Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (231)

Search Parameters:
Keywords = one-dimensional convolutional neural network (1DCNN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3177 KB  
Article
Ground Type Classification for Hexapod Robots Using Foot-Mounted Force Sensors
by Yong Liu, Rui Sun, Xianguo Tuo, Tiantao Sun and Tao Huang
Machines 2025, 13(10), 900; https://doi.org/10.3390/machines13100900 - 1 Oct 2025
Abstract
In field exploration, disaster rescue, and complex terrain operations, the accuracy of ground type recognition directly affects the walking stability and task execution efficiency of legged robots. To address the problem of terrain recognition in complex ground environments, this paper proposes a high-precision [...] Read more.
In field exploration, disaster rescue, and complex terrain operations, the accuracy of ground type recognition directly affects the walking stability and task execution efficiency of legged robots. To address the problem of terrain recognition in complex ground environments, this paper proposes a high-precision classification method based on single-leg triaxial force signals. The method first employs a one-dimensional convolutional neural network (1D-CNN) module to extract local temporal features, then introduces a long short-term memory (LSTM) network to model long-term and short-term dependencies during ground contact, and incorporates a convolutional block attention module (CBAM) to adaptively enhance the feature responses of critical channels and time steps, thereby improving discriminative capability. In addition, an improved whale optimization algorithm (iBWOA) is adopted to automatically perform global search and optimization of key hyperparameters, including the number of convolution kernels, the number of LSTM units, and the dropout rate, to achieve the optimal training configuration. Experimental results demonstrate that the proposed method achieves excellent classification performance on five typical ground types—grass, cement, gravel, soil, and sand—under varying slope and force conditions, with an overall classification accuracy of 96.94%. Notably, it maintains high recognition accuracy even between ground types with similar contact mechanical properties, such as soil vs. grass and gravel vs. sand. This study provides a reliable perception foundation and technical support for terrain-adaptive control and motion strategy optimization of legged robots in real-world environments. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

28 pages, 6039 KB  
Article
Detection and Classification of Unhealthy Heartbeats Using Deep Learning Techniques
by Abdullah M. Albarrak, Raneem Alharbi and Ibrahim A. Ibrahim
Sensors 2025, 25(19), 5976; https://doi.org/10.3390/s25195976 - 26 Sep 2025
Abstract
Arrhythmias are a common and potentially life-threatening category of cardiac disorders, making accurate and early detection crucial for improving clinical outcomes. Electrocardiograms are widely used to monitor heart rhythms, yet their manual interpretation remains prone to inconsistencies due to the complexity of the [...] Read more.
Arrhythmias are a common and potentially life-threatening category of cardiac disorders, making accurate and early detection crucial for improving clinical outcomes. Electrocardiograms are widely used to monitor heart rhythms, yet their manual interpretation remains prone to inconsistencies due to the complexity of the signals. This research investigates the effectiveness of machine learning and deep learning techniques for automated arrhythmia classification using ECG signals from the MIT-BIH dataset. We compared Gradient Boosting Machine (GBM) and Multilayer Perceptron (MLP) as traditional machine learning models with a hybrid deep learning model combining one-dimensional convolutional neural networks (1D-CNNs) and long short-term memory (LSTM) networks. Furthermore, the Grey Wolf Optimizer (GWO) was utilized to automatically optimize the hyperparameters of the 1D-CNN-LSTM model, enhancing its performance. Experimental results show that the proposed 1D-CNN-LSTM model achieved the highest accuracy of 97%, outperforming both classical machine learning and other deep learning baselines. The classification report and confusion matrix confirm the model’s robustness in identifying various arrhythmia types. These findings emphasize the possible benefits of integrating metaheuristic optimization with hybrid deep learning. Full article
(This article belongs to the Special Issue Sensors Technology and Application in ECG Signal Processing)
Show Figures

