Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = oolitic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4870 KiB  
Article
Phase Transformation Principle and Magnetite Grain Growth Law in the Magnetization Sintering Process of Oolitic Hematite Ore
by Hanquan Zhang, Xunrui Liu, Lei Xie, Tiejun Chen, Fan Yang and Bona Deng
Materials 2025, 18(15), 3649; https://doi.org/10.3390/ma18153649 - 3 Aug 2025
Viewed by 298
Abstract
Oolitic hematite ore represents a significant iron resource, but its utilization is challenging due to the complex multi-layered circular structure of hematite ore, which makes it difficult to be reduced. This study systematically investigated the phase transformation principle and magnetite grain growth law [...] Read more.
Oolitic hematite ore represents a significant iron resource, but its utilization is challenging due to the complex multi-layered circular structure of hematite ore, which makes it difficult to be reduced. This study systematically investigated the phase transformation principle and magnetite grain growth law during the magnetization sintering of oolitic hematite ore, aiming to establish optimal conditions for efficient hematite ore to magnetite conversion. The results demonstrated that both elevated temperature and prolonged reduction duration significantly enhanced the reduction efficiency of hematite (Fe2O3) to magnetite. The optimal sintering conditions were determined to be 700 °C for 45 min, under which the magnetite content and Fe/O atomic ratio in the roasted products peaked at approximately 68% and 0.8%, respectively. However, temperatures exceeding 800 °C proved detrimental to magnetite formation, as further reduction to FeXO phases occurred. Notably, appropriate temperature elevation promoted substantial magnetite grain growth. When the sintering temperature increased from 600 °C to 700 °C, both the absolute and relative thickness of the magnetite layer exhibited remarkable enhancement, expanding from 9.52 μm to 76.76 μm and from 5.99% to 50.33%, respectively. Furthermore, comparative analysis revealed that a high sintering temperature for a short time was more effective for magnetite particle growth than a low temperature for a long time in the magnetization process of oolitic hematite ore. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

25 pages, 15689 KiB  
Article
Mineralogical and Chemical Properties and REE Content of Bauxites in the Seydişehir (Konya, Türkiye) Region
by Muazzez Çelik Karakaya and Necati Karakaya
Minerals 2025, 15(8), 798; https://doi.org/10.3390/min15080798 - 29 Jul 2025
Viewed by 502
Abstract
The most important bauxite deposits in Türkiye are located in the Seydişehir (Konya) and Akseki (Antalya) regions, situated along the western Taurus Mountain, with a total reserve of approximately 44 million tons. Some of the bauxite deposits have been exploited for alumina since [...] Read more.
The most important bauxite deposits in Türkiye are located in the Seydişehir (Konya) and Akseki (Antalya) regions, situated along the western Taurus Mountain, with a total reserve of approximately 44 million tons. Some of the bauxite deposits have been exploited for alumina since the 1970s. In this study, bauxite samples, collected from six different deposits were examined to determine their mineralogical and chemical composition, as well as their REE content, with the aim of identifying which bauxite types are enriched in REEs and assessing their economic potential. The samples included massive, oolitic, and brecciated bauxite types, which were analyzed using optical microscopy, X-ray diffraction (XRD), X-ray fluorescence (XRF) and inductive coupled plasma-mass spectrometry (ICP-MS), field emission scanning electron microscopy (FESEM-EDX), and electron probe micro-analysis (EPMA). Massive bauxites were found to be more homogeneous in both mineralogical and chemical composition, predominantly composed of diaspore, boehmite, and rare gibbsite. Hematite is the most abundant iron oxide mineral in all bauxites, while goethite, rutile, and anatase occur in smaller quantities. Quartz, feldspar, kaolinite, dolomite, and pyrite were specifically determined in brecciated bauxites. Average oxide contents were determined as 52.94% Al2O3, 18.21% Fe2O3, 7.04% TiO2, and 2.69% SiO2. Na2O, K2O, and MgO values are typically below 0.5%, while CaO averages 3.54%. The total REE content of the bauxites ranged from 161 to 4072 ppm, with an average of 723 ppm. Oolitic-massive bauxites exhibit the highest REE enrichment. Cerium (Ce) was the most abundant REE, ranging from 87 to 453 ppm (avg. 218 ppm), followed by lanthanum (La), which reached up to 2561 ppm in some of the massive bauxite samples. LREEs such as La, Ce, Pr, and Nd were notably enriched compared to HREEs. The lack of a positive correlation between REEs and major element oxides, as well as with their occurrences in distinct association with Al- and Fe-oxides-hydroxides based on FESEM-EDS and EPMA analyses, suggests that the REEs are present as discrete mineral phases. Furthermore, these findings indicate that the REEs are not incorporated into the crystal structures of other minerals through isomorphic substitution or adsorption. Full article
(This article belongs to the Special Issue Critical Metal Minerals, 2nd Edition)
Show Figures

