High-Frequency Oolitic Tidal Cycles and Their Geochemical Signatures in the Upper Ediacaran Qigebulake Formation, NW Tarim Basin (China)
Abstract
:1. Introduction
2. Geological Settings
3. Materials and Methods
4. Results
4.1. Microfacies
4.1.1. Carbonate Microfacies
4.1.2. Siliciclastic Microfacies
4.2. Geochemistry
4.2.1. Major and Trace Elements
4.2.2. Rare Earth Elements
5. Discussion
5.1. Implications for Terrigenous Input
- (1)
- The positive correlations observed between SiO2 and Al2O3, K2O, TiO2, and TFe2O3 (r = 0.89, 0.85, 0.81, and 0.80, respectively) suggest a potential association between these elements and clay minerals, indicating a co-variation trend (Figure 7) [27]. Al2O3, TiO2, Th, and ΣREE are frequently utilized as proxies for terrigenous input [28]. The analysis reveals strong correlations between Al2O3 and TiO2, Th, and ΣREE, with correlation coefficients of 0.96, 0.98, and 0.95, respectively. In sublayers 9, 8, and 5, the PAAS (Panasqueira Average Abundance Standard)-normalized ΣREE values of the rare earth element (REE) samples are 189.83 ppm, 116.19 ppm, and 118.01 ppm, with Y/Ho ratios of 23.56, 25.54, and 25.36, respectively. These ΣREE values and Y/Ho ratios obtained are comparable to those of average shale (184.8 ppm and 27 [mass ratio]), reflecting significant terrigenous input influence on the samples. Analysis of regional geological data indicates that the late Ediacaran Keping Movement in the Tarim Basin resulted in the occurrence of varying degrees of erosion within the Nanhua–Ediacaran strata [29]. Dissolution pores and vugs of epigenetic karst origin are universally found at the top of the Upper Ediacaran dolomites in the Keping and Yecheng areas of the basin margin, and the disconformity of the Ediacaran top surface is clearly visible in the seismic profile of the basin [30]. Further studies on zircon geochronology have indicated that the Kalpin Movement occurred between 525 and 575 Ma [31]. From the standpoint of the time of basin tectonics, the intense terrigenous input observed in the high-frequency cycles of this study is probably associated with this tectonic occurrence (Table 4).
- (2)
- Furthermore, MgO was found to exhibit a positive correlation with CaO, but negative correlations with SiO2, Al2O3, K2O, TiO2, and TFe2O3 (Figure 7). This is indicative of the mixing of carbonate and siliciclastic components, a conclusion that is consistent with petrographic characteristics. Additionally, the analysis of vertical element variation profiles revealed cyclic patterns in these correlations. The initial cycle is as follows: silty mudstone (sublayer 9) → oolitic dolostone (sublayer 6). The second stratigraphic succession is as follows: silty dolomudstone (layer 5) → oolitic dolostone (sublayer 1). This cyclic pattern is indicative of terrigenous input influencing the growth of carbonate formations.
- (3)
- The loss on ignition (LOI) index demonstrates a positive correlation with MgO and CaO while exhibiting a negative correlation with SiO2, Al2O3, K2O, TiO2, and TFe2O3. This pattern is indicative of mass loss in dolomite during the process of heating as a result of the release of CO2. This finding is consistent with the thermal decomposition processes of carbonate minerals.
