Combined Hyperspectral Imaging with Wavelet Domain Multivariate Feature Fusion Network for Bioactive Compound Prediction of Astragalus membranaceus var. mongholicus
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.1.1. Bioactive Compounds Measurement
2.1.2. Acquisition of Hyperspectral Data from AMM Leaves
2.1.3. Preprocessing of Leaf Hyperspectral Data
2.2. Feature Extraction from Leaf Hyperspectral Data
2.3. Overall Structure of WCT-MCFNet
2.3.1. WCT Feature Extraction Module
2.3.2. MCF Feature Fusion Module
2.3.3. SF Prediction Module
2.4. Evaluation Metrics
2.5. Technical Roadmap
3. Results
3.1. Experimental Environment and Parameter Configuration
3.2. Training Results
3.3. Comparative Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AMM | Astragalus membranaceus var. mongholicus |
HSI | hyperspectral imaging |
FD | first-order derivative algorithm |
CR | continuum removal algorithm |
DWT | discrete wavelet transform |
SNR | signal-to-noise ratio |
LR | logistic regression |
SVR | support vector regression |
PLSR | partial least squares regression |
SpectraNet | spectral feature extraction network |
FC | fully connected layer |
MFI | multivariate feature integrator |
WCT | DWT-based and SpectraNet-based tree-structured feature extraction module |
MCF | MFI-based cross-fusion of multivariate features fusion module |
SF | prediction module integrating SpectraNet with FC |
WCT-MCFNet | prediction network for multiple bioactive compounds in AMM, integrating FD, CR, and DWT algorithms with cross-fusion architecture. |
Appendix A. Fusion Strategy
Appendix A.1. Early Fusion
Appendix A.2. Late Fusion
Appendix B. Ablation Experiment
Appendix B.1. Single-Feature Extraction
Appendix B.2. Remove SpectraNet
References
- Chang, X.; Chen, X.; Guo, Y.; Gong, P.; Pei, S.; Wang, D.; Wang, P.; Wang, M.; Chen, F. Advances in chemical composition, extraction techniques, analytical methods, and biological activity of Astragali radix. Molecules 2022, 27, 1058. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, R.M.; Youssef, F.S.; Fouad, E.A.; Orabi, A.; Khalifa, M.M. The pharmacological impact of against coccidial and bacterial infection. Egypt. Pharm. J. 2023, 22, 324–335. [Google Scholar] [CrossRef]
- Yan, X.; Miao, J.; Zhang, B.; Liu, H.; Ma, H.; Sun, Y.; Liu, P.; Zhang, X.; Wang, R.; Kan, J.; et al. Study on semi-bionic extraction of Astragalus polysaccharide and its anti-aging activity in vivo. Front. Nutr. 2023, 10, 1201919. [Google Scholar] [CrossRef]
- Zaukuu, J.L.Z.; Abaidoo-Ayin, L.; Bimpong, D.; Amponsah, L.A.; Mensah, E.T. Predictive techniques for authenticating and quantifying crude palm oil adulterated with leaf extract and food color—An ultra-violet visible spectrophotometric approach. J. Food Compos. Anal. 2024, 126, 105895. [Google Scholar] [CrossRef]
- Salih, A.M.; Qahtan, A.A.; Al-Qurainy, F. Phytochemicals identification and bioactive compounds estimation of Artemisia Species grown in Saudia Arabia. Metabolites 2023, 13, 443. [Google Scholar] [CrossRef] [PubMed]
