Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,328)

Search Parameters:
Keywords = oncological therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1577 KiB  
Article
Multidisciplinary, Clinical Assessment of Accelerated Deep-Learning MRI Protocols at 1.5 T and 3 T After Intracranial Tumor Surgery and Their Influence on Residual Tumor Perception
by Christer Ruff, Till-Karsten Hauser, Constantin Roder, Daniel Feucht, Paula Bombach, Leonie Zerweck, Deborah Staber, Frank Paulsen, Ulrike Ernemann and Georg Gohla
Diagnostics 2025, 15(15), 1982; https://doi.org/10.3390/diagnostics15151982 (registering DOI) - 7 Aug 2025
Abstract
Background/Objectives: Postoperative MRI is crucial for detecting residual tumor, identifying complications, and planning subsequent therapy. This study evaluates accelerated deep learning reconstruction (DLR) versus standard clinical protocols for early postoperative MRI following tumor resection. Methods: This study uses a multidisciplinary approach [...] Read more.
Background/Objectives: Postoperative MRI is crucial for detecting residual tumor, identifying complications, and planning subsequent therapy. This study evaluates accelerated deep learning reconstruction (DLR) versus standard clinical protocols for early postoperative MRI following tumor resection. Methods: This study uses a multidisciplinary approach involving a neuroradiologist, neurosurgeon, neuro-oncologist, and radiotherapist to evaluate qualitative aspects using a 5-point Likert scale, the preferred reconstruction variant and potential residual tumor of DLR and conventional reconstruction (CR) of FLAIR, T1-weighted non-contrast and contrast-enhanced (T1), and coronal T2-weighted (T2) sequences for 1.5 and 3 T MRI. Quantitative analysis included the image quality metrics Structural Similarity Index (SSIM), Multi-Scale SSIM (MS-SSIM), Feature Similarity Index (FSIM), Noise Quality Metric (NQM), signal-to-noise ratio (SNR), and Peak SNR (PSNR) with CR as a reference. Results: All raters strongly preferred DLR over CR. This was most pronounced for FLAIR images at 1.5 and 3 T (91% at 1.5 T and 97% at 3 T) and least pronounced for T1 at 1.5 T (79% for non-contrast-enhanced and 84% for contrast-enhanced sequences) and for T2 at 3 T (69%). DLR demonstrated superior qualitative image quality for all sequences and field strengths (p < 0.001), except for T2 at 3 T, which was observed across all raters (p = 0.670). Diagnostic confidence was similar at 3 T with better but non-significant differences for T2 (p = 0.134) and at 1.5 T with better but non-significant differences for non-contrast-enhanced T1 (p = 0.083) and only marginally significant results for FLAIR (p = 0.033). Both the SSIM and MS-SSIM indicated near-perfect similarity between CR and DLR. FSIM performs worse in terms of consistency between CR and DLR. The image quality metrics NQM, SNR, and PSNR showed better results for DLR. Visual assessment of residual tumor was similar at 3 T but differed at 1.5 T, with more residual tumor detected with DLR, especially by the neurosurgeon (n = 4). Conclusions: An accelerated DLR protocol demonstrates clinical feasibility, enabling high-quality reconstructions in challenging postoperative MRIs. DLR sequences received strong multidisciplinary preference, underscoring their potential to improve neuro-oncologic decision making and suitability for clinical implementation. Full article
(This article belongs to the Special Issue Advanced Brain Tumor Imaging)
19 pages, 684 KiB  
Article
Does the Timing of Response Impact the Outcome of Relapsed/Refractory Acute Myeloid Leukemia Treated with Venetoclax in Combination with Hypomethylating Agents? A Proof of Concept from a Monocentric Observational Study
by Ermelinda Longo, Fanny Erika Palumbo, Andrea Duminuco, Laura Longo, Daniela Cristina Vitale, Serena Brancati, Cinzia Maugeri, Marina Silvia Parisi, Giuseppe Alberto Palumbo, Giovanni Luca Romano, Filippo Drago, Francesco Di Raimondo, Lucia Gozzo and Calogero Vetro
J. Clin. Med. 2025, 14(15), 5586; https://doi.org/10.3390/jcm14155586 (registering DOI) - 7 Aug 2025
Abstract
Background: Relapsed/refractory acute myeloid leukemia (R/R AML) remains a therapeutic challenge due to disease heterogeneity, resistance mechanisms, and poor tolerability to intensive regimens. Venetoclax (VEN), a BCL-2 inhibitor, has shown promise in combination with hypomethylating agents (HMAs), but data on response timing [...] Read more.
Background: Relapsed/refractory acute myeloid leukemia (R/R AML) remains a therapeutic challenge due to disease heterogeneity, resistance mechanisms, and poor tolerability to intensive regimens. Venetoclax (VEN), a BCL-2 inhibitor, has shown promise in combination with hypomethylating agents (HMAs), but data on response timing in the R/R setting are limited. The aim of this study was to assess the efficacy, safety, and kinetics of response to HMA-VEN therapy in a real-world cohort of R/R AML patients, with particular focus on early versus late responders. Methods: This prospective single-center study included 33 adult patients with R/R AML treated with VEN plus either azacitidine (AZA) or decitabine (DEC) from 2018 to 2021. The primary endpoint was the composite complete remission (cCR) rate and the rate of early and late response, respectively, occurring within two cycles of therapy or later; secondary endpoints included overall survival (OS), relapse-free survival (RFS), time to relapse (TTR), and safety. Results: The cCR was 58%, with complete remission (CR) or CR with incomplete recovery (CRi) achieved in 52% of patients. Median OS was 9 months. No significant differences in OS or TTR were observed between early (≤2 cycles) and late (>2 cycles) responders. Eight responders (42%) underwent allogeneic hematopoietic stem cell transplantation (HSCT), with comparable transplant rates in both groups of responders. Toxicity was manageable. Grade 3–4 neutropenia occurred in all patients, and febrile neutropenia occurred in 44% of patients. An Eastern Cooperative Oncology Group (ECOG) score >2 was associated with inferior response and shorter treatment duration. Conclusions: HMA-VEN therapy is effective and safe in R/R AML, including for patients with delayed responses. The absence of a prognostic disadvantage for late responders supports flexible treatment schedules and suggests that the continuation of therapy may be beneficial even without early blast clearance. Tailored approaches based on performance status and comorbidities are warranted, and future studies should incorporate minimal residual disease (MRD)-based monitoring to refine response assessment. Full article
(This article belongs to the Section Hematology)
Show Figures

