Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = onion rings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2571 KB  
Article
Magnetization States and Coupled Spin-Wave Modes in Concentric Double Nanorings
by Bushra Hussain and Michael G. Cottam
Nanomaterials 2024, 14(19), 1594; https://doi.org/10.3390/nano14191594 - 2 Oct 2024
Cited by 1 | Viewed by 1745
Abstract
Concentric multiple nanorings have previously been fabricated and investigated mainly for their different static magnetization states. Here, we present a theoretical analysis for the magnetization dynamics in double nanorings arranged concentrically, where there is coupling across a nonmagnetic spacer due to the long-range [...] Read more.
Concentric multiple nanorings have previously been fabricated and investigated mainly for their different static magnetization states. Here, we present a theoretical analysis for the magnetization dynamics in double nanorings arranged concentrically, where there is coupling across a nonmagnetic spacer due to the long-range dipole–dipole interactions. We employ a microscopic, or Hamiltonian-based, formalism to study the discrete spin waves that exist in the magnetic states where the individual rings may be in either a vortex or an onion state. Numerical results are shown for the frequencies and the spatial amplitudes (with relative phase included) of the spin-wave modes. Cases are considered in which the magnetic materials of the rings are the same (taken to be permalloy) or two different materials such as permalloy and cobalt. The dependence of these properties on the mean radial position of the spacer were studied, showing, in most cases, the existence of two distinct transition fields. The special cases, where the radial spacer width becomes very small (less than 1 nm) were analyzed to study direct interfaces between dissimilar materials and/or effects of interfacial exchange interactions such as Ruderman–Kittel–Kasuya–Yoshida coupling. These spin-wave properties may be of importance for magnetic switching devices and sensors. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

18 pages, 13986 KB  
Article
Microstructure and Properties of Mg-Gd-Y-Zn-Mn High-Strength Alloy Welded by Friction Stir Welding
by Jinxing Wang, Zhicheng Wan, Xiyu Wang, Jiaxu Wang, Yi Zou, Jingfeng Wang and Fusheng Pan
Materials 2024, 17(17), 4190; https://doi.org/10.3390/ma17174190 - 24 Aug 2024
Viewed by 1876
Abstract
Mg-Gd-Y-Zn-Mn (MVWZ842) is a kind of high rare earth magnesium alloy with high strength, high toughness and multi-scale strengthening mechanisms. After heat treatment, the maximum tensile strength of MVWZ842 alloy is more than 550 MPa, and the elongation is more than 5%. Because [...] Read more.
Mg-Gd-Y-Zn-Mn (MVWZ842) is a kind of high rare earth magnesium alloy with high strength, high toughness and multi-scale strengthening mechanisms. After heat treatment, the maximum tensile strength of MVWZ842 alloy is more than 550 MPa, and the elongation is more than 5%. Because of its great mechanical properties, MVWZ842 has broad application potential in aerospace and rail transit. However, the addition of high rare earth elements makes the deformation resistance of MVWZ842 alloy increase to some extent. This leads to the difficulty of direct plastic processing forming and large structural part shaping. Friction stir welding (FSW) is a convenient fast solid-state joining technology. When FSW is used to weld MVWZ842 alloy, small workpieces can be joined into a large one to avoid the problem that large workpieces are difficult to form. In this work, a high-quality joint of MVWZ842 alloy was achieved by FSW. The microstructure and properties of this high-strength magnesium alloy after friction stir welding were studied. There was a prominent onion ring characteristic in the nugget zone. After the base was welded, the stacking fault structure precipitated in the grain. There were a lot of broken long period stacking order (LPSO) phases on the retreating side of the nugget zone, which brought the effect of precipitation strengthening. Nano-α-Mn and the broken second phase dispersed in the matrix in the nugget zone, which made the grains refine. A relatively complete dynamic recrystallization occurred in the nugget zone, and the grains were refined. The welding coefficient of the welded joint exceeded 95%, and the hardness of the weld nugget zone was higher than that of the base. There were a series of strengthening mechanisms in the joint, mainly fine grain strengthening, second phase strengthening and solid solution strengthening. Full article
(This article belongs to the Special Issue Research on Performance Improvement of Advanced Alloys)
Show Figures