- Gündeşli, M.A.; Ugur, R.; Urün, I.; Ercisli, S.; Kafkas, N.E.; Ilhan, G.; Spalevic, V.; Ullah, R.; Bari, A. Evaluation of the total phenolic content, sugar, organic acid, volatile compounds and antioxidant capacities of fig (Ficus carica L.) genotypes selected from the Mediterranean region of Türkiye. Hortic. Sci. 2024, 51, 111–126. [Google Scholar] [CrossRef]
- Yue, L.; Ni-Ni, J.; Long, W.; Xing-Yu, Z.; Shuai, W.; Meng-Jun, P.; Xiang, L.; Xiao-Qin, C. Chemical detection and analysis of Astragalus-Cassia twig drug pair using UHPLC-Q-TOF-MS and HPLC-UV methods. Fitoterapia 2024, 177, 106129. [Google Scholar] [CrossRef]
- Upton, R.; David, B.; Gafner, S.; Glasl, S. Botanical ingredient identification and quality assessment: Strengths and limitations of analytical techniques. Phytochem. Rev. 2020, 19, 1157–1177. [Google Scholar] [CrossRef]
- Neri, I.; Caponi, S.; Bonacci, F.; Clementi, G.; Cottone, F.; Gammaitoni, L.; Figorilli, S.; Ortenzi, L.; Aisa, S.; Pallottino, F.; et al. Real-Time AI-Assisted Push-Broom Hyperspectral System for Precision Agriculture. Sensors 2024, 24, 344. [Google Scholar] [CrossRef]
- Riefolo, C.; D’Andrea, L. A non-destructive approach in proximal sensing to assess the performance distribution of SPAD prediction models using hyperspectral analysis in apricot trees. Exp. Agric. 2024, 60, e25. [Google Scholar] [CrossRef]
- Yoon, H.I.; Ryu, D.; Park, J.E.; Kim, H.Y.; Park, S.H.; Yang, J.S. Non-destructive prediction of rosmarinic acid content in basil plants using a portable hyperspectral imaging system and ensemble learning algorithms. Horticulturae 2024, 10, 1156. [Google Scholar] [CrossRef]
- Lu, J.; Jiang, Y.; Jin, B.; Sun, C.; Wang, L. Hyperspectral Imaging Combined with Deep Transfer Learning to Evaluate Flavonoids Content in Ginkgo biloba Leaves. Int. J. Mol. Sci. 2024, 25, 9584. [Google Scholar] [CrossRef]
- Sun, J.; Yao, K.; Cheng, J.; Xu, M.; Zhou, X. Nondestructive detection of saponin content in Panax notoginseng powder based on hyperspectral imaging. J. Pharm. Biomed. Anal. 2024, 242, 116015. [Google Scholar] [CrossRef]
- Hu, H.; Wang, T.; Wei, Y.; Xu, Z.; Cao, S.; Fu, L.; Xu, H.; Mao, X.; Huang, L. Non-destructive prediction of isoflavone and starch by hyperspectral imaging and deep learning in Puerariae thomsonii Radix. Front. Plant Sci. 2023, 14, 1271320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cheng, J.; Liu, C.; Wu, Q.; Xiong, S.; Yang, H.; Chang, S.; Fu, Y.; Yang, M.; Zhang, S.; et al. Enhanced crop leaf area index estimation via random forest regression: Bayesian optimization and feature selection approach. Remote Sens. 2024, 16, 3917. [Google Scholar] [CrossRef]
- Ye, Z.; Tan, X.; Dai, M.; Chen, X.; Zhong, Y.; Zhang, Y.; Ruan, Y.; Kong, D. A hyperspectral deep learning attention model for predicting lettuce chlorophyll content. Plant Methods 2024, 20, 22. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Z.; Li, W.; Wang, Y. Rapid Identification of Medicinal Polygonatum Species and Predictive of Polysaccharides Using ATR-FTIR Spectroscopy Combined With Multivariate Analysis. Phytochem. Anal. 2024, 36, 677–692. [Google Scholar] [CrossRef]