Figure 1

27 pages, 1209 KiB  
Review
Doxorubicin Toxicity and Recent Approaches to Alleviating Its Adverse Effects with Focus on Oxidative Stress
by Lyubomira Radeva and Krassimira Yoncheva
Molecules 2025, 30(15), 3311; https://doi.org/10.3390/molecules30153311 (registering DOI) - 7 Aug 2025
Abstract
Despite the significant antitumor potential of doxorubicin and its widespread use in the treatment of various oncological diseases, its application is associated with side effects, among which the most common are cardiotoxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, and gonadotoxicity. In contemporary times, innovative strategies to [...] Read more.
Despite the significant antitumor potential of doxorubicin and its widespread use in the treatment of various oncological diseases, its application is associated with side effects, among which the most common are cardiotoxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, and gonadotoxicity. In contemporary times, innovative strategies to overcome the toxicity of doxorubicin and improve the effectiveness of therapies are intensively researched. The aim of this review is to discuss different approaches to alleviate the common toxic effects of doxorubicin, with an emphasis on oxidative stress. In particular, the review analyzes the significance of pharmaceutical nanotechnology for reducing doxorubicin toxicity while maintaining its antitumor effect (e.g., encapsulation of doxorubicin in passively and/or actively targeted nanoparticles to tumor tissue and cells). Other strategies commented in the review are the simultaneous delivery of doxorubicin with antioxidants and the administration of its derivatives with lower toxicity. Full article
(This article belongs to the Special Issue The Anticancer Drugs: A New Perspective)
Show Figures