5.2. Implications for Volcanism
5.3. Implications for Hydrothermal Fluids
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wright, V.P. Peritidal carbonate facies models: A review. Geol. J. 1984, 19, 309–325. [Google Scholar] [CrossRef]
- Xiong, L.; Long, K.; Cao, Q.M.; Zhang, S.L. Multilayer accumulation conditions and key technologies for exploration and development of the west Sichuan gas field in Sichuan basin. Acta Pet. Sin. 2024, 45, 595–614. [Google Scholar]
- Guo, X.J.; Wu, X.N.; Jin, W.D.; Lin, S.G.; Wu, D.X.; Yu, Z. New analysis of lithofacies palaeogeography and exploration area selection of the Member 4 of Majiagou Formation in Ordos Basin. J. Paleogeography 2023, 25, 105–118. [Google Scholar]
- Yi, S.W.; Li, M.P.; Guo, X.J.; Yang, F.; Yang, H.J.; Sun, R.N.; Wang, X.M. Rift-uplift-depression reservoir-controlling model of large gas province in Cambrian presalt, Tarim Basin. Nat. Gas. Geosci. 2022, 33, 1363–1383. [Google Scholar]
- Qian, Y.X.; Du, Y.M.; Chen, D.Z.; You, D.H.; Zhang, J.T.; Chen, Y.; Liu, Z.B. Stratigraphic sequence and sedimentary facies of Qigebulak formation at Xianerbulak, Tarim basin. Pet. Geol. Exp. 2014, 36, 1–8. [Google Scholar]
- Wang, Y.Z.; Ge, X.T.; Tang, P.; Yang, B.; Chen, D.Z.; Wang, B.; Deng, M.; Zhao, G.W. Division of the Sequence Stratigraphy of the Sinian Qigebrak Formation in the Northwest Tarim Basin: Evidence from the High-resolution Analysis of Depositional Facies and the Fischer Plot. Acta Sedimentol. Sin. (Chin. Ed. Engl. Abstr.) 2024, 23, 983–998. [Google Scholar]
- Chen, Y.Q.; Yang, G.; Tian, H.N.; Chen, B.; Yi, Y.; Li, B.H. Ediacaran stratigraphic succession and sedimentary evolution of the Tarim carton. J. Stratigr. 2024, 48, 17–41. [Google Scholar]
- Wang, X.L.; Hu, W.X.; Chen, Q.; Li, Q.; Zhu, J.Q.; Zhang, J.T. Characteristics and formation mechanism of Upper Sinian algal dolomite at the Kalpin area, Tarim Basin. Acta Pet. Sin. 2010, 84, 1479–1497. [Google Scholar]
- Li, P.W.; Luo, P.; Song, J.M.; Jin, T.F.; Wang, G.Q. Characteristics of Upper Sinian dolomite reservoir in the northwestern margin of Tarim Basin. Mar. Orig. Pet. Geol. 2015, 20, 1–12. [Google Scholar]
- Tang, P.; Chen, D.Z.; Cai, Z.; Wang, Y.Z.; Ding, Y.; El-Shafeiy, M.; Yang, B. Diagenesis of microbialite-dominated carbonates in the Upper Ediacaran Qigebrak Formation, NW Tarim Basin, China: Implications for reservoir development. Mar. Petrol. Geol. 2022, 136, 105476. [Google Scholar] [CrossRef]
- Qian, Y.X.; He, Z.L.; Chen, D.Z.; Chu, C.L.; Dong, S.F.; Zhang, Q.Z. Characteristics and genesis of various oolites in the Ediacaran Qigebulake formation in northern Tarim basin. J. Paleogeography 2023, 25, 56–74. [Google Scholar]
- Qian, Y.X.; You, D.H.; Chen, D.Z.; Chen, Y.; Jiang, H.J.; Liu, Z.B. The stratigraphic and sedimentation analysis of Sugaitbulak Formation of the Upper Sinian at Xianerbulak of Aksu in Tarim Basin. Chin. J. Geol. 2011, 46, 445–455. [Google Scholar]
- Zhou, X.B.; Li, J.H.; Fu, C.J.; Li, W.S.; Wang, H.H. A discussion on the Cryogenian-Cambrian tectonic-sedimentary event and tectonic setting of northern Tarim Basin. Geol. China 2012, 39, 900–911. [Google Scholar]