Figure 1

13 pages, 32448 KB  
Article
Microstructure and Mechanical Properties of Friction Stir Lap Welding Joint of Al/CU Dissimilar Metals
by Fan Jiang, Wenquan Wang, Xinge Zhang and Wenbiao Gong
Metals 2023, 13(12), 1969; https://doi.org/10.3390/met13121969 - 3 Dec 2023
Cited by 10 | Viewed by 3112
Abstract
In this paper, 5083 aluminum alloy and T2 copper were selected for the friction stir lap welding test. The effect of intermetallic compounds on the microstructure and properties of Al/Cu dissimilar metal lap joints was studied. The results showed that the circulating Al/Cu [...] Read more.
In this paper, 5083 aluminum alloy and T2 copper were selected for the friction stir lap welding test. The effect of intermetallic compounds on the microstructure and properties of Al/Cu dissimilar metal lap joints was studied. The results showed that the circulating Al/Cu composite structure was formed on the advancing side of the lap joint, and the Al/Cu staggered hook-like structure and copper-rich region were generated on the retreating side. There was no typical ‘onion ring’ structure in the joint. Element diffusion occurred at the interface of the joint, forming a thin and uniform interfacial layer of Al/Cu intermetallic compounds, thus achieving a well-metallurgical bond at the Al/Cu interface. There were the intermetallic compounds Al2Cu and Al4Cu9, without AlCu, in the lap joint. In addition, dynamic recrystallization occurred in the nugget zone, and higher dislocation density and dislocation entanglement were generated, which enhanced the deformation resistance in the nugget zone and increased the joint strength. The tensile test showed that the ductile–brittle mixed fracture occurred in the heat-affected zone on the advancing side of the aluminum plate, and the fracture had necking. The failure load of the lap joint was 4350 ± 30 N, about 80% of the aluminum base metal. The elongation of the Al/Cu dissimilar lap joint tensile specimen was 2.5%. Full article
(This article belongs to the Topic Development of Friction Stir Welding and Processing)
Show Figures

Graphical abstract

14 pages, 3054 KB  
Article
Microstructural Aspects of the Fabrication of Al/Al2O3 Composite by Friction Stir Processing
by Sergey S. Malopheyev, Ivan S. Zuiko, Sergey Yu. Mironov and Rustam O. Kaibyshev
Materials 2023, 16(7), 2898; https://doi.org/10.3390/ma16072898 - 5 Apr 2023
Cited by 6 | Viewed by 1934
Abstract
The purpose of this work was the examination of microstructural evolution during the fabrication of an Al/Al2O3 composite by friction stir processing (FSP). In order to obtain new insight into this process, a longitudinal section of the produced composite was [...] Read more.
The purpose of this work was the examination of microstructural evolution during the fabrication of an Al/Al2O3 composite by friction stir processing (FSP). In order to obtain new insight into this process, a longitudinal section of the produced composite was studied, and advanced characterization techniques (including electron backscatter diffraction and microhardness mapping) were applied. It was found that the reinforcing particles rapidly rearranged into the “onion-ring” structure, which was very stable against the subsequent dispersion. Specifically, the remnants of the comparatively coarse-scale particle agglomerations have survived even after 12 FSP passes. Therefore, it was concluded that three or four FSP passes, which are often applied in practice, are not sufficient to provide a homogeneous dispersion of the reinforcing particles. It was also revealed that the gradual distribution of the nanoscale Al2O3 particles throughout the aluminum matrix promoted a subtle reduction in both the portion of high-angle boundaries and the average grain size. These observations were attributed to the particle pinning of grain-boundary migration and dislocation slip. Full article
Show Figures