Figure 1

17 pages, 6395 KiB  
Article
Fe–P Alloy Production from High-Phosphorus Oolitic Iron Ore via Efficient Pre-Reduction and Smelting Separation
by Mengjie Hu, Deqing Zhu, Jian Pan, Zhengqi Guo, Congcong Yang, Siwei Li and Wen Cao
Minerals 2025, 15(8), 778; https://doi.org/10.3390/min15080778 - 24 Jul 2025
Viewed by 288
Abstract
Diverging from conventional dephosphorization approaches, this study employs a novel pre-reduction and smelting separation (PR-SS) to efficiently co-recover iron and phosphorus from high-phosphorus oolitic iron ore, directly yielding Fe–P alloy, and the Fe–P alloy shows potential as feedstock for high-phosphorus weathering steel or [...] Read more.
Diverging from conventional dephosphorization approaches, this study employs a novel pre-reduction and smelting separation (PR-SS) to efficiently co-recover iron and phosphorus from high-phosphorus oolitic iron ore, directly yielding Fe–P alloy, and the Fe–P alloy shows potential as feedstock for high-phosphorus weathering steel or wear-resistant cast iron, indicating promising application prospects. Using oolitic magnetite concentrate (52.06% Fe, 0.37% P) as feedstock, optimized conditions including pre-reduction at 1050 °C for 2 h with C/Fe mass ratio of 2, followed by smelting separation at 1550 °C for 20 min with 5% coke, produced a metallic phase containing 99.24% Fe and 0.73% P. Iron and phosphorus recoveries reached 99.73% and 99.15%, respectively. EPMA microanalysis confirmed spatial correlation between iron and phosphorus in the metallic phase, with undetectable phosphorus signals in vitreous slag. This evidence suggests preferential phosphorus enrichment through interfacial mass transfer along the pathway of the slag phase to the metal interface and finally the iron matrix, forming homogeneous Fe–P solid solutions. The phosphorus migration mechanism involves sequential stages: apatite lattice decomposition liberates reactive P2O5 under SiO2/Al2O3 influence; slag–iron interfacial co-reduction generates Fe3P intermediates; Fe3P incorporation into the iron matrix establishes stable solid solutions. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