- He, J.Y.; Wu, G.H.; Xu, B.; Qu, T.L.; Li, H.H.; Cao, Y.H. Characteristics and petroleum exploration significance of unconformity between Sinian and Cambrian in Tarim Basin. Chin. J. Geol. 2010, 45, 698–706. [Google Scholar]
- Tian, L.; Zhang, H.Q.; Liu, J.; Zhang, N.C.; Shi, X.Q. Distribution of Nanhua-Sinian rifts and proto-type basin evolution in southwestern Tarim Basin, NW China. Pet. Explor. Dev. 2020, 47, 1122–1133. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Yan, W.; Han, C.W.; Yan, L.; Ran, Q.G.; Hang, Q.; He, H.; Ma, Y. Structural and sedimentary basin transformation at the Cambrian/Neproterozoic interval in Tarim basin: Implication to subsalt dolostone exploration. Nat. Gas. Geosci. 2019, 30, 39–50. [Google Scholar]
- Yang, F.; Bao, Z.D.; Zhang, D.M.; Jia, X.; Xiao, J. Carbonate secondary porosity development in a polyphaser paleokarst from Precambrian system: Upper Sinian examples, North Tarim basin, northwest China. Carbonates Evaporites 2017, 32, 243–256. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Q.; Hao, F.; Chen, Y.; Yi, Y.; Hu, F.; Wang, X.; Tian, J.; Wang, G. Dolomite reservoir formation and diagenesis evolution of the Upper Ediacaran Qigebrak Formation in the Tabei area, Tarim Basin. Sci. China Earth Sci. 2023, 66, 2311–2331. [Google Scholar] [CrossRef]
- Jiao, C.L.; He BZLi, Y.; Huang, C.J.; Sha, X.G.; Zhang, Y.; Gao, X.P.; Wang, K.N.; Li, J.J.; Yang, X.Q. The petroleum geological conditions and favorable exploration direction of Sinian in northern Tarim basin. Acta Geol. Sin. 2024, 98, 3683–3702. [Google Scholar]
- He, D.F.; Jia, C.Z.; Li, D.S.; Zhang, C.J.; Meng, Q.R.; Shi, X. Formation and evolution of polycyclic superimposed Tarim basin. Oil Gas. Geol. 2005, 26, 64–76. [Google Scholar]
- Zheng, J.F.; Shen, A.J.; Yang, H.G.; Zhu, Y.J.; Liang, F. Geochemistry and geochronology characteristics and their geological significance of microbial dolomite in upper Sinian, NW Tarim Basin. Acta Petrol. Sin. 2021, 37, 2189–2202. [Google Scholar]
- Zhang, C.Y.; Guan, S.W.; Wu, L.; Ren, R. Hydrothermal activity and depositional model of the Yurtus formation in the early Cambrian, NW Tarim, China. Earth Sci. Front. 2019, 26, 202–211. [Google Scholar]
- Dickson, J.A.D. Carbonate identification and genesis as revealed by staining. J. Sediment. Res. 1966, 36, 491–505. [Google Scholar]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Yun, H.P. Geochemistry and their tectonic significance of the volcanic rocks from Tarim micro-plate. Northwestern Geol. 2003, 36, 1–6. [Google Scholar]
- Dudás, F.Ö.; Zhang, H.; Shen, S.Z.; Bowring, S.A. Major and Trace Element Geochemistry of the Permian-Triassic Boundary Section at Meishan, South China. Front. Earth Sci. 2021, 9, 637102. [Google Scholar] [CrossRef]
- Lin, L.B.; Yu, Y.; Huang, Q.C.; Shi, H. The geochemical characteristics and sedimentary environment analysis of Ordovician in Wangcang region, northern Sichuan Basin. Acta Petrol. Sin. 2017, 33, 1272–1284. [Google Scholar]