Figure 1

27 pages, 1680 KiB  
Review
Microtubule-Targeting Agents: Advances in Tubulin Binding and Small Molecule Therapy for Gliomas and Neurodegenerative Diseases
by Maya Ezzo and Sandrine Etienne-Manneville
Int. J. Mol. Sci. 2025, 26(15), 7652; https://doi.org/10.3390/ijms26157652 (registering DOI) - 7 Aug 2025
Abstract
Microtubules play a key role in cell division and cell migration. Thus, microtubule-targeting agents (MTAs) are pivotal in cancer therapy due to their ability to disrupt cell division microtubule dynamics. Traditionally divided into stabilizers and destabilizers, MTAs are increasingly being repurposed for central [...] Read more.
Microtubules play a key role in cell division and cell migration. Thus, microtubule-targeting agents (MTAs) are pivotal in cancer therapy due to their ability to disrupt cell division microtubule dynamics. Traditionally divided into stabilizers and destabilizers, MTAs are increasingly being repurposed for central nervous system (CNS) applications, including brain malignancies such as gliomas and neurodegenerative diseases like Alzheimer’s and Parkinson’s. Microtubule-stabilizing agents, such as taxanes and epothilones, promote microtubule assembly and have shown efficacy in both tumour suppression and neuronal repair, though their CNS use is hindered by blood–brain barrier (BBB) permeability and neurotoxicity. Destabilizing agents, including colchicine-site and vinca domain binders, offer potent anticancer effects but pose greater risks for neuronal toxicity. This review highlights the mapping of nine distinct tubulin binding pockets—including classical (taxane, vinca, colchicine) and emerging (tumabulin, pironetin) sites—that offer new pharmacological entry points. We summarize the recent advances in structural biology and drug design, enabling MTAs to move beyond anti-mitotic roles, unlocking applications in both cancer and neurodegeneration for next-generation MTAs with enhanced specificity and BBB penetration. We further discuss the therapeutic potential of combination strategies, including MTAs with radiation, histone deacetylase (HDAC) inhibitors, or antibody–drug conjugates, that show synergistic effects in glioblastoma models. Furthermore, innovative delivery systems like nanoparticles and liposomes are enhancing CNS drug delivery. Overall, MTAs continue to evolve as multifunctional tools with expanding applications across oncology and neurology, with future therapies focusing on optimizing efficacy, reducing toxicity, and overcoming therapeutic resistance in brain-related diseases. Full article
(This article belongs to the Special Issue New Drugs Regulating Cytoskeletons in Human Health and Diseases)
Show Figures

Figure 1

16 pages, 3102 KiB  
Article
The Effect of Mild Exercise in the Chemotherapy Room on the Anxiety Level of Cancer Patients: A Prospective Observational Paired Cohort Study
by Christina Mavrogiannopoulou, Georgios Papastratigakis, Emmanouela Koutoulaki, Panagiotis Vardakis, Georgios Stefanakis, Athanasios Kourtsilidis, Kostantinos Lasithiotakis, Alexandra Papaioannou and Vasileia Nyktari
J. Clin. Med. 2025, 14(15), 5591; https://doi.org/10.3390/jcm14155591 - 7 Aug 2025
Abstract
Background/Objectives: Cancer represents a significant health challenge, with high mortality and morbidity rates. Its diagnosis often triggers chronic stress, adversely affecting patient outcomes. Exercise has emerged as complementary therapy, enhancing treatment adherence and mitigating the side effects of chemotherapy. This study examines the [...] Read more.
Background/Objectives: Cancer represents a significant health challenge, with high mortality and morbidity rates. Its diagnosis often triggers chronic stress, adversely affecting patient outcomes. Exercise has emerged as complementary therapy, enhancing treatment adherence and mitigating the side effects of chemotherapy. This study examines the effects of mild exercise during chemotherapy on patient anxiety. Methods: This prospective paired cohort study was conducted in the General Oncology Hospital of Kifisia “Agioi Anargyroi” in Athens, Greece. Adult cancer patients undergoing chemotherapy participated, excluding those with cognitive, hearing, or motor impairments, those who experienced side effects, or those who declined consent. Anxiety was measured before and after a 20-minute exercise routine performed during chemotherapy, using the Greek-translated State–Trait Anxiety Inventory (STAI). The exercise regimen included warm-up, full-body stretching, and cool-down exercises. Pre- and post-exercise scores were analyzed using the Wilcoxon signed-rank test. Results: Forty-five patients (20 women, 25 men; mean age 69.02 ± 10.62 years) with various cancer backgrounds participated. Pre-intervention anxiety levels were in the borderline “moderate” range, dropping post-exercise to the “low” range. Mean STAI scores decreased from 37.73 ± 13.33 to 32.00 ± 14.22 (p < 0.0001), with a medium-large effect size (Cohen’s d for paired samples = −0.646). No significant correlation was found between age and anxiety scores. Discussion: This study found a significant short-term reduction in anxiety, suggesting that incorporating mild exercise during chemotherapy may help in alleviating patient stress. The medium-to-large effect size supports the potential for meaningful short-term benefits. Conclusions: Incorporating mild exercise during chemotherapy may help reduce anxiety and psychological burden. These findings underscore the need for more comprehensive research in larger, more diverse populations to better understand the benefits of incorporating mild exercise during chemotherapy. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