19 pages, 12183 KiB  
Article
A Study on the Sedimentary Environment and Facies Model of Triassic Carbonate Rocks in the Mangeshlak Basin
by Fanyang Meng, Kaixun Zhang, Zhiping He, Miao Miao and Feng Wang
Appl. Sci. 2025, 15(14), 7788; https://doi.org/10.3390/app15147788 - 11 Jul 2025
Viewed by 320
Abstract
Based on drilling, core and seismic data, combined with the regional tectonic sedimentary evolution background, the sedimentary environment of the Triassic carbonate rocks in the Mangeshlak Basin was studied. A sedimentary facies model of this set of carbonate rocks was established. Research has [...] Read more.
Based on drilling, core and seismic data, combined with the regional tectonic sedimentary evolution background, the sedimentary environment of the Triassic carbonate rocks in the Mangeshlak Basin was studied. A sedimentary facies model of this set of carbonate rocks was established. Research has shown that the Mangeshlak Basin underwent a complete large-scale marine transgression–regression sedimentary evolution process during the Triassic. During the early to middle Triassic, seawater gradually invaded the northwest region of the basin from northwest to southeast and gradually regressed in the late Middle Triassic. In the lower part of the Triassic carbonate rocks, the primary components are developed granular limestone or dolomite with oolitic structures, interspersed with a small amount of thin mudstone, which is a good reservoir; the upper part of the Triassic is mainly composed of sedimentary mudstone and mudstone, which can form good sealings. The hill-shaped reflections of the platform edge facies, along with the high-frequency, strong-amplitude, and moderately continuous reflections within the restricted platform interior, are clearly visible on the seismic profile. These features are consistent with the sedimentary environment and lithofacies characteristics revealed by drilling data along the profile. Drilling and seismic data revealed that the sedimentary environment of the early and middle Triassic in the basin is mainly composed of shallow water platform edges and restricted platforms, as well as carbonate rock slopes and open non-marine shelves in deep water areas. A sedimentary facies model of the Triassic carbonate rock segment in the basin was established, comprising restricted platforms, platform edges, carbonate rock slopes, and non-marine shelves. Unlike the modified Wilson marginal carbonate rock platform model, the carbonate rock platform edge in the Mangeshlak Basin does not develop reef facies. Instead, it is mainly composed of oolitic beach (dam) sediments, making it the most favorable sedimentary facies zone for the Triassic reservoir development in the basin. Full article
Show Figures

Figure 1

19 pages, 5499 KiB  
Article
High-Frequency Oolitic Tidal Cycles and Their Geochemical Signatures in the Upper Ediacaran Qigebulake Formation, NW Tarim Basin (China)
by Yan Hao and Shaonan Zhang
Minerals 2025, 15(6), 613; https://doi.org/10.3390/min15060613 - 6 Jun 2025
Viewed by 390
Abstract
The Qigebulake Formation in the northwestern Tarim Basin records high-frequency oolitic tidal flat cycles formed during the Upper Ediacaran, a period marked by tectonic, volcanic, and hydrothermal events. This study presents a detailed petrographic and geochemical characterization of these cycles, focusing on their [...] Read more.
The Qigebulake Formation in the northwestern Tarim Basin records high-frequency oolitic tidal flat cycles formed during the Upper Ediacaran, a period marked by tectonic, volcanic, and hydrothermal events. This study presents a detailed petrographic and geochemical characterization of these cycles, focusing on their lithofacies development and implications for regional geological processes. Seven microfacies were identified, ranging from oolitic dolostone and dolothrombolite to siliciclastic dolomudstone and mudstone. Elemental trends indicate a systematic decline in SiO2, Al2O3, and TiO2 content with decreasing siliciclastic input, suggesting a shallowing-upward sequence. Volcaniclastic quartz grains, exhibiting embayed textures and bright-blue cathodoluminescence, are reported here for the first time in the Ediacaran of Tarim, supporting synsedimentary volcanic input. Positive δEu anomalies, coupled with low Al/(Al+Fe+Mn) and elevated Fe2O3/TiO2 and MnO/TiO2 ratios, reveal hydrothermal influence in upper-cycle dolostones. These signatures, combined with regional stratigraphy, suggest that the Qigebulake tidal flat records the interplay between deposition, volcanism, and fluid migration during the late Ediacaran. The findings provide new constraints on the evolution of peritidal environments and inform deep carbonate reservoir assessments in Tarim and similar cratonic basins. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