- Yang, J.; Du, Y.S.; Han, Z.Z.; Hu, L.S.; Zhang, Z.H.; Wan, L.; Zeng, Z.X. Increasing terrigenous input into the continental margin seawater during the late Ediacaran, North China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2024, 636, 111979. [Google Scholar] [CrossRef]
- Yang, H.J.; Chen, Y.Q.; Pan, W.Q.; Wang, B.; Yang, W.J.; Huang, S.Y.; Yang, P.F.; Yi, Y.; Wang, X.X. Study on tectonic and sedimentary evolution during the Nanhua-Middle Cambrian and its significance for subsalt exploration, Tarim Basin. China Pet. Explor. 2021, 26, 84–98. [Google Scholar]
- Yang, X.; Li, H.L.; Zhang, Z.P.; Chen, Q.L.; Chen, Y.; Xiong, P. Evolution of Neoproterozoic Tarim basin in Northwestern China and tectonic background of the lower Cambrian Hydrocarbon source rocks. Acta Geol. Sin. 2017, 91, 1706–1719. [Google Scholar]
- Guo, D.S.; Wu, G.H.; Zhang, C.Z.; Zhang, B.S. The evidence of detrital zircon age determination of Tarim basin basement. J. Southwest Pet. Univ. (Sci. Technol. Ed.) 2008, 30, 6–10. [Google Scholar]
- Zinkernagel, U. Cathodoluminescence of quartz and its application to sandstone petrology. Contrib. Sed. 1978, 8, 1–69. [Google Scholar]
- Boggs, S.J.R.; Kwon, Y.-I.; Goles, G.G.; Rusk, B.G.; Krinsley, D.; Seyedolali, A. Is quartz cathodoluminescence color a reliable provenance tool? A quantitative examination. J. Sediment. Res. 2002, 72, 408–415. [Google Scholar] [CrossRef]
- Götze, J.; PloÈtze, M.; Habermann, D. Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz-a review. Mineral. Petrol. 2001, 71, 225–250. [Google Scholar] [CrossRef]
- Ulmer-Scholle, D.S.; Scholle, P.A.; Schieber, J.; Raine, R.J. A Color Guide to the Petrography of Sandstones, Siltstones, Shales and Associated Rocks; The American Association of Petroleum Geologists: Tulsa, OK, USA, 2003; pp. 4–473. [Google Scholar]
- Weltje, G.J.; von Eynatten, H. Quantitative provenance analysis of sediments: Review and outlook. Sediment. Geol. 2004, 171, 1–11. [Google Scholar] [CrossRef]
- Vinogradov, A.P. Average concentration of chemical elements in the chief types of igneous rocks of the crust of the Earth. Geochemistry 1962, 7, 555–571. [Google Scholar]
- Turekian, K.K.; Wedepohi, K.H. Distribution of the elements in some major units of the earth’s crust. GSA Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Möller, P.; Morteani, G.; Schley, F. Discussion of REE distribution patterns of carbonatites and alkalic rocks. Lithos 1980, 13, 171–179. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Qiu, L.W.; Wang, M.; Jia, X.Y.; Cao, Y.C.; Lei, D.W.; Qu, C.C. Depositional model for a salinized lacustrine basin: The Permian Lucaogou Formation, Jimsar Sag, Junggar Basin, NW China. J. Asian Earth Sci. 2019, 178, 81–95. [Google Scholar] [CrossRef]
- Murray, R.W.; Brink, M.B.; Gerlach, D.C.; Russ, G.P., III; Jones, D.L. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments. Geochim. Cosmochim. Acta 1991, 55, 1875–1895. [Google Scholar] [CrossRef]
- Huang, S.J. Carbonate Diagenesis; Geological Publishing House: Beijing, China, 2010; pp. 192–196. [Google Scholar]