Figure 1

16 pages, 1620 KB  
Article
An Attention-Driven Hybrid Deep Network for Short-Term Electricity Load Forecasting in Smart Grid
by Jinxing Wang, Sihui Xue, Liang Lin, Benying Tan and Huakun Huang
Mathematics 2025, 13(19), 3091; https://doi.org/10.3390/math13193091 - 26 Sep 2025
Abstract
With the large-scale development of smart grids and the integration of renewable energy, the operational complexity and load volatility of power systems have increased significantly, placing higher demands on the accuracy and timeliness of electricity load forecasting. However, existing methods struggle to capture [...] Read more.
With the large-scale development of smart grids and the integration of renewable energy, the operational complexity and load volatility of power systems have increased significantly, placing higher demands on the accuracy and timeliness of electricity load forecasting. However, existing methods struggle to capture the nonlinear and volatile characteristics of load sequences, often exhibiting insufficient fitting and poor generalization in peak and abrupt change scenarios. To address these challenges, this paper proposes a deep learning model named CGA-LoadNet, which integrates a one-dimensional convolutional neural network (1D-CNN), gated recurrent units (GRUs), and a self-attention mechanism. The model is capable of simultaneously extracting local temporal features and long-term dependencies. To validate its effectiveness, we conducted experiments on a publicly available electricity load dataset. The experimental results demonstrate that CGA-LoadNet significantly outperforms baseline models, achieving the best performance on key metrics with an R2 of 0.993, RMSE of 18.44, MAE of 13.94, and MAPE of 1.72, thereby confirming the effectiveness and practical potential of its architectural design. Overall, CGA-LoadNet more accurately fits actual load curves, particularly in complex regions, such as load peaks and abrupt changes, providing an efficient and robust solution for short-term load forecasting in smart grid scenarios. Full article
(This article belongs to the Special Issue AI, Machine Learning and Optimization)
Show Figures

Figure 1

23 pages, 11596 KB  
Article
Combined Hyperspectral Imaging with Wavelet Domain Multivariate Feature Fusion Network for Bioactive Compound Prediction of Astragalus membranaceus var. mongholicus
by Suning She, Zhiyun Xiao and Yulong Zhou
Agriculture 2025, 15(19), 2009; https://doi.org/10.3390/agriculture15192009 - 25 Sep 2025
Abstract
The pharmacological quality of Astragalus membranaceus var. mongholicus (AMM) is determined by its bioactive compounds, and developing a rapid prediction method is essential for quality assessment. This study proposes a predictive model for AMM bioactive compounds using hyperspectral imaging (HSI) and wavelet domain [...] Read more.
The pharmacological quality of Astragalus membranaceus var. mongholicus (AMM) is determined by its bioactive compounds, and developing a rapid prediction method is essential for quality assessment. This study proposes a predictive model for AMM bioactive compounds using hyperspectral imaging (HSI) and wavelet domain multivariate features. The model employs techniques such as the first-order derivative (FD) algorithm and the continuum removal (CR) algorithm for initial feature extraction. Unlike existing models that primarily focus on a single-feature extraction algorithm, the proposed tree-structured feature extraction module based on discrete wavelet transform and one-dimensional convolutional neural network (1D-CNN) integrates FD and CR, enabling robust multivariate feature extraction. Subsequently, the multivariate feature cross-fusion module is introduced to implement multivariate feature interaction, facilitating mutual enhancement between high- and low-frequency features through hierarchical recombination. Additionally, a multi-objective prediction mechanism is proposed to simultaneously predict the contents of flavonoids, saponins, and polysaccharides in AMM, effectively leveraging the enhanced, recombined spectral features. During testing, the model achieved excellent predictive performance with R2 values of 0.981 for flavonoids, 0.992 for saponins, and 0.992 for polysaccharides. The corresponding RMSE values were 0.37, 0.04, and 0.86; RPD values reached 7.30, 10.97, and 11.16; while MAE values were 0.14, 0.02, and 0.38, respectively. These results demonstrate that integrating multivariate features extracted through diverse methods with 1D-CNN enables efficient prediction of AMM bioactive compounds using HSI. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