Figure 1

12 pages, 2002 KB  
Article
Characterization of the Volatile Compounds of Onion with Different Fresh-Cut Styles and Storage Temperatures
by Guangmin Liu, Yaqin Wang, Liping Hu and Hongju He
Foods 2022, 11(23), 3829; https://doi.org/10.3390/foods11233829 - 27 Nov 2022
Cited by 16 | Viewed by 5875
Abstract
The flavor of fresh onion and its processed products is an important index with which to evaluate its quality. In this study, the highly volatile compounds of onion with different fresh-cut styles (bulb, ring, and square) and different storage temperatures (4 °C, 20 [...] Read more.
The flavor of fresh onion and its processed products is an important index with which to evaluate its quality. In this study, the highly volatile compounds of onion with different fresh-cut styles (bulb, ring, and square) and different storage temperatures (4 °C, 20 °C, and 25 °C) were characterized at the molecular level, focusing in particular on the volatile sulfur compounds. Headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and headspace solid-phase microextraction-gas chromatography−mass spectrometry (HS-SPME-GC-MS) were employed. A total of 14 highly volatile compounds were identified in onion samples by HS-GC-IMS, and the square sample contained more volatile components. (E,E)-2,4-heptadianal, ethyl acetate, 2-methyl-1-pentanol, 2-pentylfuran, propyl acetate, and 2,6-dimethylpyrazine were produced in the ring and square samples when stored at higher temperatures, while pentanal, 2-heptenal, hexanal were decreased after cutting. Simultaneously, 16 sulfur compounds were identified in onions by HS-SPME-GC-MS. The sulfur compounds profile of the bulbs was significantly different from that of the rings and squares at any temperature. When stored at a low temperature (4 °C), cutting onions into a ring or square shape produced more sulfur. However, at higher temperatures (20 °C and 25 °C), fresh-cutting decreased the sulfur concentration. The total content of sulfur compounds was higher in the same cut style stored at higher temperatures (20 °C or 25 °C). 2-Mercapto-3,4-dimethyl-2,3-dihydrothiophene and 2,4-dimethylthiophene were formed during storage; however, (E)-1-(prop-1-en-1-yl)-3-propyltrisulfane, 1-(1-(methylthio)propyl)-2-propyldisulfane, (Z)-1-(1-propenyldithio)propyl disulfide, dipropyl trisulfide, and methyl 1-(1-propenylthio)propyl disulfide were lost from all samples after storage. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

19 pages, 3920 KB  
Article
How Non-Governmental-Organization-Built Small-Scale Irrigation Systems Are a Failure in Africa
by Amadou Keita, Dial Niang and Sibri Alphonse Sandwidi
Sustainability 2022, 14(18), 11315; https://doi.org/10.3390/su141811315 - 9 Sep 2022
Cited by 3 | Viewed by 2935
Abstract
Every year, millions of dollars are invested in irrigation development in Sahelian African countries. After shifting from governmental organizations to non-governmental organizations (NGOs), the vulnerability of local populations has not changed much over the last 60 years in Africa. In this study, ten [...] Read more.
Every year, millions of dollars are invested in irrigation development in Sahelian African countries. After shifting from governmental organizations to non-governmental organizations (NGOs), the vulnerability of local populations has not changed much over the last 60 years in Africa. In this study, ten 1 ha small-scale irrigation systems—spread over the two driest climatic zones—were investigated in Burkina Faso. The soils and subsoils were characterized using double-ring infiltration measurements and two soil databases. The irrigation systems’ operability was assessed by sampling 10–12 farmers per system. A total of eight pumping tests were performed on a sample of wells. To assess the yield of cultivated onion, 5 to 7 squares were followed up in each of the 10 systems. Results indicated that water availability was ensured nowhere. The 32 wells were dug in clayey subsoils. Six of them yielded available water Ve flows ranging from 0.0 to 6.1 m3/day, far below the 80 m3/(ha·day) required by onion. To solve this issue, the NGOs shifted to a low-pressure drip irrigation solution, but the too-low pressure of 0.1 bar led to clogging. Ultimately, all 10 systems (except Louda) broke down a few months after the project’s end. Full article
Show Figures