28 pages, 59439 KiB  
Article
The Middle–Late Permian to Late Cretaceous Mediterranean-Type Karst Bauxites of Western Iran: Authigenic Mineral Forming Conditions and Critical Raw Materials Potential
by Farhad Ahmadnejad, Giovanni Mongelli, Ghazal Rafat and Mohammad Sharifi
Minerals 2025, 15(6), 584; https://doi.org/10.3390/min15060584 - 29 May 2025
Viewed by 547
Abstract
The Sanandaj–Sirjan Zone and Zagros Fold–Thrust Belt in Iran host numerous Mediterranean-type karst bauxite deposits; however, their formation mechanisms and critical raw material potential remain ambiguous. This study combines mineralogical and geochemical analyses to explore (1) the formation of authigenic minerals, (2) the [...] Read more.
The Sanandaj–Sirjan Zone and Zagros Fold–Thrust Belt in Iran host numerous Mediterranean-type karst bauxite deposits; however, their formation mechanisms and critical raw material potential remain ambiguous. This study combines mineralogical and geochemical analyses to explore (1) the formation of authigenic minerals, (2) the role of microbial organic processes in Fe cycling, and (3) the assessment of their critical raw materials potential. Mineralogical analyses of the Late Cretaceous Daresard and Middle–Late Permian Yakshawa bauxites reveal distinct horizons reflecting their genetic conditions: Yakshawa exhibits a vertical weathering sequence (clay-rich base → ferruginous oolites → nodular massive bauxite → bleached cap), while Daresard shows karst-controlled profiles (breccia → oolitic-pisolitic ore → deferrified boehmite). Authigenic illite forms via isochemical reactions involving kaolinite and K-feldspar dissolution. Scanning electron microscopy evidence demonstrates illite replacing kaolinite with burial depth enhancing crystallinity. Diaspore forms through both gibbsite transformation and direct precipitation from aluminum-rich solutions under surface conditions in reducing microbial karst environments, typically associated with pyrite, anatase, and fluorocarbonates under neutral–weakly alkaline conditions. Redox-controlled Fe-Al fractionation governs bauxite horizon development: (1) microbial sulfate reduction facilitates Fe3⁺ → Fe2⁺ reduction under anoxic conditions, forming Fe-rich horizons, while (2) oxidative weathering (↑Eh, ↓moisture) promotes Al-hydroxide/clay enrichment in upper profiles, evidenced by progressive total organic carbon depletion (0.57 → 0.08%). This biotic–abiotic coupling ultimately generates stratified, high-grade bauxite. Finally, both the Yakshawa and Daresard karst bauxite ores are enriched in critical raw materials. It is worth noting that the overall enrichment appears to be mostly driven by the processes that led to the formation of the ores and not by the chemical features of the parent rocks. Divergent bauxitization pathways and early diagenetic processes—controlled by paleoclimatic fluctuations, redox shifts, and organic matter decay—govern critical raw material distributions, unlike typical Mediterranean-type deposits where parent rock composition dominates critical raw material partitioning. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

30 pages, 6924 KiB  
Article
Diagenesis and Mineralization of the Neoarchean Bushy Park Lead-Zinc Deposit, Northern Cape Province, South Africa
by William Baugaard, Sahar Mohammadi and Jay M. Gregg
Minerals 2025, 15(5), 468; https://doi.org/10.3390/min15050468 - 30 Apr 2025
Viewed by 818
Abstract
The Bushy Park Pb-Zn deposit, hosted in unmetamorphosed carbonates of Neoarchean age, displays similarities to Phanerozoic Mississippi Valley-type (MVT) and Irish-type deposits. Mineralization is dated, by radiogenic methods, to Paleoproterozoic time. As such, Bushy Park is one of the oldest mineral deposits of [...] Read more.
The Bushy Park Pb-Zn deposit, hosted in unmetamorphosed carbonates of Neoarchean age, displays similarities to Phanerozoic Mississippi Valley-type (MVT) and Irish-type deposits. Mineralization is dated, by radiogenic methods, to Paleoproterozoic time. As such, Bushy Park is one of the oldest mineral deposits of this type in the world. Synsedimentary silicification and dolomitization preserve sedimentary fabrics, including microbial laminates, stromatolites, and oolites. Dolomitization likely was by evaporated seawater, as in Phanerozoic analogs. Structural control on mineralization, particularly solution collapse breccias, is similar to many Phanerozoic MVT and Irish-type deposits. Fluid inclusion data indicate three fluid endmembers involved in mineralization: a high-temperature, moderate-to-high salinity fluid; a low-temperature, moderate-to-high salinity fluid; and a moderate-to-low temperature, low salinity fluid. Saline fluids may have been sourced by evolved, evaporated seawater, and dilute fluids by meteoric and/or normal seawater. The fluids repeatedly mixed during ore and gangue mineral formation. Compositional zoning in gangue dolomite cement indicates that mineralizing fluid chemistry fluctuated over time. Petroleum inclusions and solid bitumen indicate that petroleum (oil) was an important fluid component at Bushy Park. Petroleum may have played a critical role in sulfur availability, addressing the issue of limited oceanic sulfate prior to and during the Great Oxidation Event. Full article
Show Figures