- Hao, J.W.; Chen, N.D.; Fan, X.X.; Wang, W.T.; Jiang, H.H.; Zhang, Z.Y.; Gong, R.Z.; Ruan, X.L.; Chen, X. Rapid determination of total flavonoid content, xanthine oxidase inhibitory activities, and antioxidant activity in Prunus mume by near-infrared spectroscopy. J. Pharm. Biomed. Anal. 2024, 246, 116164. [Google Scholar] [CrossRef]
- Wang, F.; Jia, B.; Song, X.; Dai, J.; Li, X.; Gao, H.; Pan, H.; Yan, H.; Han, B. Rapid identification of Peucedanum praeruptorum dunn and its adulterants by Hand-Held Near-Infrared Spectroscopy. J. AOAC Int. 2022, 105, 928–933. [Google Scholar] [CrossRef]
- Ma, H.; Zhao, Y.; He, W.; Wang, J.; Hu, Q.; Chen, K.; Yang, L.; Ma, Y. Quantitative analysis of three ingredients in Salvia miltiorrhiza by near infrared spectroscopy combined with hybrid variable selection strategy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 315, 124273. [Google Scholar] [CrossRef]
- Liu, X.; Huang, J.; Li, W.; Chen, R.; Cao, L.; Pan, T.; Liu, F. Fast quality assessment and origin identification of Gentianae Macrophyllae Radix using fourier transform infrared photoacoustic spectroscopy coupled with chemometrics. J. Pharm. Biomed. Anal. 2025, 259, 116774. [Google Scholar] [CrossRef]
- Yang, M.; Li, Z.; Liu, L.; Bo, A.; Zhang, C.; Li, M. Ecological niche modeling of Astragalus membranaceus var. mongholicus medicinal plants in Inner Mongolia, China. Sci. Rep. 2020, 10, 12482. [Google Scholar]
- Shao, Y.; Ji, S.; Shi, Y.; Xuan, G.; Jia, H.; Guan, X.; Chen, L. Growth period determination and color coordinates visual analysis of tomato using hyperspectral imaging technology. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 319, 124538. [Google Scholar] [CrossRef]
- Al Siam, A.; Salehin, M.M.; Alam, M.S.; Ahamed, S.; Islam, M.H.; Rahman, A. Paddy seed viability prediction based on feature fusion of color and hyperspectral image with multivariate analysis. Heliyon 2024, 10, e36999. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, D.; Yang, L.; Cui, T.; He, X.; Wu, D.; Dong, J.; Li, C.; Xing, S. Design and experiment of non-destructive testing system for moisture content of in-situ maize ear kernels based on VIS-NIR. J. Food Compos. Anal. 2024, 133, 106369. [Google Scholar] [CrossRef]
- Wang, P.; Xiong, Y.; Zhang, H. Maize leaf disease recognition based on improved MSRCR and OSCRNet. Crop Prot. 2024, 183, 106757. [Google Scholar] [CrossRef]
- Wei, G.; Xu, J.; Yan, W.; Chong, Q.; Xing, H.; Ni, M. Dual-domain fusion network based on wavelet frequency decomposition and fuzzy spatial constraint for remote sensing image segmentation. Remote Sens. 2024, 16, 3594. [Google Scholar] [CrossRef]
- Kavitha, K.; Banu, D.S. Genetic Algorithm Framework for 3D Discrete Wavelet Transform based Hyperspectral Image Classification. J. Indian Soc. Remote Sens. 2024, 52, 645–657. [Google Scholar] [CrossRef]