Figure 1

21 pages, 4716 KB  
Article
Anthracnose of Onion (Allium cepa L.): A Twister Disease
by Ram Dutta, Jayalakshmi K., Sharath M. Nadig, Dalasanuru Chandregowda Manjunathagowda, Vishal S. Gurav and Major Singh
Pathogens 2022, 11(8), 884; https://doi.org/10.3390/pathogens11080884 - 5 Aug 2022
Cited by 27 | Viewed by 13344
Abstract
The onion (Allium cepa L.) is a lucrative and high-value vegetable–spice crop in India, but it is sensitive to several of diseases caused by fungi, bacteria, viruses, and nematodes, of which a fungal disease, anthracnose, caused by Colletotrichum spp., is a major [...] Read more.
The onion (Allium cepa L.) is a lucrative and high-value vegetable–spice crop in India, but it is sensitive to several of diseases caused by fungi, bacteria, viruses, and nematodes, of which a fungal disease, anthracnose, caused by Colletotrichum spp., is a major issue for both onion producers and researchers since it severely affects the bulb production. Twister disease is currently one of the most common problems in onion production, particularly in humid regions, and it reduces productivity while also lowering the value and profitability. Twister disease is visualised by white or pale-yellow water-soaked oval depressed lesions on leaf blades, which are the first symptoms. Lesions expand as the disease advances, and numerous black-coloured, slightly elevated structures/fruiting bodies appear in the middle area, arranged in concentric rings. Curling, twisting, chlorosis of the leaves, and aberrant extension of the neck or pseudo-stem occurs, followed by rotting of the bulb. In an unmanaged crop, an excess gibberellin production by Colletotrichum gloeosporioides and Gibberella moniliformis is suspected to induce twisting and aberrant neck elongation, which will ruin onion productivity. It is difficult and environmentally unfriendly to control these infections. Since, to the best of our knowledge, this is the first review on onion anthracnose, we tried to consolidate information. This review updates our knowledge of the pathogen, including the disease cycle, infection pathways, and disease management techniques. As a result, growers will be benefit from the application of cultural, biological, and chemical measures and the use of resistant varieties. Full article
(This article belongs to the Section Fungal Pathogens)
Show Figures

Figure 1

14 pages, 1643 KB  
Review
Health Benefits of Quercetin in Age-Related Diseases
by Deepika and Pawan Kumar Maurya
Molecules 2022, 27(8), 2498; https://doi.org/10.3390/molecules27082498 - 13 Apr 2022
Cited by 350 | Viewed by 33519
Abstract
Polyphenols are the known group of phytochemicals that essentially consists of phenolic rings. These are the plant product present in varied fruits and vegetables. These secondary metabolites perform a protective function in plants from environmental and biological stress. When consumed as a human [...] Read more.
Polyphenols are the known group of phytochemicals that essentially consists of phenolic rings. These are the plant product present in varied fruits and vegetables. These secondary metabolites perform a protective function in plants from environmental and biological stress. When consumed as a human diet these are also known to prevent various age-associated diseases. Polyphenols are known to possess antioxidant properties and protect against oxidative stress. The literature survey was carried out using databases such as PubMed, Science direct and Springer. The research articles from last 10–12 years were selected for this review based on its relevancy with the topic. The articles selected was mainly focused on quercetin and its health benefits. The present review highlights the main functions of a flavonoid, quercetin. Quercetin is among the widely occurring polyphenol, found abundantly in nature. It is commonly present in different plant products. Onion is known to have the highest quantity of quercetin. This plant compound is possessed antioxidant properties and is considered to have a protective function against aging. It is known to be present in both free and conjugated forms. Quercetin has anti-oxidative, anti-inflammatory, anti-proliferative, anti-carcinogenic, anti-diabetic, and anti-viral properties. The molecule is lipophilic and can easily cross the BBB (Blood-Brain Barrier) and hence protects from neurodegenerative diseases. Various in vivo and in vitro studies have demonstrated the role of quercetin and here a detailed review of quercetin as a curative agent in neurodegeneration, diabetes, cancer, and inflammation has been carried out. Studies have proved that quercetin plays a crucial role in the prevention of age-related disorders. Quercetin is a potent antioxidant which is currently being used in various pharmaceuticals. Properties of quercetin can be further explored in various other disorders. Nanoformulations and liposomal formulations of quercetin can be made to treat other age associated diseases. Full article
(This article belongs to the Special Issue Quercetin: From Structure to Health Issues)
Show Figures