- Grammer, G.M.; Crescini, C.M.; McNeill, D.F.; Taylor, L.H. Quantifying rates of syndepositional marine cementation in deeper platform environments—New insight into a fundamental process. J. Sediment. Res. 1999, 69, 202–207. [Google Scholar] [CrossRef]
- Shi, S.; Liu, W.; Huang, Q.; Wang, T.; Zhou, H.; Wang, K.; Ma, K. Dolostone reservoir characteristic and its formation mechanism in Qigebulake formation, sinian, north Tarim Basin. Nat. Gas. Geosci. 2017, 28, 1226–1234. [Google Scholar]
- Bau, M.; Dulski, P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res. 1996, 79, 37–55. [Google Scholar] [CrossRef]
- Rieger, P.; Magnall, J.M.; Gleeson, S.A.; Oelze, M.; Wilke, F.D.K.; Lilly, R. Differentiating between hydrothermal and diagenetic carbonate using rare earth element and yttrium (REE+Y) geochemistry: A case study from the Paleoproterozoic George Fisher massive sulfide Zn deposit, Mount Isa, Australia. Miner. Depos. 2022, 57, 187–206. [Google Scholar] [CrossRef]
- Adachi, M.; Yamamoto, K.; Sugisaki, R. Hydrothermal chert and associated siliceous rocks from the Northern Pacific, their geological significance as indication of ocean ridge activity. Sediment. Geol. 1986, 47, 125–148. [Google Scholar] [CrossRef]
- Chen, H.; Yang, S.; Dong, C.; Zhu, G.; Jia, C.; Wei, G.; Wang, Z. Study on geological thermal events in Tarim Basin. Chin. Sci. Bull. 1997, 42, 1096–1098. [Google Scholar]
- Zhou, X.; Chen, D.; Qing, H.; Qian, Y.; Wang, D. Submarine silica-rich hydrothermal activity during the earliest Cambrian in the Tarim Basin, northwest China. Int. Geol. Rev. 2014, 56, 1906–1918. [Google Scholar] [CrossRef]
Samples | 1-1 | 1-3 | 1-5 | 2-1 | 2-3 | 3-1 | 4-1 | 5 | 6-1 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lithofacies | Oolitic Dolostone | Oolitic Dolostone | Oolitic Dolostone | Oolitic-Dolothrombolite | Oolitic Dolothrombolite | Dolowackstone | Dolowackstone | Siliciclastic Dolomudstone | Oolitic Dolostone | Siliciclastic Dolomudstone | Siliciclastic Dolomudstone | Dolosiltstone |
SiO2 | 2.72 | 2.09 | 2.30 | 2.71 | 1.82 | 6.86 | 12.06 | 20.92 | 6.48 | 24.95 | 32.54 | 39.10 |
Al2O3 | 0.64 | 0.61 | 1.17 | 0.63 | 0.65 | 2.39 | 3.84 | 6.97 | 1.94 | 4.30 | 6.89 | 12.45 |
TFe2O3 | 0.48 | 0.50 | 0.50 | 0.51 | 0.44 | 0.76 | 0.93 | 1.36 | 0.76 | 0.88 | 1.28 | 2.48 |
MgO | 22.10 | 21.34 | 22.79 | 23.05 | 23.37 | 21.92 | 20.16 | 16.70 | 21.66 | 16.14 | 13.22 | 9.30 |
CaO | 27.69 | 28.04 | 26.68 | 26.79 | 26.82 | 24.83 | 22.81 | 18.46 | 24.58 | 18.56 | 15.13 | 10.12 |
Na2O | 0.31 | 1.10 | 0.21 | 0.28 | 0.27 | 0.33 | 0.37 | 0.51 | 0.79 | 0.43 | 0.55 | 1.11 |
K2O | 0.03 | 0.07 | 0.06 | 0.08 | 0.04 | 0.41 | 0.50 | 2.14 | 0.31 | 1.52 | 3.05 | 6.50 |
MnO | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
TiO2 | 0.00 | 0.00 | 0.01 | 0.02 | 0.01 | 0.08 | 0.11 | 0.23 | 0.05 | 0.11 | 0.28 | 0.61 |
P2O5 | 0.04 | 0.05 | 0.04 | 0.12 | 0.06 | 0.08 | 0.12 | 0.22 | 0.06 | 0.06 | 0.13 | 0.16 |
LOI | 45.90 | 46.15 | 46.22 | 45.77 | 46.49 | 42.29 | 39.05 | 32.44 | 43.33 | 32.99 | 26.87 | 18.10 |
FeO | 0.46 | 0.32 | 0.36 | 0.48 | 0.36 | 0.60 | 0.75 | 0.51 | 0.70 | 0.75 | 0.60 | 0.84 |
Ba | 892.80 | 560.20 | 378.10 | 309.70 | 283.00 | 476.60 | 106.40 | 607.20 | 428.70 | 606.90 | 721.10 | 745.70 |