- Du, L.; Luo, S. Spectral-Frequency Conversion Derived from Hyperspectral Data Combined with Deep Learning for Estimating Chlorophyll Content in Rice. Agriculture 2024, 14, 1186. [Google Scholar] [CrossRef]
- Qian, D.; Li, Q.; Fan, B.; Zhou, H.; Du, Y.; Guo, X. Spectral Characteristics and Identification of Degraded Alpine Meadow in Qinghai–Tibetan Plateau Based on Hyperspectral Data. Remote Sens. 2024, 16, 3884. [Google Scholar] [CrossRef]
- Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 2015, 258619. [Google Scholar]
- Wang, Y.; Wang, S.; Yuan, Y.; Li, X.; Bai, R.; Wan, X.; Nan, T.; Yang, J.; Huang, L. Fast prediction of diverse rare ginsenoside contents in Panax ginseng through hyperspectral imaging assisted with the temporal convolutional network-attention mechanism (TCNA) deep learning. Food Control 2024, 162, 110455. [Google Scholar] [CrossRef]
- Bao, J.; Yu, M.; Li, J.; Wang, G.; Tang, Z.; Zhi, J. Determination of leaf nitrogen content in apple and jujube by near-infrared spectroscopy. Sci. Rep. 2024, 14, 20884. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sun, R.; Li, H.; Qin, Y.; Zhang, Q.; Lv, P.; Pan, Q. Lightweight deep learning algorithm for real-time wheat flour quality detection via NIR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 330, 125653. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Qiao, S.; Liu, H.; Shi, M.; Chen, X.; Jiang, H.; Zou, H. A Leaf Chlorophyll Content Estimation Method for Populus deltoides (Populus deltoides Marshall) Using Ensembled Feature Selection Framework and Unmanned Aerial Vehicle Hyperspectral Data. Forests 2024, 15, 1971. [Google Scholar] [CrossRef]
- Li, P.; Wang, S.; Yu, L.; Liu, A.; Zhai, D.; Yang, Z.; Qin, Y.; Yang, Y. Non-destructive origin and ginsenoside analysis of American ginseng via NIR and deep learning. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 334, 125913. [Google Scholar]
- Gao, C.; Tang, T.; Wu, W.; Zhang, F.; Luo, Y.; Wu, W.; Yao, B.; Li, J. Hyperspectral prediction model of nitrogen content in citrus leaves based on the CEEMDAN–SR algorithm. Remote Sens. 2023, 15, 5013. [Google Scholar]
- Hu, H.; Mei, Y.; Wei, Y.; Xu, Z.; Zhao, Y.; Xu, H.; Mao, X.; Huang, L. Chemical composition prediction in goji (Lycium barbarum) using hyperspectral imaging and multi-task 1DCNN with attention mechanism. LWT 2024, 204, 116436. [Google Scholar] [CrossRef]
- Esmaeili, M.; Abbasi-Moghadam, D.; Sharifi, A.; Tariq, A.; Li, Q. ResMorCNN model: Hyperspectral images classification using residual-injection morphological features and 3DCNN layers. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 219–243. [Google Scholar] [CrossRef]
- Xu, L.; Lu, C.; Zhou, T.; Wu, J.; Feng, H. A 3D-2DCNN-CA approach for enhanced classification of hickory tree species using UAV-based hyperspectral imaging. Microchem. J. 2024, 199, 109981. [Google Scholar]