Figure 1

14 pages, 6126 KB  
Article
The Influence of Tool Shape on Plastic Metal Flow, Microstructure and Properties of Friction Stir Welded 2024 Aluminum Alloy Joints
by Yumeng Sun, Wei Liu, Yupeng Li, Wenbiao Gong and Chuan Ju
Metals 2022, 12(3), 408; https://doi.org/10.3390/met12030408 - 26 Feb 2022
Cited by 17 | Viewed by 3591
Abstract
In this paper, the effect of different shapes of tool pin on the plastic flow of 2024-T6 aluminum alloy during friction stir welding was studied. In order to observe the plastic flow of materials more clearly, we chose the method of friction stir [...] Read more.
In this paper, the effect of different shapes of tool pin on the plastic flow of 2024-T6 aluminum alloy during friction stir welding was studied. In order to observe the plastic flow of materials more clearly, we chose the method of friction stir welding of dissimilar materials, considering the different corrosive characteristics of aluminum alloys made of different materials when exposed to the same corrosive liquid. By studying and comparing the temperature field, macro and microstructure, microhardness and tensile properties of welded joints, the results indicated that the metal in the weld nugget zone (WNZ) mainly came from the base metal of the advancing side, the thread being the driving force of the downward movement of the FSW plastic metal. The deep groove thread tool pin had the strongest ability to drive the metal downward. The conical cam thread tool pin had the strongest stirring effect on materials and the best metal fluidity. The macroscopic morphology, microstructure, mechanical properties and fracture morphology of different joints were analyzed, and the results showed that all joints could form an excellent union, with an onion ring pattern appearing in cross-section. The minimum grain size of the WNZ formed by the conical cam thread stirring head was 7~12 μm; the hardness was least at the junction of the heat affected zone (HAZ) and the thermo-mechanically affected zone (TMAZ). However, the hardness of the weld formed by the conical cam thread at this point was higher than that of other stirring heads; the tensile strength of all joints was more than 80% of the BM, and the maximum tensile strength of the joint welded by the conical cam thread tool pin was 364.27 MPa, accounting for 86.73% of the base metal (BM). The elongation after break was 14.95%. Tensile fracture morphology analysis showed that all joints were fractured by plastic fracture. Full article
(This article belongs to the Topic Development of Friction Stir Welding and Processing)
Show Figures

Figure 1

19 pages, 4609 KB  
Article
Effect of Sn Doping on Pd Electro-Catalysts for Enhanced Electro-Catalytic Activity towards Methanol and Ethanol Electro-Oxidation in Direct Alcohol Fuel Cells
by Cyril Tlou Selepe, Sandile Surprise Gwebu, Thabo Matthews, Tebogo Abigail Mashola, Ludwe Luther Sikeyi, Memory Zikhali and Nobanathi Wendy Maxakato
Nanomaterials 2021, 11(10), 2725; https://doi.org/10.3390/nano11102725 - 15 Oct 2021
Cited by 26 | Viewed by 3780
Abstract
Carbon nano-onions (CNOs) were successfully synthesized by employing the flame pyrolysis (FP) method, using flaxseed oil as a carbon source. The alcohol reduction method was used to prepare Pd/CNOs and Pd-Sn/CNOs electro-catalysts, with ethylene glycol as the solvent and reduction agent. The metal-nanoparticles [...] Read more.
Carbon nano-onions (CNOs) were successfully synthesized by employing the flame pyrolysis (FP) method, using flaxseed oil as a carbon source. The alcohol reduction method was used to prepare Pd/CNOs and Pd-Sn/CNOs electro-catalysts, with ethylene glycol as the solvent and reduction agent. The metal-nanoparticles were supported on the CNO surface without adjusting the pH of the solution. High-resolution transmission electron microscopy (HRTEM) images reveal CNOs with concentric graphite ring morphology, and also PdSn nanoparticles supported on the CNOs. X-ray diffractometry (XRD) patterns confirm that CNOs are amorphous and show the characteristic diffraction peaks of Pd. There is a shifting of Pd diffraction peaks to lower angles upon the addition of Sn compared to Pd/CNOs. X-ray photoelectron spectroscopy (XPS) results also confirm the doping of Pd with Sn to form a PdSn alloy. Fourier transform infrared spectroscopy (FTIR) displays oxygen, hydroxyl, carboxyl, and carbonyl, which facilitates the dispersion of Pd and Sn nanoparticles. Raman spectrum displays two prominent peaks of carbonaceous materials which correspond to the D and G bands. The Pd-Sn/CNOs electro-catalyst demonstrates improved electro-oxidation of methanol and ethanol performance compared to Pd/CNOs and commercial Pd/C electro-catalysts under alkaline conditions. Full article
(This article belongs to the Special Issue Nanomaterials for Energy Conversion and Catalytic Applications)
Show Figures