Figure 1

8 pages, 2435 KiB  
Communication
Compressive Strength and Metallurgical Properties of Pellets with Added Oolitic Hematite
by Fu Yang
Metals 2025, 15(3), 303; https://doi.org/10.3390/met15030303 - 11 Mar 2025
Viewed by 537
Abstract
The influence of oolitic hematite on the compressive strength and metallurgical properties of oxidized pellets was examined. The experimental results indicate that when the proportion of oolitic hematite does not exceed 8%, the compressive strength of the pellets can reach over 2500 N [...] Read more.
The influence of oolitic hematite on the compressive strength and metallurgical properties of oxidized pellets was examined. The experimental results indicate that when the proportion of oolitic hematite does not exceed 8%, the compressive strength of the pellets can reach over 2500 N when roasted at 1250 °C for 15 min. When the proportion is increased to 10%, the compressive strength remains above 2500 N after roasting at 1250 °C for 20 min. As the proportion of oolitic hematite increases, the reduction expansion rate of the pellets decreases; however, the reducibility also diminishes, and the softening and dripping performance deteriorates. Take into account the characteristics of the comprehensive burden structure in blast furnace operations, the proportion of oolitic hematite in pellet production can be increased to 10.0%. Full article
Show Figures

Figure 1

19 pages, 11629 KiB  
Article
Efficient Removal of Impurities from Refractory Oolitic Magnetite Concentrate via High-Pressure Alkaline Leaching and Ultrasonic Acid Leaching Process
by Mengjie Hu, Deqing Zhu, Jian Pan, Zhengqi Guo, Congcong Yang, Siwei Li and Wen Cao
Minerals 2025, 15(3), 220; https://doi.org/10.3390/min15030220 - 24 Feb 2025
Cited by 4 | Viewed by 756
Abstract
Acid leaching is an effective method for dephosphorization; however, it is time-consuming and requires a high amount of acid consumption, resulting in increased production costs and environmental risks. This work aims to remove silicon, aluminum, and phosphorus from high-phosphorus oolitic magnetite concentrate through [...] Read more.
Acid leaching is an effective method for dephosphorization; however, it is time-consuming and requires a high amount of acid consumption, resulting in increased production costs and environmental risks. This work aims to remove silicon, aluminum, and phosphorus from high-phosphorus oolitic magnetite concentrate through high-pressure alkaline leaching and ultrasonic acid leaching. Compared with traditional acid leaching processes, the sulfuric acid dosage can be significantly reduced from 200 kg/t to 100 kg/t, and the pickling time is shortened from 60 min to 10 min. Thermodynamic and kinetic studies have demonstrated that acid leaching facilitates apatite dissolution at low temperatures, whereas the dephosphorization reaction is controlled mainly by diffusion. The application of ultrasonic waves leads to finer particle sizes and greatly increased specific surface areas, thereby accelerating the diffusion rate of the leaching agent. Furthermore, microscopic analysis revealed that under the influence of ultrasonic waves, numerous micro-fragments and pores form on particle surfaces due to cavitation effects and mechanical forces generated by ultrasonic waves. These factors promote both the reaction rates and diffusion processes of the leaching agent while enhancing the overall leaching efficiency. Full article
Show Figures