15 pages, 614 KiB  
Article
Multi-Institutional Comparison of Ablative 5-Fraction Magnetic Resonance-Guided Online Adaptive Versus 15/25-Fraction Computed Tomography-Guided Moderately Hypofractionated Offline Adapted Radiation Therapy for Locally Advanced Pancreatic Cancer
by Michael D. Chuong, Eileen M. O’Reilly, Robert A. Herrera, Melissa Zinovoy, Kathryn E. Mittauer, Muni Rubens, Adeel Kaiser, Paul B. Romesser, Nema Bassiri-Gharb, Abraham J. Wu, John J. Cuaron, Alonso N. Gutierrez, Carla Hajj, Antonio Ucar, Fernando DeZarraga, Santiago Aparo, Christopher H. Crane and Marsha Reyngold
Cancers 2025, 17(15), 2596; https://doi.org/10.3390/cancers17152596 - 7 Aug 2025
Abstract
Background: Radiation dose escalation for locally advanced pancreatic cancer (LAPC) using stereotactic magnetic resonance (MR)-guided online adaptive radiation therapy (SMART) or computed tomography (CT)-guided moderately hypofractionated ablative radiation therapy (HART) can achieve favorable outcomes although have not previously been compared. Methods: We performed [...] Read more.
Background: Radiation dose escalation for locally advanced pancreatic cancer (LAPC) using stereotactic magnetic resonance (MR)-guided online adaptive radiation therapy (SMART) or computed tomography (CT)-guided moderately hypofractionated ablative radiation therapy (HART) can achieve favorable outcomes although have not previously been compared. Methods: We performed a multi-center retrospective analysis of SMART (50 Gy/5 fractions) vs. HART (75 Gy/25 fractions or 67.5 Gy/15 fractions with concurrent capecitabine) for LAPC. Gray’s test and Cox proportional regression analyses were performed to identify factors associated with local failure (LF) and overall survival (OS). Results: A total of 211 patients (SMART, n = 91; HART, n = 120) were evaluated, and none had surgery. Median follow-up after SMART and HART was 27.0 and 40.0 months, respectively (p < 0.0002). SMART achieved higher gross tumor volume (GTV) coverage and greater hotspots. Two-year LF after SMART and HART was 6.5% and 32.9% (p < 0.001), while two-year OS was 31.0% vs. 35.3% (p = 0.056), respectively. LF was associated with SMART vs. HART (HR 5.389, 95% CI: 1.298–21.975; p = 0.021) and induction mFOLFIRINOX vs. non-mFOLFIRINOX (HR 2.067, 95% CI 1.038–4.052; p = 0.047), while OS was associated with CA19-9 decrease > 40% (HR 0.725, 95% CI 0.515–0.996; p = 0.046) and GTV V120% (HR 1.022, 95% CI 1.006–1.037; p = 0.015). Acute grade > 3 toxicity was similar (3.3% vs. 5.8%; p = 0.390), while late grade > 3 toxicity was less common after SMART (2.2% vs. 9.2%; p = 0.037). Conclusions: Ablative SMART and HART both achieve favorable oncologic outcomes for LAPC with minimal toxicity. We did not observe an OS difference, although technical advantages of SMART might improve target coverage and reduce LF. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

28 pages, 3469 KiB  
Review
Prostate Cancer Treatments and Their Effects on Male Fertility: Mechanisms and Mitigation Strategies
by Aris Kaltsas, Nikolaos Razos, Zisis Kratiras, Dimitrios Deligiannis, Marios Stavropoulos, Konstantinos Adamos, Athanasios Zachariou, Fotios Dimitriadis, Nikolaos Sofikitis and Michael Chrisofos
J. Pers. Med. 2025, 15(8), 360; https://doi.org/10.3390/jpm15080360 - 7 Aug 2025
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed malignancy in men worldwide. Although traditionally considered a disease of older men, the incidence of early-onset PCa (diagnosis < 55 years) is steadily rising. Advances in screening and therapy have significantly improved survival, creating [...] Read more.
Prostate cancer (PCa) is the second most frequently diagnosed malignancy in men worldwide. Although traditionally considered a disease of older men, the incidence of early-onset PCa (diagnosis < 55 years) is steadily rising. Advances in screening and therapy have significantly improved survival, creating a growing cohort of younger survivors for whom post-treatment quality of life—notably reproductive function—is paramount. Curative treatments such as radical prostatectomy, pelvic radiotherapy, androgen-deprivation therapy (ADT), and chemotherapy often cause irreversible infertility via multiple mechanisms, including surgical disruption of the ejaculatory tract, endocrine suppression of spermatogenesis, direct gonadotoxic injury to the testes, and oxidative sperm DNA damage. Despite these risks, fertility preservation is frequently overlooked in pre-treatment counseling, leaving many patients unaware of their options. This narrative review synthesizes current evidence on how PCa therapies impact male fertility, elucidates the molecular and physiological mechanisms of iatrogenic infertility, and evaluates both established and emerging strategies for fertility preservation and restoration. Key interventions covered include sperm cryopreservation, microsurgical testicular sperm extraction (TESE), and assisted reproductive technologies (ART). Psychosocial factors influencing decision-making, novel biomarkers predictive of post-treatment spermatogenic recovery, and long-term offspring outcomes are also examined. The review underscores the urgent need for timely, multidisciplinary fertility consultation as a routine component of PCa care. As PCa increasingly affects men in their reproductive years, proactively integrating preservation into standard oncologic practice should become a standard survivorship priority. Full article
(This article belongs to the Special Issue Clinical Advances in Male Genitourinary and Sexual Health)
Show Figures