- Tan, J.Y.; Zhao, J.X.; Zang, Y.; Li, P.; Yang, S.Q.; Li, X.M.; Wang, Y.L.; Cheng, Y.G. New flavonoid glycosides from the stems and leaves of Astragalus membranaceus. Fitoterapia 2025, 180, 106321. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.; Xuan, L.; Zhang, Y.; Zhang, G.; Meng, J.; Mu, W.; Liu, J.; Paek, K.Y.; Park, S.Y.; Wang, J.; et al. Advances in biotechnological production and metabolic regulation of Astragalus membranaceus. Plants 2023, 12, 1858. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Yang, W.; Song, C.; Wang, Q.; Zhao, D.; Gao, X. Identification of Sorghum Variety Using Hyperspectral Technology with Squeeze-and-Excitation Convolutional Neural Network Algorithms. Anal. Methods 2025, 17, 3836–3844. [Google Scholar] [CrossRef]
- Wen, H.; Zhang, Y.; Wang, X.; Wang, R.; Wu, W.; Dong, J. Inversion study of the meadow steppe above-ground biomass based on ground and airborne hyperspectral data. Geocarto Int. 2024, 39, 2370304. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, S.; Liu, Y.; Mu, C. Spatial Feature Enhancement and Attention-Guided Bidirectional Sequential Spectral Feature Extraction for Hyperspectral Image Classification. Remote Sens. 2024, 16, 3124. [Google Scholar] [CrossRef]
- Xue, H.; Xu, X.; Yang, Y.; Hu, D.; Niu, G. Rapid and non-destructive prediction of moisture content in maize seeds using hyperspectral imaging. Sensors 2024, 24, 1855. [Google Scholar] [CrossRef]
- Park, S.J.; Yoon, H.I.; Lee, H.; Kim, M.C.; Yang, J.S.; Jung, D.H.; Ahn, J.Y.; Park, S.H. Evaluating the Accuracy of Machine Learning Classification Models for Similar Herbal Medicine Using Hyperspectral Imaging. J. Biosyst. Eng. 2024, 49, 156–166. [Google Scholar] [CrossRef]
- Zhong, H.; Chai, J.; Yu, C.; Wang, K.; Wang, K.; Lin, P. Rapid detection of oil content in Camellia oleifera kernels based on hyperspectral imaging and machine learning. J. Food Compos. Anal. 2025, 137, 106899. [Google Scholar] [CrossRef]
- Zhao, J.; Li, H.; Chen, C.; Pang, Y.; Zhu, X. Detection of water content in lettuce canopies based on hyperspectral imaging technology under outdoor conditions. Agriculture 2022, 12, 1796. [Google Scholar] [CrossRef]
- Jiang, X.; Bu, Y.; Han, L.; Tian, J.; Hu, X.; Zhang, X.; Huang, D.; Luo, H. Rapid nondestructive detecting of wheat varieties and mixing ratio by combining hyperspectral imaging and ensemble learning. Food Control 2023, 150, 109740. [Google Scholar] [CrossRef]
- Cheng, T.; Chen, G.; Wang, Z.; Hu, R.; She, B.; Pan, Z.; Zhou, X.G.; Zhang, G.; Zhang, D. Hyperspectral and imagery integrated analysis for vegetable seed vigor detection. Infrared Phys. Technol. 2023, 131, 104605. [Google Scholar] [CrossRef]
- Nian, Y.; Su, X.; Yue, H.; Anwar, S.; Li, J.; Wang, W.; Sheng, Y.; Ma, Q.; Liu, J.; Li, X. Winter Wheat SPAD Prediction Based on Multiple Preprocessing, Sequential Module Fusion, and Feature Mining Methods. Agriculture 2024, 14, 2258. [Google Scholar] [CrossRef]
- Feng, H.; Chen, Y.; Song, J.; Lu, B.; Shu, C.; Qiao, J.; Liao, Y.; Yang, W. Maturity classification of rapeseed using hyperspectral image combined with machine learning. Plant Phenom. 2024, 6, 0139. [Google Scholar] [CrossRef]
