density, lineament density, and distance from roads. The AHP and ANN approaches were applied to classify the factors by analyzing the correlation relationship between landslide distribution and the significance of associated factors. The Landslide Susceptibility Index result reveals five susceptible zones organized from very low to very high risk, where the zones with the highest risks are associated with the combination of extreme amounts of rainfall and steep slope. The performance of the models was confirmed utilizing the area under the Relative Operating Characteristic (ROC) curves. The computed ROC curve (AUC) values (0.720 for ANN and 0.651 for AHP) convey the advantage of the ANN method compared to the AHP method. The overlay of the landslide inventory data locations of historical landslides and susceptibility maps shows the concordance of the results, which is in favor of the established model reliability. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

31 pages, 9769 KiB  
Review
Recent Advances of Hybrid Nanogenerators for Sustainable Ocean Energy Harvesting: Performance, Applications, and Challenges
by Enrique Delgado-Alvarado, Enrique A. Morales-Gonzalez, José Amir Gonzalez-Calderon, Ma. Cristina Irma Peréz-Peréz, Jesús Delgado-Maciel, Mariana G. Peña-Juarez, José Hernandez-Hernandez, Ernesto A. Elvira-Hernandez, Maximo A. Figueroa-Navarro and Agustin L. Herrera-May
Technologies 2025, 13(8), 336; https://doi.org/10.3390/technologies13080336 (registering DOI) - 2 Aug 2025
Abstract
Ocean energy is an abundant, eco-friendly, and renewable energy resource that is useful for powering sensor networks connected to the maritime Internet of Things (MIoT). These sensor networks can be used to measure different marine environmental parameters that affect ocean infrastructure integrity and [...] Read more.
Ocean energy is an abundant, eco-friendly, and renewable energy resource that is useful for powering sensor networks connected to the maritime Internet of Things (MIoT). These sensor networks can be used to measure different marine environmental parameters that affect ocean infrastructure integrity and harm marine ecosystems. This ocean energy can be harnessed through hybrid nanogenerators that combine triboelectric nanogenerators, electromagnetic generators, piezoelectric nanogenerators, and pyroelectric generators. These nanogenerators have advantages such as high-power density, robust design, easy operating principle, and cost-effective fabrication. However, the performance of these nanogenerators can be affected by the wear of their main components, reduction of wave frequency and amplitude, extreme corrosion, and sea storms. To address these challenges, future research on hybrid nanogenerators must improve their mechanical strength, including materials and packages with anti-corrosion coatings. Herein, we present recent advances in the performance of different hybrid nanogenerators to harvest ocean energy, including various transduction mechanisms. Furthermore, this review reports potential applications of hybrid nanogenerators to power devices in marine infrastructure or serve as self-powered MIoT monitoring sensor networks. This review discusses key challenges that must be addressed to achieve the commercial success of these nanogenerators, regarding design strategies with advanced simulation models or digital twins. Also, these strategies must incorporate new materials that improve the performance, reliability, and integration of future nanogenerator array systems. Thus, optimized hybrid nanogenerators can represent a promising technology for ocean energy harvesting with application in the maritime industry. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Graphical abstract