Figure 1

11 pages, 365 KiB  
Review
Precision Oncology in Hodgkin’s Lymphoma: Immunotherapy and Emerging Therapeutic Frontiers
by Adit Singhal, David Mueller, Benjamin Ascherman, Pratik Shah, Wint Yan Aung, Edward Zhou and Maria J. Nieto
Lymphatics 2025, 3(3), 24; https://doi.org/10.3390/lymphatics3030024 - 6 Aug 2025
Abstract
Hodgkin’s Lymphoma (HL) affects approximately 8500 individuals annually in the United States. The 5-year relative survival rate has improved to 88.5%, driven by transformative advances in immunotherapy and precision oncology. The integration of Brentuximab vedotin (BV) and immune checkpoint inhibitors (ICIs) has redefined [...] Read more.
Hodgkin’s Lymphoma (HL) affects approximately 8500 individuals annually in the United States. The 5-year relative survival rate has improved to 88.5%, driven by transformative advances in immunotherapy and precision oncology. The integration of Brentuximab vedotin (BV) and immune checkpoint inhibitors (ICIs) has redefined treatment paradigms. The phase III SWOG S1826 trial established nivolumab plus doxorubicin, vinblastine, and dacarbazine (N + AVD) as an emerging new standard for advanced-stage HL, achieving a 2-year progression-free survival (PFS) of 92% compared to 83% for BV plus AVD (HR 0.48, 95% CI: 0.33–0.70), with superior safety, particularly in patients over 60. In relapsed/refractory HL, pembrolizumab outperforms BV, with a median PFS of 13.2 versus 8.3 months (HR 0.65, 95% CI: 0.48–0.88), as demonstrated in the KEYNOTE-204 trial. Emerging strategies, including novel ICI combinations, minimal residual disease (MRD) monitoring via circulating tumor DNA (ctDNA), and artificial intelligence (AI)-driven diagnostics, promise to further personalize therapy. This review synthesizes HL’s epidemiology, pathogenesis, diagnostic innovations, and therapeutic advances, highlighting the role of precision medicine in addressing unmet needs and disparities in HL care. Full article
Show Figures

Figure 1

28 pages, 845 KiB  
Review
Circulating Tumor DNA in Prostate Cancer: A Dual Perspective on Early Detection and Advanced Disease Management
by Stepan A. Kopytov, Guzel R. Sagitova, Dmitry Y. Guschin, Vera S. Egorova, Andrei V. Zvyagin and Alexey S. Rzhevskiy
Cancers 2025, 17(15), 2589; https://doi.org/10.3390/cancers17152589 - 6 Aug 2025
Abstract
Prostate cancer (PC) remains a leading cause of malignancy in men worldwide, with current diagnostic methods such as prostate-specific antigen (PSA) testing and tissue biopsies facing limitations in specificity, invasiveness, and ability to capture tumor heterogeneity. Liquid biopsy, especially analysis of circulating tumor [...] Read more.
Prostate cancer (PC) remains a leading cause of malignancy in men worldwide, with current diagnostic methods such as prostate-specific antigen (PSA) testing and tissue biopsies facing limitations in specificity, invasiveness, and ability to capture tumor heterogeneity. Liquid biopsy, especially analysis of circulating tumor DNA (ctDNA), has emerged as a transformative tool for non-invasive detection, real-time monitoring, and treatment selection for PC. This review examines the role of ctDNA in both localized and metastatic PCs, focusing on its utility in early detection, risk stratification, therapy selection, and post-treatment monitoring. In localized PC, ctDNA-based biomarkers, including ctDNA fraction, methylation patterns, fragmentation profiles, and mutations, demonstrate promise in improving diagnostic accuracy and predicting disease recurrence. For metastatic PC, ctDNA analysis provides insights into tumor burden, genomic alterations, and resistance mechanisms, enabling immediate assessment of treatment response and guiding therapeutic decisions. Despite challenges such as the low ctDNA abundance in early-stage disease and the need for standardized protocols, advances in sequencing technologies and multimodal approaches enhance the clinical applicability of ctDNA. Integrating ctDNA with imaging and traditional biomarkers offers a pathway to precision oncology, ultimately improving outcomes. This review underscores the potential of ctDNA to redefine PC management while addressing current limitations and future directions for research and clinical implementation. Full article
Show Figures