Graphical abstract

28 pages, 25075 KiB  
Article
Photoelectric Factor Characterization of a Mixed Carbonate and Siliciclastic System Using Machine-Learning Methods: Pennsylvanian Canyon and Strawn Reef Systems, Midland Basin, West Texas
by Osareni C. Ogiesoba and Fritz C. Palacios
Geosciences 2025, 15(1), 3; https://doi.org/10.3390/geosciences15010003 - 26 Dec 2024
Viewed by 1562
Abstract
The photoelectric Factor (PEF) log is a powerful tool for distinguishing between siliciclastic and carbonate lithofacies in well-log analysis and 2D correlations. However, its application in complex reservoirs has some challenges due to well spacing. We present a workflow to extend its capabilities [...] Read more.
The photoelectric Factor (PEF) log is a powerful tool for distinguishing between siliciclastic and carbonate lithofacies in well-log analysis and 2D correlations. However, its application in complex reservoirs has some challenges due to well spacing. We present a workflow to extend its capabilities into a 3D environment to characterize the Pennsylvanian Strawn and Canyon reef complex in the Salt Creek field, Kent County, West Texas. The productive zones within this reservoir are composed of porous oolitic grainstones and skeletal packstones. However, there are some porous shale beds within the reef complex that are indistinguishable from the porous limestone zones on the neutron porosity log that have posed major challenges to hydrocarbon production. To address these problems, we used a machine-learning procedure involving multiattribute analysis and probabilistic neural network (PNN) to predict photoelectric factor (PEF) volume to characterize the reservoir and identify the shale beds. By combining neutron porosity, gamma ray, and the predicted PEF logs, we found that (1) these shale beds, hereby referred to as shale-influenced carbonates, are characterized by photoelectric factor values ranging from 4 to 4.26 B/E. (2) Based on the PEF values, the least porous interval is the Canyon System, having <1% porosity and characterized by PEF values of >4.78 B/E; while the most porous interval is the Strawn System, composed mostly of zones with porosity ranging from 3% to 28%, characterized by PEF values varying from 4.26 to 4.78 B/E. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

19 pages, 8323 KiB  
Article
Pore Types and Dolomite Reservoir Genesis of the Fifth Member of the Ordovician Majiagou Formation in the Central and Eastern Ordos Basin
by Shilei Chen, Rong Dai and Shunshe Luo
Appl. Sci. 2024, 14(23), 10976; https://doi.org/10.3390/app142310976 - 26 Nov 2024
Viewed by 917
Abstract
The Ordovician dolomite in the Ordos Basin is an important natural gas reservoir. Exploring dolomite genesis and the factors influencing reservoir characteristics is essential for deep carbonate rock exploration. This study offers a comprehensive analysis of dolomite evolution using methods such as thin-section [...] Read more.
The Ordovician dolomite in the Ordos Basin is an important natural gas reservoir. Exploring dolomite genesis and the factors influencing reservoir characteristics is essential for deep carbonate rock exploration. This study offers a comprehensive analysis of dolomite evolution using methods such as thin-section petrography, isotope analysis, and trace and rare earth elements. The analysis shows that: Based on petrographic observations of the Majiagou Formation in the study area, the dolomite in the study area can be divided into residual oolitic dolomite of synsedimentary or metasomatic origin, micritic dolomite of secondary metasomatism or recrystallization origin, powder crystal dolomite, and fine crystal dolomite. Reservoir pores mainly develop intergranular pores, mold pores, dissolved pores, and fractures. Combined with the characteristics of major elements, trace elements, carbon and oxygen isotopes, rare earth elements, and inclusions in the study area, it can be concluded that the fifth member dolomite of the Majiagou Formation is of shallow–medium burial origin. The diagenetic evolution sequence from the penecontemporaneous period to the middle–deep burial period in the study area is penecontemporaneous dolomite, anhydrite dissolution → seepage silt filling, freshwater dolomite, calcite, and gypsum filling, pressure solution compaction, calcite partial dissolution → gypsum filling, karst cave, buried hydrothermal dolomite, dolomite partial dissolution → calcite complete dissolution, pore dissolution expansion, and quartz pyrite filling. In the early stage of compaction and pressure solution, the primary pores are rapidly reduced, and in the later stage, sutures are generated to provide channels for reservoir fluid migration. The recrystallization reduces the porosity during the middle–deep burial period. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