Figure 1

16 pages, 10872 KB  
Article
Mechanical and Microstructural Characterization of Friction Stir Welded SiC and B4C Reinforced Aluminium Alloy AA6061 Metal Matrix Composites
by Kaveripakkam Suban Ashraff Ali, Vinayagam Mohanavel, Subbiah Arungalai Vendan, Manickam Ravichandran, Anshul Yadav, Marek Gucwa and Jerzy Winczek
Materials 2021, 14(11), 3110; https://doi.org/10.3390/ma14113110 - 5 Jun 2021
Cited by 64 | Viewed by 4929
Abstract
This study focuses on the properties and process parameters dictating behavioural aspects of friction stir welded Aluminium Alloy AA6061 metal matrix composites reinforced with varying percentages of SiC and B4C. The joint properties in terms of mechanical strength, microstructural integrity and [...] Read more.
This study focuses on the properties and process parameters dictating behavioural aspects of friction stir welded Aluminium Alloy AA6061 metal matrix composites reinforced with varying percentages of SiC and B4C. The joint properties in terms of mechanical strength, microstructural integrity and quality were examined. The weld reveals grain refinement and uniform distribution of reinforced particles in the joint region leading to improved strength compared to other joints of varying base material compositions. The tensile properties of the friction stir welded Al-MMCs improved after reinforcement with SiC and B4C. The maximum ultimate tensile stress was around 172.8 ± 1.9 MPa for composite with 10% SiC and 3% B4C reinforcement. The percentage elongation decreased as the percentage of SiC decreases and B4C increases. The hardness of the Al-MMCs improved considerably by adding reinforcement and subsequent thermal action during the FSW process, indicating an optimal increase as it eliminates brittleness. It was seen that higher SiC content contributes to higher strength, improved wear properties and hardness. The wear rate was as high as 12 ± 0.9 g/s for 10% SiC reinforcement and 30 N load. The wear rate reduced for lower values of load and increased with B4C reinforcement. The microstructural examination at the joints reveals the flow of plasticized metal from advancing to the retreating side. The formation of onion rings in the weld zone was due to the cylindrical FSW rotating tool material impression during the stirring action. Alterations in chemical properties are negligible, thereby retaining the original characteristics of the materials post welding. No major cracks or pores were observed during the non-destructive testing process that established good quality of the weld. The results are indicated improvement in mechanical and microstructural properties of the weld. Full article
(This article belongs to the Special Issue Advance in Friction Stir Processed Materials)
Show Figures