Graphical abstract

42 pages, 939 KiB  
Review
B7-H3 in Cancer Immunotherapy—Prospects and Challenges: A Review of the Literature
by Sylwia Mielcarska, Anna Kot, Miriam Dawidowicz, Agnieszka Kula, Piotr Sobków, Daria Kłaczka, Dariusz Waniczek and Elżbieta Świętochowska
Cells 2025, 14(15), 1209; https://doi.org/10.3390/cells14151209 - 6 Aug 2025
Abstract
In today’s oncology, immunotherapy arises as a potent complement for conventional cancer treatment, allowing for obtaining better patient outcomes. B7-H3 (CD276) is a member of the B7 protein family, which emerged as an attractive target for the treatment of various tumors. The molecule [...] Read more.
In today’s oncology, immunotherapy arises as a potent complement for conventional cancer treatment, allowing for obtaining better patient outcomes. B7-H3 (CD276) is a member of the B7 protein family, which emerged as an attractive target for the treatment of various tumors. The molecule modulates anti-cancer immune responses, acting through diverse signaling pathways and cell populations. It has been implicated in the pathogenesis of numerous malignancies, including melanoma, gliomas, lung cancer, gynecological cancers, renal cancer, gastrointestinal tumors, and others, fostering the immunosuppressive environment and marking worse prognosis for the patients. B7-H3 targeting therapies, such as monoclonal antibodies, antibody–drug conjugates, and CAR T-cells, present promising results in preclinical studies and are the subject of ongoing clinical trials. CAR-T therapies against B7-H3 have demonstrated utility in malignancies such as melanoma, glioblastoma, prostate cancer, and RCC. Moreover, ADCs targeting B7-H3 exerted cytotoxic effects on glioblastoma, neuroblastoma cells, prostate cancer, and craniopharyngioma models. B7-H3-targeting also delivers promising results in combined therapies, enhancing the response to other immune checkpoint inhibitors and giving hope for the development of approaches with minimized adverse effects. However, the strategies of B7-H3 blocking deliver substantial challenges, such as poorly understood molecular mechanisms behind B7-H3 protumor properties or therapy toxicity. In this review, we discuss B7-H3’s role in modulating immune responses, its significance for various malignancies, and clinical trials evaluating anti-B7-H3 immunotherapeutic strategies, focusing on the clinical potential of the molecule. Full article
Show Figures

Figure 1

47 pages, 7003 KiB  
Review
Phthalocyanines Conjugated with Small Biologically Active Compounds for the Advanced Photodynamic Therapy: A Review
by Kyrylo Chornovolenko and Tomasz Koczorowski
Molecules 2025, 30(15), 3297; https://doi.org/10.3390/molecules30153297 - 6 Aug 2025
Abstract
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, [...] Read more.
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, efficacy, and multifunctionality. These conjugates combine light-activated reactive oxygen species (ROS) production with targeted delivery and controlled release, offering enhanced treatment precision and reduced off-target toxicity. Chemotherapeutic agent conjugates, including those with erlotinib, doxorubicin, tamoxifen, and camptothecin, demonstrate receptor-mediated uptake, pH-responsive release, and synergistic anticancer effects, even overcoming multidrug resistance. Beyond oncology, ZnPc conjugates with antibiotics, anti-inflammatory drugs, antiparasitics, and antidepressants extend photodynamic therapy’s scope to antimicrobial and site-specific therapies. Targeting moieties such as folic acid, biotin, arginylglycylaspartic acid (RGD) and epidermal growth factor (EGF) peptides, carbohydrates, and amino acids have been employed to exploit overexpressed receptors in tumors, enhancing cellular uptake and tumor accumulation. Fluorescent dye and porphyrinoid conjugates further enrich these systems by enabling imaging-guided therapy, efficient energy transfer, and dual-mode activation through pH or enzyme-sensitive linkers. Despite these promising strategies, key challenges remain, including aggregation-induced quenching, poor aqueous solubility, synthetic complexity, and interference with ROS generation. In this review, the examples of Pc-based conjugates were described with particular interest on the synthetic procedures and optical properties of targeted compounds. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