34 pages, 11521 KB  
Article
Explainable AI-Driven 1D-CNN with Efficient Wireless Communication System Integration for Multimodal Diabetes Prediction
by Radwa Ahmed Osman
AI 2025, 6(10), 243; https://doi.org/10.3390/ai6100243 - 25 Sep 2025
Abstract
The early detection of diabetes risk and effective management of patient data are critical for avoiding serious consequences and improving treatment success. This research describes a two-part architecture that combines an energy-efficient wireless communication technology with an interpretable deep learning model for diabetes [...] Read more.
The early detection of diabetes risk and effective management of patient data are critical for avoiding serious consequences and improving treatment success. This research describes a two-part architecture that combines an energy-efficient wireless communication technology with an interpretable deep learning model for diabetes categorization. In Phase 1, a unique wireless communication model is created to assure the accurate transfer of real-time patient data from wearable devices to medical centers. Using Lagrange optimization, the model identifies the best transmission distance and power needs, lowering energy usage while preserving communication dependability. This contribution is especially essential since effective data transport is a necessary condition for continuous monitoring in large-scale healthcare systems. In Phase 2, the transmitted multimodal clinical, genetic, and lifestyle data are evaluated using a one-dimensional Convolutional Neural Network (1D-CNN) with Bayesian hyperparameter tuning. The model beat traditional deep learning architectures like LSTM and GRU. To improve interpretability and clinical acceptance, SHAP and LIME were used to find global and patient-specific predictors. This approach tackles technological and medicinal difficulties by integrating energy-efficient wireless communication with interpretable predictive modeling. The system ensures dependable data transfer, strong predictive performance, and transparent decision support, boosting trust in AI-assisted healthcare and enabling individualized diabetes control. Full article
Show Figures

Figure 1

23 pages, 3115 KB  
Article
Deep Learning-Based Prediction of Multi-Species Leaf Pigment Content Using Hyperspectral Reflectance
by Ziyu Wang and Duanyang Xu
Remote Sens. 2025, 17(19), 3293; https://doi.org/10.3390/rs17193293 - 25 Sep 2025
Abstract
Leaf pigment composition and concentration are crucial indicators of plant physiological status, photosynthetic capacity, and overall ecosystem health. While spectroscopy techniques show promise for monitoring vegetation growth, phenology, and stress, accurately estimating leaf pigments remains challenging due to the complex reflectance properties across [...] Read more.
Leaf pigment composition and concentration are crucial indicators of plant physiological status, photosynthetic capacity, and overall ecosystem health. While spectroscopy techniques show promise for monitoring vegetation growth, phenology, and stress, accurately estimating leaf pigments remains challenging due to the complex reflectance properties across diverse tree species. This study introduces a novel approach using a two-dimensional convolutional neural network (2D-CNN) coupled with a genetic algorithm (GA) to predict leaf pigment content, including chlorophyll a and b content (Cab), carotenoid content (Car), and anthocyanin content (Canth). Leaf reflectance and biochemical content measurements taken from 28 tree species were used in this study. The reflectance spectra ranging from 400 nm to 800 nm were encoded as 2D matrices with different sizes to train the 2D-CNN and compared with the one-dimensional convolutional neural network (1D-CNN). The results show that the 2D-CNN model (nRMSE = 11.71–31.58%) achieved higher accuracy than the 1D-CNN model (nRMSE = 12.79–55.34%) in predicting leaf pigment contents. For the 2D-CNN models, Cab achieved the best estimation accuracy with an nRMSE value of 11.71% (R2 = 0.92, RMSE = 6.10 µg/cm2), followed by Car (R2 = 0.84, RMSE = 1.03 µg/cm2, nRMSE = 12.29%) and Canth (R2 = 0.89, RMSE = 0.35 µg/cm2, nRMSE = 31.58%). Both 1D-CNN and 2D-CNN models coupled with GA using a subset of the spectrum produced higher prediction accuracy in all pigments than those using the full spectrum. Additionally, the generalization of 2D-CNN is higher than that of 1D-CNN. This study highlights the potential of 2D-CNN approaches for accurate prediction of leaf pigment content from spectral reflectance data, offering a promising tool for advanced vegetation monitoring. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