19 pages, 1767 KiB  
Article
Dynamics of a Fractional-Order Within-Host Virus Model with Adaptive Immune Responses and Two Routes of Infection
by Taofeek O. Alade, Furaha M. Chuma, Muhammad Javed, Samson Olaniyi, Adekunle O. Sangotola and Gideon K. Gogovi
Math. Comput. Appl. 2025, 30(4), 80; https://doi.org/10.3390/mca30040080 (registering DOI) - 2 Aug 2025
Abstract
This paper introduces a novel fractional-order model using the Caputo derivative operator to investigate the virus dynamics of adaptive immune responses. Two infection routes, namely cell-to-cell and virus-to-cell transmissions, are incorporated into the dynamics. Our research establishes the existence and uniqueness of positive [...] Read more.
This paper introduces a novel fractional-order model using the Caputo derivative operator to investigate the virus dynamics of adaptive immune responses. Two infection routes, namely cell-to-cell and virus-to-cell transmissions, are incorporated into the dynamics. Our research establishes the existence and uniqueness of positive and bounded solutions through the application of the generalized mean-value theorem and Banach fixed-point theory methods. The fractional-order model is shown to be Ulam–Hyers stable, ensuring the model’s resilience to small errors. By employing the normalized forward sensitivity method, we identify critical parameters that profoundly influence the transmission dynamics of the fractional-order virus model. Additionally, the framework of optimal control theory is used to explore the characterization of optimal adaptive immune responses, encompassing antibodies and cytotoxic T lymphocytes (CTL). To assess the influence of memory effects, we utilize the generalized forward–backward sweep technique to simulate the fractional-order virus dynamics. This study contributes to the existing body of knowledge by providing insights into how the interaction between virus-to-cell and cell-to-cell dynamics within the host is affected by memory effects in the presence of optimal control, reinforcing the invaluable synergy between fractional calculus and optimal control theory in modeling within-host virus dynamics, and paving the way for potential control strategies rooted in adaptive immunity and fractional-order modeling. Full article
24 pages, 2584 KiB  
Article
Precise and Continuous Biomass Measurement for Plant Growth Using a Low-Cost Sensor Setup
by Lukas Munser, Kiran Kumar Sathyanarayanan, Jonathan Raecke, Mohamed Mokhtar Mansour, Morgan Emily Uland and Stefan Streif
Sensors 2025, 25(15), 4770; https://doi.org/10.3390/s25154770 (registering DOI) - 2 Aug 2025
Abstract
Continuous and accurate biomass measurement is a critical enabler for control, decision making, and optimization in modern plant production systems. It supports the development of plant growth models for advanced control strategies like model predictive control, and enables responsive, data-driven, and plant state-dependent [...] Read more.
Continuous and accurate biomass measurement is a critical enabler for control, decision making, and optimization in modern plant production systems. It supports the development of plant growth models for advanced control strategies like model predictive control, and enables responsive, data-driven, and plant state-dependent cultivation. Traditional biomass measurement methods, such as destructive sampling, are time-consuming and unsuitable for high-frequency monitoring. In contrast, image-based estimation using computer vision and deep learning requires frequent retraining and is sensitive to changes in lighting or plant morphology. This work introduces a low-cost, load-cell-based biomass monitoring system tailored for vertical farming applications. The system operates at the level of individual growing trays, offering a valuable middle ground between impractical plant-level sensing and overly coarse rack-level measurements. Tray-level data allow localized control actions, such as adjusting light spectrum and intensity per tray, thereby enhancing the utility of controllable LED systems. This granularity supports layer-specific optimization and anomaly detection, which are not feasible with rack-level feedback. The biomass sensor is easily scalable and can be retrofitted, addressing common challenges such as mechanical noise and thermal drift. It offers a practical and robust solution for biomass monitoring in dynamic, growing environments, enabling finer control and smarter decision making in both commercial and research-oriented vertical farming systems. The developed sensor was tested and validated against manual harvest data, demonstrating high agreement with actual plant biomass and confirming its suitability for integration into vertical farming systems. Full article
(This article belongs to the Special Issue Feature Papers in Smart Agriculture 2025)
Show Figures

Figure 1

17 pages, 8148 KiB  
Article
Inland Flood Analysis in Irrigated Agricultural Fields Including Drainage Systems and Pump Stations
by Inhyeok Song, Heesung Lim and Hyunuk An
Water 2025, 17(15), 2299; https://doi.org/10.3390/w17152299 (registering DOI) - 2 Aug 2025
Abstract
Effective flood management in agricultural fields has become increasingly important due to the rising frequency and intensity of rainfall events driven by climate change. This study investigates the applicability of urban flood analysis models—SWMM (1D) and K-Flood (2D)—to irrigated agricultural fields with artificial [...] Read more.
Effective flood management in agricultural fields has become increasingly important due to the rising frequency and intensity of rainfall events driven by climate change. This study investigates the applicability of urban flood analysis models—SWMM (1D) and K-Flood (2D)—to irrigated agricultural fields with artificial drainage systems. A case study was conducted in a rural area near the Sindae drainage station in Cheongju, South Korea, using rainfall data from an extreme weather event in 2017. The models simulated inland flooding and were validated against flood trace maps provided by the Ministry of the Interior and Safety (MOIS). Receiver Operating Characteristic (ROC) analysis showed a true positive rate of 0.565, a false positive rate of 0.21, and an overall accuracy of 0.731, indicating reasonable agreement with observed inundation. Scenario analyses were also conducted to assess the effectiveness of three improvement strategies: reducing the Manning coefficient, increasing pump station capacity, and widening drainage channels. Among them, increasing pump capacity most effectively reduced flood volume, while channel widening had the greatest impact on reducing flood extent. These findings demonstrate the potential of urban flood models for application in agricultural contexts and support data-driven planning for rural flood mitigation. Full article
19 pages, 18533 KiB  
Article
Modeling of Marine Assembly Logistics for an Offshore Floating Photovoltaic Plant Subject to Weather Dependencies
by Lu-Jan Huang, Simone Mancini and Minne de Jong
J. Mar. Sci. Eng. 2025, 13(8), 1493; https://doi.org/10.3390/jmse13081493 (registering DOI) - 2 Aug 2025
Abstract
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to [...] Read more.
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to open offshore environments, particularly within offshore wind farm areas. This development is motivated by the synergistic benefits of increasing site energy density and leveraging the existing offshore grid infrastructure. The deployment of offshore floating photovoltaic (OFPV) systems involves assembling multiple modular units in a marine environment, introducing operational risks that may give rise to safety concerns. To mitigate these risks, weather windows must be considered prior to the task execution to ensure continuity between weather-sensitive activities, which can also lead to additional time delays and increased costs. Consequently, optimizing marine logistics becomes crucial to achieving the cost reductions necessary for making OFPV technology economically viable. This study employs a simulation-based approach to estimate the installation duration of a 5 MWp OFPV plant at a Dutch offshore wind farm site, started in different months and under three distinct risk management scenarios. Based on 20 years of hindcast wave data, the results reveal the impacts of campaign start months and risk management policies on installation duration. Across all the scenarios, the installation duration during the autumn and winter period is 160% longer than the one in the spring and summer period. The average installation durations, based on results from 12 campaign start months, are 70, 80, and 130 days for the three risk management policies analyzed. The result variation highlights the additional time required to mitigate operational risks arising from potential discontinuity between highly interdependent tasks (e.g., offshore platform assembly and mooring). Additionally, it is found that the weather-induced delays are mainly associated with the campaigns of pre-laying anchors and platform and mooring line installation compared with the other campaigns. In conclusion, this study presents a logistics modeling methodology for OFPV systems, demonstrated through a representative case study based on a state-of-the-art truss-type design. The primary contribution lies in providing a framework to quantify the performance of OFPV installation strategies at an early design stage. The findings of this case study further highlight that marine installation logistics are highly sensitive to local marine conditions and the chosen installation strategy, and should be integrated early in the OFPV design process to help reduce the levelized cost of electricity. Full article
(This article belongs to the Special Issue Design, Modeling, and Development of Marine Renewable Energy Devices)
21 pages, 875 KiB  
Article
Comprehensive Analysis of Neural Network Inference on Embedded Systems: Response Time, Calibration, and Model Optimisation
by Patrick Huber, Ulrich Göhner, Mario Trapp, Jonathan Zender and Rabea Lichtenberg
Sensors 2025, 25(15), 4769; https://doi.org/10.3390/s25154769 (registering DOI) - 2 Aug 2025
Abstract
The response time of Artificial Neural Network (ANN) inference is critical in embedded systems processing sensor data close to the source. This is particularly important in applications such as predictive maintenance, which rely on timely state change predictions. This study enables estimation of [...] Read more.
The response time of Artificial Neural Network (ANN) inference is critical in embedded systems processing sensor data close to the source. This is particularly important in applications such as predictive maintenance, which rely on timely state change predictions. This study enables estimation of model response times based on the underlying platform, highlighting the importance of benchmarking generic ANN applications on edge devices. We analyze the impact of network parameters, activation functions, and single- versus multi-threading on response times. Additionally, potential hardware-related influences, such as clock rate variances, are discussed. The results underline the complexity of task partitioning and scheduling strategies, stressing the need for precise parameter coordination to optimise performance across platforms. This study shows that cutting-edge frameworks do not necessarily perform the required operations automatically for all configurations, which may negatively impact performance. This paper further investigates the influence of network structure on model calibration, quantified using the Expected Calibration Error (ECE), and the limits of potential optimisation opportunities. It also examines the effects of model conversion to Tensorflow Lite (TFLite), highlighting the necessity of considering both performance and calibration when deploying models on embedded systems. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