30 pages, 2414 KiB  
Review
Melittin-Based Nanoparticles for Cancer Therapy: Mechanisms, Applications, and Future Perspectives
by Joe Rizkallah, Nicole Charbel, Abdallah Yassine, Amal El Masri, Chris Raffoul, Omar El Sardouk, Malak Ghezzawi, Therese Abou Nasr and Firas Kreidieh
Pharmaceutics 2025, 17(8), 1019; https://doi.org/10.3390/pharmaceutics17081019 - 6 Aug 2025
Abstract
Melittin, a cytolytic peptide derived from honeybee venom, has demonstrated potent anticancer activity through mechanisms such as membrane disruption, apoptosis induction, and modulation of key signaling pathways. Melittin exerts its anticancer activity by interacting with key molecular targets, including downregulation of the PI3K/Akt [...] Read more.
Melittin, a cytolytic peptide derived from honeybee venom, has demonstrated potent anticancer activity through mechanisms such as membrane disruption, apoptosis induction, and modulation of key signaling pathways. Melittin exerts its anticancer activity by interacting with key molecular targets, including downregulation of the PI3K/Akt and NF-κB signaling pathways, and by inducing mitochondrial apoptosis through reactive oxygen species generation and cytochrome c release. However, its clinical application is hindered by its systemic and hemolytic toxicity, rapid degradation in plasma, poor pharmacokinetics, and immunogenicity, necessitating the development of targeted delivery strategies to enable safe and effective treatment. Nanoparticle-based delivery systems have emerged as a promising strategy for overcoming these challenges, offering improved tumor targeting, reduced off-target effects, and enhanced stability. This review provides a comprehensive overview of the mechanisms through which melittin exerts its anticancer effects and evaluates the development of various melittin-loaded nanocarriers, including liposomes, polymeric nanoparticles, dendrimers, micelles, and inorganic systems. It also summarizes the preclinical evidence for melittin nanotherapy across a wide range of cancer types, highlighting both its cytotoxic and immunomodulatory effects. The potential of melittin nanoparticles to overcome multidrug resistance and synergize with chemotherapy, immunotherapy, photothermal therapy, and radiotherapy is discussed. Despite promising in vitro and in vivo findings, its clinical translation remains limited. Key barriers include toxicity, manufacturing scalability, regulatory approval, and the need for more extensive in vivo validation. A key future direction is the application of computational tools, such as physiologically based pharmacokinetic modeling and artificial-intelligence-based modeling, to streamline development and guide its clinical translation. Addressing these challenges through focused research and interdisciplinary collaboration will be essential to realizing the full therapeutic potential of melittin-based nanomedicines in oncology. Overall, this review synthesizes the findings from over 100 peer-reviewed studies published between 2008 and 2025, providing an up-to-date assessment of melittin-based nanomedicine strategies across diverse cancer types. Full article
(This article belongs to the Special Issue Development of Novel Tumor-Targeting Nanoparticles, 2nd Edition)
Show Figures