- Xuan, G.; Jia, H.; Shao, Y.; Shi, C. Protein content prediction of rice grains based on hyperspectral imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 320, 124589. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.; Cheng, P.; Zhang, C.; Huang, Y. A lightweight neural network approach for identifying geographical origins and predicting nutrient contents of dried wolfberries based on hyperspectral data. J. Food Meas. Charact. 2024, 18, 7519–7532. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, S.; Liu, J.; Wei, Y.; An, D.; Wu, J. Maize seed variety identification using hyperspectral imaging and self-supervised learning: A two-stage training approach without spectral preprocessing. Expert Syst. Appl. 2024, 238, 122113. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, X.; Liu, J.; Zhang, S.; Yan, W. Research on near-ground forage hyperspectral imagery classification based on fusion preprocessing process. Int. J. Digit. Earth 2023, 16, 4707–4725. [Google Scholar] [CrossRef]
- Cui, Y.; Lv, Z.; Fan, Y.; Song, Y.; Wu, Y.; Zhao, X.; Diao, C.; Zhao, C.; Xu, Z.; Wang, W. Spatial-spectral joint preprocessing for hyperspectral image analysis using 3D-ResNet: Application to coal ash content estimation. Measurement 2025, 246, 116535. [Google Scholar] [CrossRef]
- Jiachen, H.; Jing, H.; Gang, L.; Weile, L.; Zhe, L.; Zhi, L. Inversion analysis of soil nitrogen content using hyperspectral images with different preprocessing methods. Ecol. Inform. 2023, 78, 102381. [Google Scholar] [CrossRef]
- Wonggasem, K.; Wongchaisuwat, P.; Chakranon, P.; Onwimol, D. Utilization of Machine Learning and Hyperspectral Imaging Technologies for Classifying Coated Maize Seed Vigor: A Case Study on the Assessment of Seed DNA Repair Capability. Agronomy 2024, 14, 1991. [Google Scholar] [CrossRef]
- Tu, C.; Liu, W.; Jiang, W.; Zhao, L. Hyperspectral image classification based on residual dense and dilated convolution. Infrared Phys. Technol. 2023, 131, 104706. [Google Scholar] [CrossRef]
- Mahmoodi, J.; Abbasi-Moghadam, D.; Sharifi, A.; Esmaeili, H.N.P.M.; Vafaeinejad, A. DESSA-Net Model: Hyperspectral Image Classification Using an Entropy Filter with Spatial and Spectral Attention Modules on DeepNet. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 14588–14613. [Google Scholar] [CrossRef]
Compound | Maximum (mg/g) | Minimum (mg/g) | Average (mg/g) | Standard Deviation |
---|---|---|---|---|
Flavonoids | 11.94 | 3.0 | 7.53 | 2.44 |
Saponins | 4.02 | 1.81 | 2.47 | 0.51 |
Polysaccharides | 59.89 | 18.75 | 41.99 | 9.58 |
Learning Rate | Batch Size | Epoch | Flavonoids | Saponins | Polysaccharides | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | RPD | MAE | R2 | RMSE | RPD | MAE | R2 | RMSE | RPD | MAE | |||
0.0001 | 8 | 300 | 0.884 | 0.91 | 2.94 | 0.62 | 0.860 | 0.18 | 2.67 | 0.13 | 0.820 | 4.06 | 2.37 | 2.64 |
0.001 | 8 | 300 | 0.981 | 0.37 | 7.30 | 0.14 | 0.992 | 0.04 | 10.97 | 0.02 | 0.992 | 0.86 | 11.16 | 0.38 |