34 pages, 3067 KB  
Article
NRGAMTE: Neurophysiological Residual Gated Attention Multimodal Transformer Encoder for Sleep Disorder Detection
by Jayapoorani Subramaniam, Aruna Mogarala Guruvaya, Anupama Vijaykumar and Puttamadappa Chaluve Gowda
Brain Sci. 2025, 15(9), 985; https://doi.org/10.3390/brainsci15090985 - 13 Sep 2025
Viewed by 408
Abstract
Background/Objective: Sleep is significant for human mental and physical health. Sleep disorders represent a crucial risk to human health, and a large portion of the world population suffers from them. The efficient identification of sleep disorders is significant for effective treatment. However, the [...] Read more.
Background/Objective: Sleep is significant for human mental and physical health. Sleep disorders represent a crucial risk to human health, and a large portion of the world population suffers from them. The efficient identification of sleep disorders is significant for effective treatment. However, the precise and automatic detection of sleep disorders remains challenging due to the inter-subject variability, overlapping symptoms, and reliance on single-modality physiological signals. Methods: To address these challenges, a Neurophysiological Residual Gated Attention Multimodal Transformer Encoder (NRGAMTE) model was developed for robust sleep disorder detection using multimodal physiological signals, including Electroencephalogram (EEG), Electromyogram (EMG), and Electrooculogram (EOG). Initially, raw signals are segmented into 30-s windows and processed to capture the significant time- and frequency-domain features. Every modality is independently embedded by a One-Dimensional Convolutional Neural Network (1D-CNN), which preserves signal-specific characteristics. A Modality-wise Residual Gated Cross-Attention Fusion (MRGCAF) mechanism is introduced to select significant cross-modal interactions, while the learnable residual path ensures that the most relevant features are retained during the gating process. Results: The developed NRGAMTE model achieved an accuracy of 94.51% on the Sleep-EDF expanded dataset and 99.64% on the Cyclic Alternating Pattern (CAP Sleep database), significantly outperforming the existing single- and multimodal algorithms in terms of robustness and computational efficiency. Conclusions: The results shows that NRGAMTE obtains high performance across multiple datasets, significantly improving detection accuracy. This demonstrated their potential as a reliable tool for clinical sleep disorder detection. Full article
(This article belongs to the Section Sleep and Circadian Neuroscience)
Show Figures

Figure 1

21 pages, 5459 KB  
Article
Research on Road Surface Recognition Algorithm Based on Vehicle Vibration Data
by Jianfeng Cui, Hengxu Zhang, Xiao Wang, Yu Jing and Xiujian Chou
Sensors 2025, 25(18), 5642; https://doi.org/10.3390/s25185642 - 10 Sep 2025
Viewed by 316
Abstract
Road surface conditions significantly impact driving safety and maintenance costs. Especially in connected and automated vehicles (CAVs), the road surface type recognition is critical for environmental perception. Traditional road surface recognition methods face limitations in feature extraction, so an improved one-dimensional convolutional neural [...] Read more.
Road surface conditions significantly impact driving safety and maintenance costs. Especially in connected and automated vehicles (CAVs), the road surface type recognition is critical for environmental perception. Traditional road surface recognition methods face limitations in feature extraction, so an improved one-dimensional convolutional neural network (1D-CNN) algorithm was proposed based on the VGG16 architecture. A vibration signal acquisition system was developed to efficiently acquire high-quality vehicle vibration signals. The optimized 1D-CNN algorithm model contains only 101.6 k parameters, significantly reducing computational cost and training time while maintaining high accuracy. Data augmentation, Adam optimization algorithm and L2 regularization were integrated to enhance generalization capabilities and suppress overfitting. On public datasets and actual vehicles tests, recognition accuracy rate reached 99.3% and 99.4%, respectively, substantially outperforming conventional methods. The algorithm also exhibited strong adaptability to different data sources. The research findings have implications for the accurate and efficient identification of road surfaces. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

26 pages, 8009 KB  
Article
Bearing Fault Diagnosis Based on Golden Cosine Scheduler-1DCNN-MLP-Cross-Attention Mechanisms (GCOS-1DCNN-MLP-Cross-Attention)
by Aimin Sun, Kang He, Meikui Dai, Liyong Ma, Hongli Yang, Fang Dong, Chi Liu, Zhuo Fu and Mingxing Song
Machines 2025, 13(9), 819; https://doi.org/10.3390/machines13090819 - 6 Sep 2025
Viewed by 360
Abstract
In contemporary industrial machinery, bearings are a vital component, so the ability to diagnose bearing faults is extremely important. Current methodologies face challenges in feature extraction and perform suboptimally in environments with high noise levels. This paper proposes an enhanced, multimodal, feature-fusion-bearing fault [...] Read more.
In contemporary industrial machinery, bearings are a vital component, so the ability to diagnose bearing faults is extremely important. Current methodologies face challenges in feature extraction and perform suboptimally in environments with high noise levels. This paper proposes an enhanced, multimodal, feature-fusion-bearing fault diagnosis model. Integrating a 1DCNN-dual MLP framework with an enhanced two-way cross-attention mechanism enables in-depth feature fusion. Firstly, the raw fault time-series data undergo fast Fourier transform (FFT). Then, the original time-series data are input into a multi-layer perceptron (MLP) and a one-dimensional convolutional neural network (1DCNN) model. The frequency-domain data are then entered into the other multi-layer perceptron (MLP) model to extract deep features in both the time and frequency domains. These features are then fed into a serial bidirectional cross-attention mechanism for feature fusion. At the same time, a GCOS learning rate scheduler has been developed to automatically adjust the learning rate. Following fifteen independent experiments on the Case Western Reserve University bearing dataset, the fusion model achieved an average accuracy rate of 99.83%. Even in a high-noise environment (0 dB), the model achieved an accuracy rate of 90.66%, indicating its ability to perform well under such conditions. Its accuracy remains at 86.73%, even under 0 dB noise and variable operating conditions, fully demonstrating its exceptional robustness. Full article
Show Figures