15 pages, 12303 KiB  
Article
Characteristics and Genesis of Collophane in Organic-Rich Shale of Chang 7 Member in Ordos Basin, North China
by Yu Zhang, Chaocheng Dai, Congsheng Bian, Bin Bai and Xingfu Jiang
Minerals 2024, 14(12), 1184; https://doi.org/10.3390/min14121184 - 21 Nov 2024
Cited by 1 | Viewed by 940
Abstract
(1) Background: The Ordos Basin is one of the sedimentary basins in China that is richest in oil and gas resources. The Chang 7 member of the Yanchang Formation is a set of organic-rich shale, abundant in collophane. (2) Methods: The observation and [...] Read more.
(1) Background: The Ordos Basin is one of the sedimentary basins in China that is richest in oil and gas resources. The Chang 7 member of the Yanchang Formation is a set of organic-rich shale, abundant in collophane. (2) Methods: The observation and analysis of rock thin sections, combined with major elements, trace elements, electron probes, and other technical means, the characteristics and genesis mechanism of collophane in the organic-rich shale of the Chang 7 member of the Yanchang Formation in the Ordos Basin were studied. (3) Results: Collophane are divided into oolitic collophane, red-yellow aggregate collophane, and apatite-containing crystalline collophane; the main chemical compositions of the collophane were CaO, P2O5, FeO, Al2O3, and MgO. (4) Conclusions: Phosphorus elements of collophane in the organic-rich shale of the Chang 7 member of the Ordos continental lake basin are mainly derived from the nutrients carried by the volcanic ash sediments around the basin and the hydrothermal fluid at the bottom of the lake. The formation of collophane is divided into two periods: during the sedimentary period, the phosphorus released by the aerobic decomposition of phytoplankton to the mineralization and degradation of organic matter, and the death of phosphorus-rich organisms is preserved in the sediment by adsorption and complexation with iron oxides and then combined with calcium and fluoride plasma to form collophane; during the early diagenesis process, collophane underwent recrystallization, forming a colloidal, cryptocrystalline, and microcrystalline apatite assemblage. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

14 pages, 7166 KiB  
Article
Selective Reduction of Iron in High-Phosphorus Oolitic Ore from the Lisakovsk Deposit
by Bakyt Suleimen, Nurlybai Kosdauletov, Galymzhan Adilov, Pavel Gamov, Semen Salikhov, Yerbol Kuatbay, Talgat Zhuniskaliyev, Bauyrzhan Kelamanov, Almas Yerzhanov and Assylbek Abdirashit
Materials 2024, 17(21), 5271; https://doi.org/10.3390/ma17215271 - 30 Oct 2024
Cited by 1 | Viewed by 1017
Abstract
Reduction of iron in high-phosphorus oolitic ore from the Lisakovsk deposit using solid carbon, carbon monoxide, and hydrogen. An X-ray phase analysis was used to determine the phase composition of the samples after reduction roasting. When reduced with carbon monoxide or hydrogen, α-iron [...] Read more.
Reduction of iron in high-phosphorus oolitic ore from the Lisakovsk deposit using solid carbon, carbon monoxide, and hydrogen. An X-ray phase analysis was used to determine the phase composition of the samples after reduction roasting. When reduced with carbon monoxide or hydrogen, α-iron appears in the samples, while phosphorus remains in the form of iron, calcium, and aluminum phosphates. After roasting with solid carbon, phosphorus is reduced from iron and calcium phosphates and migrates into the metal but remains in aluminum phosphate. A micro X-ray spectral analysis showed that at a temperature of 1000 °C and a holding time of 5 h, during reduction with solid carbon, the phosphorus content in the metallic phase reaches up to 7.1 at. %. When reduced with carbon monoxide under the same conditions, the metallic phase contains only iron, and phosphorus is found only in the oxide phase. When reduced with hydrogen at 800 °C, phosphorus is almost absent in the metallic phase, but at 900 °C, phosphorus is reduced and its content in the metallic phase reaches 2.1 at. %. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