0.01 | 8 | 300 | 0.604 | 1.69 | 1.59 | 1.24 | 0.514 | 0.33 | 1.43 | 0.24 | 0.642 | 5.77 | 1.67 | 4.52 |
0.001 | 4 | 300 | 0.943 | 0.64 | 4.21 | 0.23 | 0.97 | 0.08 | 5.78 | 0.04 | 0.96 | 1.90 | 5.08 | 0.77 |
0.001 | 8 | 300 | 0.981 | 0.37 | 7.30 | 0.14 | 0.992 | 0.04 | 10.97 | 0.02 | 0.992 | 0.86 | 11.16 | 0.38 |
0.001 | 16 | 300 | 0.913 | 0.79 | 3.39 | 0.40 | 0.906 | 0.15 | 3.27 | 0.09 | 0.916 | 2.78 | 3.46 | 1.64 |
0.001 | 8 | 100 | 0.954 | 0.57 | 4.67 | 0.29 | 0.941 | 0.11 | 4.13 | 0.07 | 0.946 | 2.29 | 4.32 | 1.16 |
0.001 | 8 | 200 | 0.932 | 0.90 | 3.86 | 0.25 | 0.971 | 0.08 | 2.92 | 0.04 | 0.962 | 1.86 | 5.18 | 0.85 |
0.001 | 8 | 300 | 0.981 | 0.37 | 7.30 | 0.14 | 0.992 | 0.04 | 10.97 | 0.02 | 0.992 | 0.86 | 11.16 | 0.38 |
Compound | Organ | Evaluation Metrics | |||
---|---|---|---|---|---|
R2 | RMSE | RPD | MAE | ||
Flavonoids | Root | 0.985 | 0.26 | 8.87 | 0.11 |
Leaf | 0.981 | 0.37 | 7.30 | 0.14 | |
Saponins | Root | 0.993 | 0.03 | 12.37 | 0.02 |
Leaf | 0.992 | 0.04 | 10.97 | 0.02 | |
Polysaccharides | Root | 0.992 | 0.81 | 11.89 | 0.33 |
Leaf | 0.992 | 0.86 | 11.16 | 0.38 |
Compound | Model | Evaluation Metrics | |||
---|---|---|---|---|---|
R2 | RMSE | RPD | MAE | ||
Flavonoids | LR | 0.712 | 1.33 | 1.86 | 1.05 |
SVR | 0.609 | 1.55 | 1.60 | 1.24 | |
PLSR | 0.723 | 1.31 | 1.90 | 1.03 | |
WCT-MCFNet | 0.981 | 0.37 | 7.30 | 0.14 | |
Saponins | LR | 0.749 | 0.29 | 2.00 | 0.24 |
SVR | 0.707 | 0.32 | 1.85 | 0.26 | |
PLSR | 0.778 | 0.28 | 2.12 | 0.22 | |
WCT-MCFNet | 0.992 | 0.04 | 10.97 | 0.02 | |
Polysaccharides | LR | 0.637 | 5.48 | 1.66 | 4.36 |
SVR | 0.535 | 6.20 | 1.46 | 4.46 | |
PLSR | 0.651 | 5.37 | 1.69 | 4.31 | |
WCT-MCFNet | 0.992 | 0.86 | 11.16 | 0.38 |
Compound | Model | Evaluation Metric | |||
---|---|---|---|---|---|
R2 | RMSE | RPD | MAE | ||
Flavonoids | TCNA | 0.657 | 1.57 | 1.71 | 1.14 |
CSAM-CNN | 0.803 | 1.19 | 2.25 | 0.80 | |
WCT-MCFNet | 0.981 | 0.37 | 7.30 | 0.14 | |
Saponins | TCNA | 0.448 | 0.35 | 1.35 | 0.25 |
CSAM-CNN | 0.860 | 0.18 | 2.67 | 0.12 | |
WCT-MCFNet | 0.992 | 0.04 | 10.97 | 0.02 | |
Polysaccharides | TCNA | 0.596 | 6.13 | 1.57 | 4.71 |
CSAM-CNN | 0.745 | 4.87 | 1.98 | 3.32 | |
WCT-MCFNet | 0.992 | 0.86 | 11.16 | 0.38 |
Compound | Model | Time/s | Evaluation Metric | |||
---|---|---|---|---|---|---|
R2 | RMSE | RPD | MAE | |||
Flavonoids | ResMorCNN | 856.85 | 0.776 | 1.27 | 2.11 | 0.80 |
3D-2DCNN-CA | 1320.78 | 0.932 | 0.70 | 3.85 | 0.42 | |
WCT-MCFNet | 486.52 | 0.981 | 0.37 | 7.30 | 0.14 | |
Saponins | ResMorCNN | 856.85 | 0.897 | 0.15 | 3.11 | 0.10 |
3D-2DCNN-CA | 1320.78 | 0.951 | 0.10 | 4.54 | 0.07 | |
WCT-MCFNet | 486.52 | 0.992 | 0.04 | 10.97 | 0.02 | |
Polysaccharides | ResMorCNN | 856.85 | 0.775 | 4.58 | 2.10 | 2.83 |
3D-2DCNN-CA | 1320.78 | 0.884 | 3.28 | 2.94 | 1.96 | |
WCT-MCFNet | 486.52 | 0.992 | 0.86 | 11.16 | 0.38 |
Compound | Fusion Strategy | Evaluation Metric | |||
---|---|---|---|---|---|
R2 | RMSE | RPD | MAE | ||