Figure 1

16 pages, 4050 KB  
Article
Evaluation Method for Flame-Retardant Property of Sheet Molding Compound Materials Based on Laser-Induced Breakdown Spectroscopy
by Qishuai Liang, Zhongchen Xia, Jiang Ye, Chuan Zhou, Yufeng Wu, Jie Li, Xuhui Cui, Honglin Jian and Xilin Wang
Energies 2025, 18(16), 4353; https://doi.org/10.3390/en18164353 - 15 Aug 2025
Viewed by 404
Abstract
The electric energy metering box serves as a crucial node in power grid operations, offering essential protection for key components in the distribution network, such as smart meters, data acquisition terminals, and circuit breakers, thereby ensuring their safe and reliable operation. However, the [...] Read more.
The electric energy metering box serves as a crucial node in power grid operations, offering essential protection for key components in the distribution network, such as smart meters, data acquisition terminals, and circuit breakers, thereby ensuring their safe and reliable operation. However, the non-metallic housings of these boxes are susceptible to aging under environmental stress, which can result in diminished flame-retardant properties and an increased risk of fire. Currently, there is a lack of rapid and accurate methods for assessing the fire resistance of non-metallic metering box enclosures. In this study, laser-induced breakdown spectroscopy (LIBS), which enables fast, multi-element, and non-contact analysis, was utilized to develop an effective assessment approach. Thermal aging experiments were conducted to systematically investigate the degradation patterns and mechanisms underlying the reduced flame-retardant performance of sheet molding compound (SMC), a representative non-metallic material used in metering box enclosures. The results showed that the intensity ratio of aluminum ionic spectral lines is highly correlated with the flame-retardant grade, serving as an effective performance indicator. On this basis, a one-dimensional convolutional neural network (1D-CNN) model was developed utilizing LIBS data, which achieved over 92% prediction accuracy for different flame-retardant grades on the test set and demonstrated high recognition accuracy for previously unseen samples. This method offers significant potential for rapid, on-site evaluation of flame-retardant grades of non-metallic electric energy metering boxes, thereby supporting the safe and reliable operation of power systems. Full article
Show Figures

Figure 1

20 pages, 6192 KB  
Article
A Data-Driven Fault Diagnosis Method for Marine Steam Turbine Condensate System Based on Deep Transfer Learning
by Yuhui Liu, Liping Chen, Duansen Shangguan and Chengcheng Yu
Machines 2025, 13(8), 708; https://doi.org/10.3390/machines13080708 - 10 Aug 2025
Viewed by 441
Abstract
Accurate fault diagnosis in marine steam turbine condensate systems is challenged by insufficient real fault samples and dynamic operational conditions. To address this limitation, DTL-DFD, a novel framework integrating digital twins (DTs) and deep transfer learning (DTL), is proposed, wherein a high-fidelity physics-constrained [...] Read more.
Accurate fault diagnosis in marine steam turbine condensate systems is challenged by insufficient real fault samples and dynamic operational conditions. To address this limitation, DTL-DFD, a novel framework integrating digital twins (DTs) and deep transfer learning (DTL), is proposed, wherein a high-fidelity physics-constrained digital twin model is constructed through the systematic injection of six diagnostic classes (1 normal + 5 faults), including insufficient circulation water flow.Through an innovative all-layer parameter initialization with a partial fine-tuning (ALPT-PF) strategy, all weights and biases from a pre-trained one-dimensional convolutional neural network (1D-CNN) were fully transferred to the target model, which was subsequently fine-tuned via a hierarchical learning rate mechanism to adapt to real-world distribution discrepancies. Experimental results demonstrate 94.34% accuracy on cross-distribution test sets with a 4.72% improvement over state-of-the-art methods, confirming significant enhancements in generalization capability and diagnostic stability under small-sample conditions with significant real data reduction, thereby providing an effective solution for the intelligent operation and maintenance of marine steam turbine systems. Full article
Show Figures