45 pages, 5594 KiB  
Article
Integrated Medical and Digital Approaches to Enhance Post-Bariatric Surgery Care: A Prototype-Based Evaluation of the NutriMonitCare System in a Controlled Setting
by Ruxandra-Cristina Marin, Marilena Ianculescu, Mihnea Costescu, Veronica Mocanu, Alina-Georgiana Mihăescu, Ion Fulga and Oana-Andreia Coman
Nutrients 2025, 17(15), 2542; https://doi.org/10.3390/nu17152542 (registering DOI) - 2 Aug 2025
Abstract
Introduction/Objective: Post-bariatric surgery patients require long-term, coordinated care to address complex nutritional, physiological, and behavioral challenges. Personalized smart nutrition, combining individualized dietary strategies with targeted monitoring, has emerged as a valuable direction for optimizing recovery and long-term outcomes. This article examines how traditional [...] Read more.
Introduction/Objective: Post-bariatric surgery patients require long-term, coordinated care to address complex nutritional, physiological, and behavioral challenges. Personalized smart nutrition, combining individualized dietary strategies with targeted monitoring, has emerged as a valuable direction for optimizing recovery and long-term outcomes. This article examines how traditional medical protocols can be enhanced by digital solutions in a multidisciplinary framework. Methods: The study analyzes current clinical practices, including personalized meal planning, physical rehabilitation, biochemical marker monitoring, and psychological counseling, as applied in post-bariatric care. These established approaches are then analyzed in relation to the NutriMonitCare system, a digital health system developed and tested in a laboratory environment. Used here as an illustrative example, the NutriMonitCare system demonstrates the potential of digital tools to support clinicians through real-time monitoring of dietary intake, activity levels, and physiological parameters. Results: Findings emphasize that medical protocols remain the cornerstone of post-surgical management, while digital tools may provide added value by enhancing data availability, supporting individualized decision making, and reinforcing patient adherence. Systems like the NutriMonitCare system could be integrated into interdisciplinary care models to refine nutrition-focused interventions and improve communication across care teams. However, their clinical utility remains theoretical at this stage and requires further validation. Conclusions: In conclusion, the integration of digital health tools with conventional post-operative care has the potential to advance personalized smart nutrition. Future research should focus on clinical evaluation, real-world testing, and ethical implementation of such technologies into established medical workflows to ensure both efficacy and patient safety. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

Back to TopTop