Cr | 32.58 | 7.22 | 10.93 | 9.68 | 12.87 | 17.61 | 21.44 | 47.56 | 14.50 | 23.34 | 39.17 | 87.58 |
Ga | 0.46 | 0.36 | 0.60 | 0.91 | 0.53 | 2.60 | 4.15 | 8.61 | 1.47 | 3.59 | 7.48 | 16.68 |
Sr | 123.30 | 79.64 | 63.73 | 65.30 | 61.05 | 78.74 | 73.52 | 88.95 | 70.13 | 66.29 | 104.60 | 119.50 |
Th | 0.29 | 0.23 | 0.46 | 0.53 | 0.38 | 1.68 | 2.37 | 4.93 | 1.20 | 2.50 | 6.01 | 11.26 |
U | 2.42 | 2.13 | 2.11 | 3.07 | 2.65 | 2.26 | 3.24 | 5.19 | 2.83 | 2.34 | 4.12 | 8.64 |
V | 8.17 | 8.03 | 10.74 | 7.25 | 7.04 | 16.70 | 21.20 | 44.74 | 14.51 | 15.50 | 30.33 | 85.36 |
Co | 1.98 | 1.47 | 1.21 | 1.22 | 1.23 | 1.80 | 2.16 | 3.08 | 3.62 | 3.58 | 3.38 | 2.86 |
Ni | 18.81 | 5.69 | 6.80 | 5.95 | 8.30 | 5.59 | 6.70 | 13.57 | 11.45 | 12.05 | 12.47 | 9.18 |
Samples | 1-1 | 1-3 | 1-5 | 2-1 | 2-3 | 3-1 | 4-1 | 5 | 6-1 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
La | 1.53 | 1.37 | 1.91 | 3.97 | 2.27 | 8.67 | 12.23 | 23.75 | 5.81 | 8.93 | 21.32 | 45.57 |
Ce | 6.91 | 4.77 | 6.73 | 11.58 | 8.51 | 20.21 | 23.56 | 45.55 | 15.66 | 19.08 | 42.64 | 76.74 |
Pr | 0.50 | 0.43 | 0.46 | 1.31 | 0.67 | 2.08 | 2.86 | 5.30 | 1.47 | 2.04 | 4.89 | 8.36 |
Nd | 1.90 | 1.65 | 1.72 | 5.19 | 2.52 | 7.86 | 11.05 | 19.75 | 5.54 | 7.72 | 19.08 | 28.13 |
Sm | 0.35 | 0.29 | 0.34 | 0.91 | 0.44 | 1.35 | 1.95 | 3.39 | 1.07 | 1.48 | 3.73 | 4.32 |
Eu | 0.30 | 0.19 | 0.18 | 0.25 | 0.17 | 0.41 | 0.43 | 0.82 | 0.33 | 0.48 | 0.91 | 1.00 |
Gd | 0.43 | 0.33 | 0.36 | 0.84 | 0.45 | 1.22 | 1.75 | 2.88 | 0.98 | 1.36 | 3.17 | 3.84 |
Tb | 0.05 | 0.04 | 0.06 | 0.12 | 0.07 | 0.18 | 0.26 | 0.42 | 0.16 | 0.21 | 0.49 | 0.56 |
Dy | 0.33 | 0.22 | 0.34 | 0.62 | 0.37 | 0.98 | 1.42 | 2.22 | 0.91 | 1.26 | 2.66 | 2.95 |
Y | 1.79 | 1.05 | 1.85 | 3.09 | 2.15 | 5.24 | 6.93 | 10.70 | 4.75 | 6.73 | 13.23 | 13.50 |
Ho | 0.07 | 0.04 | 0.07 | 0.11 | 0.07 | 0.19 | 0.30 | 0.42 | 0.18 | 0.26 | 0.52 | 0.57 |
Er | 0.47 | 0.57 | 0.46 | 0.50 | 0.46 | 0.77 | 30.87 | 1.45 | 0.80 | 1.32 | 1.65 | 2.12 |
Tm | 0.03 | 0.02 | 0.03 | 0.04 | 0.03 | 0.08 | 0.11 | 0.16 | 0.07 | 0.12 | 0.22 | 0.25 |
Yb | 0.16 | 0.10 | 0.20 | 0.23 | 0.18 | 0.50 | 0.70 | 1.04 | 0.46 | 0.74 | 1.46 | 1.66 |
Lu | 0.03 | 0.02 | 0.03 | 0.03 | 0.03 | 0.08 | 0.13 | 0.16 | 0.07 | 0.12 | 0.23 | 0.26 |
ΣREE | 14.83 | 11.08 | 14.72 | 28.79 | 18.37 | 49.82 | 94.55 | 118.01 | 38.26 | 51.83 | 116.19 | 189.83 |
LREE | 11.49 | 8.70 | 11.34 | 23.21 | 14.58 | 40.59 | 52.09 | 98.55 | 29.88 | 39.73 | 92.57 | 164.12 |
HREE | 3.35 | 2.38 | 3.38 | 5.57 | 3.80 | 9.23 | 42.46 | 19.45 | 8.38 | 12.11 | 23.62 | 25.71 |
LREE/HREE | 3.43 | 3.66 | 3.35 | 4.17 | 3.84 | 4.40 | 1.23 | 5.07 | 3.57 | 3.28 | 3.92 | 6.38 |
(La/Yb)N | 9.70 | 13.13 | 9.73 | 17.24 | 12.38 | 17.42 | 17.47 | 22.77 | 12.69 | 12.06 | 14.61 | 27.40 |
δCe | 1.90 | 1.49 | 1.68 | 1.22 | 1.64 | 1.11 | 0.93 | 0.94 | 1.26 | 1.04 | 0.97 | 0.88 |
δEu | 2.34 | 1.90 | 1.52 | 0.87 | 1.14 | 0.97 | 0.70 | 0.78 | 0.97 | 1.02 | 0.79 | 0.74 |
(La/Yb)N | 6.54 | 8.85 | 6.56 | 11.63 | 8.35 | 11.74 | 11.78 | 15.35 | 8.56 | 8.13 | 9.85 | 18.47 |