Figure 1

17 pages, 4004 KB  
Article
Research on Switching Current Model of GaN HEMT Based on Neural Network
by Xiang Wang, Zhihui Zhao, Huikai Chen, Xueqi Sun, Shulong Wang and Guohao Zhang
Micromachines 2025, 16(8), 915; https://doi.org/10.3390/mi16080915 - 7 Aug 2025
Viewed by 643
Abstract
The switching characteristics of GaN HEMT devices exhibit a very complex dynamic nonlinear behavior and multi-physics coupling characteristics, and traditional switching current models based on physical mechanisms have significant limitations. This article adopts a hybrid architecture of convolutional neural network and long short-term [...] Read more.
The switching characteristics of GaN HEMT devices exhibit a very complex dynamic nonlinear behavior and multi-physics coupling characteristics, and traditional switching current models based on physical mechanisms have significant limitations. This article adopts a hybrid architecture of convolutional neural network and long short-term memory network (CNN-LSTM). In the 1D-CNN layer, the one-dimensional convolutional neural network can automatically learn and extract local transient features of time series data by sliding convolution operations on time series data through its convolution kernel, making these local transient features present a specific form in the local time window. In the double-layer LSTM layer, the neural network model captures the transient characteristics of switch current through the gating mechanism and state transfer. The hybrid architecture of the constructed model has significant advantages in accuracy, with metrics such as root mean square error (RMSE) and mean absolute error (MAE) significantly reduced, compared to traditional switch current models, solving the problem of insufficient accuracy in traditional models. The neural network model has good fitting performance at both room and high temperatures, with an average coefficient close to 1. The new neural network hybrid architecture has short running time and low computational resource consumption, meeting the needs of practical applications. Full article
(This article belongs to the Special Issue Advanced Wide Bandgap Semiconductor Materials and Devices)
Show Figures

Figure 1

17 pages, 4139 KB  
Article
Design and Development of an Intelligent Chlorophyll Content Detection System for Cotton Leaves
by Wu Wei, Lixin Zhang, Xue Hu and Siyao Yu
Processes 2025, 13(8), 2329; https://doi.org/10.3390/pr13082329 - 22 Jul 2025
Viewed by 331
Abstract
In order to meet the needs for the rapid detection of crop growth and support variable management in farmland, an intelligent chlorophyll content in cotton leaves (CCC) detection system based on hyperspectral imaging (HSI) technology was designed and developed. The system includes a [...] Read more.
In order to meet the needs for the rapid detection of crop growth and support variable management in farmland, an intelligent chlorophyll content in cotton leaves (CCC) detection system based on hyperspectral imaging (HSI) technology was designed and developed. The system includes a near-infrared (NIR) hyperspectral image acquisition module, a spectral extraction module, a main control processor module, a model acceleration module, a display module, and a power module, which are used to achieve rapid and non-destructive detection of chlorophyll content. Firstly, spectral images of cotton canopy leaves during the seedling, budding, and flowering-boll stages were collected, and the dataset was optimized using the first-order differential algorithm (1D) and Savitzky–Golay five-term quadratic smoothing (SG) algorithm. The results showed that SG had better processing performance. Secondly, the sparrow search algorithm optimized backpropagation neural network (SSA-BPNN) and one-dimensional convolutional neural network (1DCNN) algorithms were selected to establish a chlorophyll content detection model. The results showed that the determination coefficients Rp2 of the chlorophyll SG-1DCNN detection model during the seedling, budding, and flowering-boll stages were 0.92, 0.97, and 0.95, respectively, and the model performance was superior to SG-SSA-BPNN. Therefore, the SG-1DCNN model was embedded into the detection system. Finally, a CCC intelligent detection system was developed using Python 3.12.3, MATLAB 2020b, and ENVI, and the system was subjected to application testing. The results showed that the average detection accuracy of the CCC intelligent detection system in the three stages was 98.522%, 99.132%, and 97.449%, respectively. Meanwhile, the average detection time for the samples is only 20.12 s. The research results can effectively solve the problem of detecting the nutritional status of cotton in the field environment, meet the real-time detection needs of the field environment, and provide solutions and technical support for the intelligent perception of crop production. Full article
(This article belongs to the Special Issue Design and Control of Complex and Intelligent Systems)
Show Figures