Flavonoids | Early | 0.858 | 1.01 | 2.65 | 0.39 |
Intermediate | 0.981 | 0.37 | 7.30 | 0.14 | |
Late | 0.952 | 0.59 | 4.58 | 0.21 | |
Saponins | Early | 0.922 | 0.13 | 3.57 | 0.07 |
Intermediate | 0.992 | 0.04 | 10.97 | 0.02 | |
Late | 0.974 | 0.08 | 6.25 | 0.03 | |
Polysaccharides | Early | 0.818 | 4.12 | 2.34 | 1.73 |
Intermediate | 0.992 | 0.86 | 11.16 | 0.38 | |
Late | 0.964 | 1.82 | 5.31 | 0.66 |
Compound | Feature Extraction | Single Branch | Evaluation Metric | |||
---|---|---|---|---|---|---|
R2 | RMSE | RPD | MAE | |||
Flavonoids | Not employed | Original | 0.935 | 0.68 | 3.93 | 0.22 |
Single | FD | 0.974 | 0.43 | 6.17 | 0.27 | |
CR | 0.938 | 0.67 | 4.02 | 0.19 | ||
Saponins | Not employed | Original | 0.926 | 0.13 | 3.67 | 0.05 |
Single | FD | 0.961 | 0.09 | 5.05 | 0.07 | |
CR | 0.974 | 0.08 | 6.17 | 0.03 | ||
Polysaccharides | Not employed | Original | 0.919 | 2.75 | 3.50 | 1.04 |
Single | FD | 0.964 | 1.82 | 5.28 | 0.95 | |
CR | 0.952 | 2.11 | 4.56 | 0.76 |
Compound | Feature Extraction | Multiple Branch | Evaluation Metric | |||
---|---|---|---|---|---|---|
R2 | RMSE | RPD | MAE | |||
Flavonoids | Original + Single | Original + FD | 0.909 | 0.81 | 3.32 | 0.29 |
Original + CR | 0.914 | 0.79 | 3.41 | 0.20 | ||
Multiple | FD + CR | 0.981 | 0.37 | 7.30 | 0.14 | |
Removing SpectraNet | FD + CR | 0.958 | 0.55 | 4.88 | 0.32 | |
Saponins | Original + Single | Original + FD | 0.969 | 0.08 | 5.68 | 0.05 |
Original + CR | 0.970 | 0.08 | 5.75 | 0.02 | ||
Multiple | FD + CR | 0.992 | 0.04 | 10.97 | 0.02 | |
Removing SpectraNet | FD + CR | 0.962 | 0.09 | 5.10 | 0.06 | |
Polysaccharides | Original + Single | Original + FD | 0.937 | 2.42 | 3.98 | 0.97 |
Original + CR | 0.959 | 1.95 | 4.94 | 0.53 | ||
Multiple | FD + CR | 0.992 | 0.86 | 11.16 | 0.38 | |
Removing SpectraNet | FD + CR | 0.915 | 2.81 | 3.42 | 1.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
She, S.; Xiao, Z.; Zhou, Y. Combined Hyperspectral Imaging with Wavelet Domain Multivariate Feature Fusion Network for Bioactive Compound Prediction of Astragalus membranaceus var. mongholicus. Agriculture 2025, 15, 2009. https://doi.org/10.3390/agriculture15192009
She S, Xiao Z, Zhou Y. Combined Hyperspectral Imaging with Wavelet Domain Multivariate Feature Fusion Network for Bioactive Compound Prediction of Astragalus membranaceus var. mongholicus. Agriculture. 2025; 15(19):2009. https://doi.org/10.3390/agriculture15192009
Chicago/Turabian StyleShe, Suning, Zhiyun Xiao, and Yulong Zhou. 2025. "Combined Hyperspectral Imaging with Wavelet Domain Multivariate Feature Fusion Network for Bioactive Compound Prediction of Astragalus membranaceus var. mongholicus" Agriculture 15, no. 19: 2009. https://doi.org/10.3390/agriculture15192009
APA StyleShe, S., Xiao, Z., & Zhou, Y. (2025). Combined Hyperspectral Imaging with Wavelet Domain Multivariate Feature Fusion Network for Bioactive Compound Prediction of Astragalus membranaceus var. mongholicus. Agriculture, 15(19), 2009. https://doi.org/10.3390/agriculture15192009