Figure 1

15 pages, 16356 KB  
Article
Microstructure and Mechanical Properties of 6061 Al/AZ31 Mg Joints Friction Stir Lap Welded by a Tool with Variable-Pitch Thread Pin
by Changshu He, Chengpeng Qiu, Zhiqiang Zhang, Jingxun Wei, Hao Zhang, Ni Tian and Gaowu Qin
Metals 2021, 11(1), 34; https://doi.org/10.3390/met11010034 - 26 Dec 2020
Cited by 17 | Viewed by 3828
Abstract
Sheets of 6061-T6 aluminum alloy (thickness = 3 mm) and AZ31 magnesium alloy were friction stir lap welded by a tool with a variable-pitch thread pin (coarse-threaded in the upper part and fine-threaded in the lower part). For the same rotation speed and [...] Read more.
Sheets of 6061-T6 aluminum alloy (thickness = 3 mm) and AZ31 magnesium alloy were friction stir lap welded by a tool with a variable-pitch thread pin (coarse-threaded in the upper part and fine-threaded in the lower part). For the same rotation speed and welding speed, the heat input was higher in joints with an upper Al alloy (Configuration Al-Mg) than in those with an upper Mg alloy (Configuration Mg-Al). In Configuration Al-Mg, these two dissimilar metals were poorly mixed and Al dominated the stirred zone (SZ). Many intermetallic compounds (IMCs) of Al3Mg2 formed inside the SZ. In Configuration Mg-Al, Mg alloy bands, flocculent Al12Mg17 bands, and minor Al alloy bands intersected in the SZ, forming a complex onion-ring structure. Moreover, a complex mechanical interlocking structure developed at the bottom interface of the SZ. The maximum tensile shear strengths of the Al-Mg and Mg-Al lap configurations were 160.3 and 217 N/mm, respectively, at 700 rpm. The higher tensile shear strength of the Mg-Al configuration primarily represented less IMCs and complex mechanical interlocking structures in the SZ. Full article
Show Figures

Figure 1

19 pages, 9149 KB  
Article
Assessing Microstructure-Local Mechanical Properties in Friction Stir Welded 6082-T6 Aluminum Alloy
by Hossein Monajati, Mariem Zoghlami, Amevi Tongne and Mohammad Jahazi
Metals 2020, 10(9), 1244; https://doi.org/10.3390/met10091244 - 16 Sep 2020
Cited by 17 | Viewed by 4938
Abstract
The severe deformation and temperature paths in the stir zone, also called weld nugget, of friction stir welded joints result, at very local levels, in significant microstructural variations, such as major differences in grain size or precipitation. One of the most common features [...] Read more.
The severe deformation and temperature paths in the stir zone, also called weld nugget, of friction stir welded joints result, at very local levels, in significant microstructural variations, such as major differences in grain size or precipitation. One of the most common features of friction stir welds is the presence of successive material layers, known as onion rings; however, little data is available on the mechanical properties of the different regions of the weld nugget, and particularly within the onion ring bands. Such information becomes very important for the integrity of large size friction stir welded structures. In the present study, a comprehensive characterization of onion rings produced during friction stir welding of a 6082-aluminum alloy was carried out. Advanced techniques such as in-situ SEM nanoindentation, EBSD, and high-resolution EDS were used to validate and compare the characteristics of the different bands in the onion rings. The analyses consisted of quantifying variations in grain size, precipitate composition and distribution, crystallographic orientations, and mechanical properties in each band. Furthermore, the tensile strengths of different regions of the weld nugget were evaluated using shear punch testing and correlated with those for the onion ring region in order to determine the impact of the presence of onion rings on weld nugget mechanical properties. The main difference between the alternate bands in the onion ring was found to be due to the difference in their grain size, misorientation, and precipitate content. It was also observed that the bands originate from the base metal and stir zone successively due to the nature of the stirring process, which pulls BM into SZ. Comparison of the shear punch testing results in different regions of the nugget revealed that, in spite of having local differences in the hardness of alternate bands in the onion ring, the presence of onion rings has no significant impact on the deterioration of the mechanical properties of the weld nugget. Full article
(This article belongs to the Special Issue Friction Stir Welding Prospective on Light-Alloys Joints)
Show Figures