Figure 1

35 pages, 1982 KB  
Article
Predicting Mental Health Problems in Gay Men in Peru Using Machine Learning and Deep Learning Models
by Alejandro Aybar-Flores and Elizabeth Espinoza-Portilla
Informatics 2025, 12(3), 60; https://doi.org/10.3390/informatics12030060 - 2 Jul 2025
Viewed by 1117
Abstract
Mental health disparities among those who self-identify as gay men in Peru remain a pressing public health concern, yet predictive models for early identification remain limited. This research aims to (1) develop machine learning and deep learning models to predict mental health issues [...] Read more.
Mental health disparities among those who self-identify as gay men in Peru remain a pressing public health concern, yet predictive models for early identification remain limited. This research aims to (1) develop machine learning and deep learning models to predict mental health issues in those who self-identify as gay men, and (2) evaluate the influence of demographic, economic, health-related, behavioral and social factors using interpretability techniques to enhance understanding of the factors shaping mental health outcomes. A dataset of 2186 gay men from the First Virtual Survey for LGBTIQ+ People in Peru (2017) was analyzed, considering demographic, economic, health-related, behavioral, and social factors. Several classification models were developed and compared, including Logistic Regression, Artificial Neural Networks, Random Forest, Gradient Boosting Machines, eXtreme Gradient Boosting, and a One-dimensional Convolutional Neural Network (1D-CNN). Additionally, the Shapley values and Layer-wise Relevance Propagation (LRP) heatmaps methods were used to evaluate the influence of the studied variables on the prediction of mental health issues. The results revealed that the 1D-CNN model demonstrated the strongest performance, achieving the highest classification accuracy and discrimination capability. Explainability analyses underlined prior infectious diseases diagnosis, access to medical assistance, experiences of discrimination, age, and sexual identity expression as key predictors of mental health outcomes. These findings suggest that advanced predictive techniques can provide valuable insights for identifying at-risk individuals, informing targeted interventions, and improving access to mental health care. Future research should refine these models to enhance predictive accuracy, broaden applicability, and support the integration of artificial intelligence into public health strategies aimed at addressing the mental health needs of this population. Full article
(This article belongs to the Section Health Informatics)
Show Figures

Figure 1

16 pages, 3892 KB  
Article
Fault Diagnosis Method for Shearer Arm Gear Based on Improved S-Transform and Depthwise Separable Convolution
by Haiyang Wu, Hui Zhou, Chang Liu, Gang Cheng and Yusong Pang
Sensors 2025, 25(13), 4067; https://doi.org/10.3390/s25134067 - 30 Jun 2025
Viewed by 432
Abstract
To address the limitations in time–frequency feature representation of shearer arm gear faults and the issues of parameter redundancy and low training efficiency in standard convolutional neural networks (CNNs), this study proposes a diagnostic method based on an improved S-transform and a Depthwise [...] Read more.
To address the limitations in time–frequency feature representation of shearer arm gear faults and the issues of parameter redundancy and low training efficiency in standard convolutional neural networks (CNNs), this study proposes a diagnostic method based on an improved S-transform and a Depthwise Separable Convolutional Neural Network (DSCNN). First, the improved S-transform is employed to perform time–frequency analysis on the vibration signals, converting the original one-dimensional signals into two-dimensional time–frequency images to fully preserve the fault characteristics of the gear. Then, a neural network model combining standard convolution and depthwise separable convolution is constructed for fault identification. The experimental dataset includes five gear conditions: tooth deficiency, tooth breakage, tooth wear, tooth crack, and normal. The performance of various frequency-domain and time-frequency methods—Wavelet Transform, Fourier Transform, S-transform, and Gramian Angular Field (GAF)—is compared using the same network model. Furthermore, Grad-CAM is applied to visualize the responses of key convolutional layers, highlighting the regions of interest related to gear fault features. Finally, four typical CNN architectures are analyzed and compared: Deep Convolutional Neural Network (DCNN), InceptionV3, Residual Network (ResNet), and Pyramid Convolutional Neural Network (PCNN). Experimental results demonstrate that frequency–domain representations consistently outperform raw time-domain signals in fault diagnosis tasks. Grad-CAM effectively verifies the model’s accurate focus on critical fault features. Moreover, the proposed method achieves high classification accuracy while reducing both training time and the number of model parameters. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

Back to TopTop