17 pages, 10208 KiB  
Article
Calcium Carbonate as Dephosphorization Agent in Direct Reduction Roasting of High-Phosphorus Oolitic Iron Ore: Reaction Behavior, Iron Recovery, and Dephosphorization Mechanism
by Chong Chen and Shichao Wu
Minerals 2024, 14(10), 1023; https://doi.org/10.3390/min14101023 - 12 Oct 2024
Viewed by 1220
Abstract
Calcium carbonate, renowned for its affordability and potent dephosphorization capabilities, finds widespread use as a dephosphorization agent in the direct reduction roasting of high-phosphorus oolitic hematite (HPOIO). However, its precise impact on iron recovery and the dephosphorization of iron minerals with phosphorus within [...] Read more.
Calcium carbonate, renowned for its affordability and potent dephosphorization capabilities, finds widespread use as a dephosphorization agent in the direct reduction roasting of high-phosphorus oolitic hematite (HPOIO). However, its precise impact on iron recovery and the dephosphorization of iron minerals with phosphorus within HPOIO, particularly the mineral transformation rule and dephosphorization mechanism, remains inadequately understood. This study delves into the nuanced effects of calcium carbonate on iron recovery and dephosphorization through direct reduction roasting and magnetic separation. A direct reduction iron (DRI) boasting 95.57% iron content, 93.94% iron recovery, 0.08% phosphorus content, and an impressive 92.08% dephosphorization is achieved. This study underscores how the addition of calcium carbonate facilitates the generation of apatite from phosphorus in iron minerals and catalyzes the formation of gehlenite by reacting with silicon dioxide and alumina, inhibiting apatite reduction. Furthermore, it increases the liquid phase, enhancing the dissociation of metallic iron monomers during the grinding procedure, thus facilitating efficient dephosphorization. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

13 pages, 19727 KiB  
Article
Oolitic Sedimentary Characteristics of the Upper Paleozoic Bauxite Series in the Eastern Ordos Basin and Its Significance for Oil and Gas Reservoirs
by Fengyu Sun, Changling Qu, Gaoshe Cao, Liqin Xie, Xiaohu Shi, Shengtao Luo, Zhuang Liu, Ling Zhang, Xiaochen Ma, Xinhang Zhou, Sen Zhu and Zhenzhi Wang
Processes 2024, 12(10), 2123; https://doi.org/10.3390/pr12102123 - 29 Sep 2024
Cited by 2 | Viewed by 1459
Abstract
In recent years, great breakthroughs have been made in gas explorations of the Upper Paleozoic bauxite series in the Longdong area of the Ordos Basin, challenging the understanding that bauxite is not an effective reservoir. Moreover, studying the reservoir characteristics of bauxite is [...] Read more.
In recent years, great breakthroughs have been made in gas explorations of the Upper Paleozoic bauxite series in the Longdong area of the Ordos Basin, challenging the understanding that bauxite is not an effective reservoir. Moreover, studying the reservoir characteristics of bauxite is crucial for oil and gas exploration. Taking the bauxite series in the Longdong area as an example, this study systematically collects data from previous publications and analyzes the petrology, mineralogy, oolitic micro-morphology, chemical composition, and other sedimentary characteristics of the bauxite series in the study area using field outcrops, core observations, rock slices, cast slices, X-ray diffraction analysis, scanning electron microscopy and energy spectra, and so on. In this study, the oolitic microscopic characteristics of the bauxite reservoir and the significance of oil and gas reservoirs are described. The results show that the main minerals in the bauxite reservoir are boehmite and clay minerals composed of 73.5–96.5% boehmite, with an average of 90.82%. The rocks are mainly bauxitic mudstone and bauxite. A large number of oolites are observable in the bauxite series, and corrosion pores and intercrystalline pores about 8–20 μm in size have generally developed. These pores are important storage spaces in the reservoir. The brittleness index of the bauxite series was found to be as high as 99.3%, which is conducive to subsequent mining and fracturing. The main gas source rocks of oolitic bauxite rock and the Paleozoic gas series are the coal measure source rocks of the Upper Paleozoic. The oolitic bauxite reservoirs in the study area generally have obvious gas content, but the continuity of the planar distribution of the bauxite reservoirs is poor, providing a scientific basis for studying bauxite reservoirs and improving the exploratory effects of bauxite gas reservoirs. Full article
Show Figures

Figure 1

Back to TopTop