R2 | SiO2 | Al2O3 | TFe2O3 | MgO | CaO | Na2O | K2O | MnO | TiO2 | P2O5 | LOI | FeO |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 1 | |||||||||||
Al2O3 | 0.893 | 1 | ||||||||||
TFe2O3 | 0.799 | 0.972 | 1 | |||||||||
MgO | −0.982 | −0.915 | −0.851 | 1 | ||||||||
CaO | −0.971 | −0.948 | −0.877 | 0.957 | 1 | |||||||
Na2O | 0.172 | 0.234 | 0.307 | 0.279 | 0.18 | 1 | ||||||
K2O | 0.849 | 0.94 | 0.95 | −0.912 | −0.897 | 0.304 | 1 | |||||
MnO | 0.098 | 0.03 | 0.018 | 0.047 | 0.095 | 0.003 | 0.009 | 1 | ||||
TiO2 | 0.812 | 0.962 | 0.986 | −0.866 | −0.882 | 0.284 | 0.977 | 0.007 | 1 | |||
P2O5 | 0.371 | 0.516 | 0.48 | 0.35 | 0.428 | 0.027 | 0.369 | 0.001 | 0.444 | 1 | ||
LOI | −0.982 | −0.958 | −0.893 | 0.978 | 0.992 | 0.21 | −0.918 | 0.062 | −0.902 | −0.429 | 1 | |
FeO | 0.486 | 0.456 | 0.463 | 0.416 | −0.51 | 0.076 | 0.372 | 0.41 | 0.413 | 0.125 | −0.489 | 1 |
Microfacies | Layer/Sublayer | Key Petrographic Features | SiO2, Al2O3, REE Trends | δEu/δCe, Al/(Al+Fe+Mn), Mo/TiO2 | Interpreted Process |
---|---|---|---|---|---|
Oolitic dolostone | 1 | Concentric ooids, embayed quartz grains with blue CL, spar cement | Low Si and Al, enriched Eu | δEu > 1.5, low Al/(Al+Fe+Mn), high Mo/TiO2 | Hydrothermal overprint |
volcaniclastic influx | |||||
Oolitic dolothrombolite | 2 | Irregular thrombolitic texture, spar cement | Low Si and Al, enriched Eu | Parts of δEu > 1.1 | Hydrothermal overprint |
Spongiomicrobialite | 3 | Sponge-like texture, micro-spar to spar cement | Low Si and Al, REE-poor | δEu ~ 1 | |
Microbial-peloidal wackstone | 4 | Subrounded microbial peloid, quartz grains | medium Si and Al, REE-rich | δEu = 0.7 | Terrigenous input |
Silty dolomudstone | 5, 7 | Graded bedding, quartz clasts, embayed quartz grains with blue CL | High Si and Al, REE-rich | δEu ~ 0.7 | Terrigenous input |
volcaniclastic influx | |||||
Oolitic dolostone | 6 | Concentric ooids, spar cement | medium Si and Al, REE-poor | δEu ~ 1 | Terrigenous input? |
Argillaceous siltstone | 8 | Graded bedding, irregular clasts | High Si and Al, REE-rich | δEu ~ 0.8 | Terrigenous input |
Silty mudstone | 9 | Homogeneous, silty quartz clasts | High Si and Al, REE-rich | δEu = 0.74 | Terrigenous input |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Y.; Zhang, S. High-Frequency Oolitic Tidal Cycles and Their Geochemical Signatures in the Upper Ediacaran Qigebulake Formation, NW Tarim Basin (China). Minerals 2025, 15, 613. https://doi.org/10.3390/min15060613
Hao Y, Zhang S. High-Frequency Oolitic Tidal Cycles and Their Geochemical Signatures in the Upper Ediacaran Qigebulake Formation, NW Tarim Basin (China). Minerals. 2025; 15(6):613. https://doi.org/10.3390/min15060613
Chicago/Turabian StyleHao, Yan, and Shaonan Zhang. 2025. "High-Frequency Oolitic Tidal Cycles and Their Geochemical Signatures in the Upper Ediacaran Qigebulake Formation, NW Tarim Basin (China)" Minerals 15, no. 6: 613. https://doi.org/10.3390/min15060613
APA StyleHao, Y., & Zhang, S. (2025). High-Frequency Oolitic Tidal Cycles and Their Geochemical Signatures in the Upper Ediacaran Qigebulake Formation, NW Tarim Basin (China). Minerals, 15(6), 613. https://doi.org/10.3390/min15060613