Figure 1

11 pages, 1590 KB  
Article
Cytogenetic Study on the Biostimulation Potential of the Aqueous Fruit Extract of Hippophae rhamnoides for a Sustainable Agricultural Ecosystem
by Elena Bonciu, Aurel Liviu Olaru, Elena Rosculete and Catalin Aurelian Rosculete
Plants 2020, 9(7), 843; https://doi.org/10.3390/plants9070843 - 4 Jul 2020
Cited by 6 | Viewed by 2762
Abstract
This cytogenetic study evaluates the biostimulation potential of the aqueous extract of seabuckthorn fruits (AESF) in plant cells, using the Allium cepa species as a test plant. The effects were monitored both at the macroscopic and microscopically level. The onion bulbs were exposed [...] Read more.
This cytogenetic study evaluates the biostimulation potential of the aqueous extract of seabuckthorn fruits (AESF) in plant cells, using the Allium cepa species as a test plant. The effects were monitored both at the macroscopic and microscopically level. The onion bulbs were exposed to the action of different concentrations of AESF (0.5, 1, 1.5, 2, and 2.5%) for 72 h. The obtained results showed the positive effect induced by the aqueous extract on the growth of the meristematic roots, but only at concentrations ranging between 0.5–1.5%, when the average length of the roots had values between 2.51–3.40 cm, which means an increase compared to the untreated control with 3.71–40.49%. Within the same concentration range of the AESF, an effect of intensifying the mitotic activity was recorded. On the other hand, at the 2–2.5% concentration of the AESF, there was an inhibitory effect on the growth of meristematic roots. Additionally, concentrations ≥2% of AESF induced a cytotoxic and genotoxic effect through the occurrence of some chromosomal and nuclear abnormalities in A. cepa cells (sticky, laggards, ring chromosomes, and micronucleus). The obtained results suggest the biostimulation potential of the AESF for plant cells and the possibility of using it as an eco-friendly fertilizer. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

14 pages, 1084 KB  
Article
Characterization of Volatile and Flavonoid Composition of Different Cuts of Dried Onion (Allium cepa L.) by HS-SPME-GC-MS, HS-SPME-GC×GC-TOF and HPLC-DAD
by Lorenzo Cecchi, Francesca Ieri, Pamela Vignolini, Nadia Mulinacci and Annalisa Romani
Molecules 2020, 25(2), 408; https://doi.org/10.3390/molecules25020408 - 18 Jan 2020
Cited by 56 | Viewed by 8412
Abstract
Onion is widely used worldwide in various forms for both food and medicinal applications, thanks to its high content of phytonutrients, such as flavonoids and volatile sulfur compounds. Fresh onion is very perishable and drying is widely applied for extending shelf-life, thus obtaining [...] Read more.
Onion is widely used worldwide in various forms for both food and medicinal applications, thanks to its high content of phytonutrients, such as flavonoids and volatile sulfur compounds. Fresh onion is very perishable and drying is widely applied for extending shelf-life, thus obtaining a very easy-to-use functional food ingredient. The flavonoid and volatile fractions of different onion cuts (flakes, rings) prepared through different drying cycles in a static oven, were characterized by high-performance liquid chromatography with a diode-array detector HPLC-DAD, Head Space-Solid Phase Micro Extraction followed by Gas Chromatography coupled with Mass Spectrometry (HS-SPME-GC-MS) and Head-Space Solid Phase Micro Extraction followed by comprehensive two-dimensional Gas-Chromatography (HS-SPME-GC×GC-TOF). Onion flakes showed a significantly higher flavonoid content (3.56 mg g−1) than onion rings (2.04 mg g−1). Onion flakes showed greater amount of volatile organic compounds (VOCs) (127.26 mg g−1) than onion rings (42.79 mg g−1), with different relative amounts of di- and trisulfides—disulfides largely predominate the volatile fraction (amounts over 60% on the total volatile content), followed by trisulfides and dipropyl disulfide and dipropyl trisulfide were the most abundant VOCs. HS-SPME-GC×GC-TOF allowed for the detection of the presence of allylthiol, diethanol sulfide, 4,6-diethyl1,2,3,5-tetrathiolane, not detected by HS-SPME-GC-MS, and provided a fast and direct visualization and comparison of different samples. These results highlight different nutraceutical properties of dried onion samples processed otherwise, only differing in shape and size, thus pointing out potentially different uses as functional ingredients. Full article
(This article belongs to the Special Issue Analysis of Volatile and Odor Compounds in Food)
Show Figures

Graphical abstract

Back to TopTop