Figure 1

14 pages, 1517 KiB  
Article
Adverse Pathology After Radical Prostatectomy in Low- and Intermediate-Risk Prostate Cancer: A Propensity Score-Matched Analysis of Long-Term Health-Related Quality of Life
by Michael Chaloupka, Alexander Buchner, Marc Kidess, Benedikt Ebner, Yannic Volz, Nikolaos Pyrgidis, Stephan Timo Ledderose, Dirk-André Clevert, Julian Marcon, Philipp Weinhold, Christian G. Stief and Maria Apfelbeck
Diagnostics 2025, 15(15), 1969; https://doi.org/10.3390/diagnostics15151969 - 6 Aug 2025
Abstract
Background and Objective: Adverse pathology to high-risk prostate cancer (PCa) after radical prostatectomy (upgrading) poses a threat to risk stratification and treatment planning. The impact on sexual function, urinary continence, and health-related quality of life (HRQOL) remains unclear. Methods: From 2004 [...] Read more.
Background and Objective: Adverse pathology to high-risk prostate cancer (PCa) after radical prostatectomy (upgrading) poses a threat to risk stratification and treatment planning. The impact on sexual function, urinary continence, and health-related quality of life (HRQOL) remains unclear. Methods: From 2004 to 2024, 4189 patients with preop low-/intermediate-risk PCa (Gleason score 6 or 7a, PSA ≤ 20 ng/mL) underwent radical prostatectomy at our department and were analyzed. Primary endpoint was HRQOL, erectile function, and urinary continence. Secondary endpoint was rate of salvage therapies and biochemical-free survival. Propensity score matching was performed using “operative time”, “robot-assisted surgery”, “blood loss”, “nerve-sparing surgery”, “age”, and “BMI” to represent comparable surgical approach. Median follow-up was 39 months (Interquartile-range (IQR) 15–60). Key Findings and Limitations: Patients who were upgraded to high-risk PCa showed a higher rate of postoperative radiotherapy and androgen-deprivation therapy compared to patients who were not upgraded (21% vs. 7%, p < 0.001; 9% vs. 3%, p = 0.002). Five-year biochemical recurrence-free survival was 68% in the upgrading group vs. 84% in the no-upgrading group (p < 0.001). We saw no difference in patient-reported HRQOL, urinary continence, or erectile function. Multivariable analysis showed that postoperative upgrading was a significant risk for not achieving good overall HRQOL (OR: 0.77, 95% CI: 0.61–0.97, p = 0.028) during the follow-up. Conclusions and Clinical Implications: Although postoperative upgrading to high-risk PCa leads to worse oncologic outcomes and higher salvage therapy rates, this study indicates that its impact on health-related quality of life is minimal and should not deter a cautious approach to radical prostatectomy. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Figure 1

23 pages, 1642 KiB  
Review
The Multifaceted Role of Autophagy in Nasopharyngeal Carcinoma: Translational Perspectives on Pathogenesis, Biomarkers, Treatment Resistance, and Emerging Therapies
by Abdul L. Shakerdi, Emma Finnegan, Yin-Yin Sheng and Graham P. Pidgeon
Cancers 2025, 17(15), 2577; https://doi.org/10.3390/cancers17152577 - 5 Aug 2025
Abstract
Background: Nasopharyngeal carcinoma (NPC) is an epithelial malignancy arising from the nasopharyngeal mucosa. Despite treatment advances such as the use of intensity-modulated radiotherapy and immune checkpoint inhibitors, resistance remains a significant clinical challenge. Many tumours are also diagnosed at an advanced stage associated [...] Read more.
Background: Nasopharyngeal carcinoma (NPC) is an epithelial malignancy arising from the nasopharyngeal mucosa. Despite treatment advances such as the use of intensity-modulated radiotherapy and immune checkpoint inhibitors, resistance remains a significant clinical challenge. Many tumours are also diagnosed at an advanced stage associated with poor prognosis. Objective: This review aims to explore the biological roles of autophagy in NPC, primarily highlighting its involvement in disease pathogenesis and treatment resistance. Methods: We performed a review of the recent literature examining the role of autophagy-related pathways in NPC pathogenesis, biomarker discovery, and therapeutic targeting. Results: Autophagy plays a dual role in NPC as it contributes to both tumour suppression and progression. It is involved in tumour initiation, metastasis, immune modulation, and treatment resistance. Autophagy-related genes such as SQSTM1, Beclin-1, and AURKA may serve as prognostic and therapeutic biomarkers. Various strategies are being investigated for their role to modulate autophagy using pharmacologic inhibitors, RNA interventions, and natural compounds. Conclusions: Further research into autophagy’s context-dependent roles in NPC may inform the development of personalised therapies and allow progress in translational and precision oncology. Full article
Show Figures

Figure 1

13 pages, 1198 KiB  
Review
The Role of Mitochondrial DNA in Modulating Chemoresistance in Esophageal Cancer: Mechanistic Insights and Therapeutic Potential
by Koji Tanaka, Yasunori Masuike, Yuto Kubo, Takashi Harino, Yukinori Kurokawa, Hidetoshi Eguchi and Yuichiro Doki
Biomolecules 2025, 15(8), 1128; https://doi.org/10.3390/biom15081128 - 5 Aug 2025
Viewed by 14
Abstract
Chemotherapy remains a cornerstone in the treatment of esophageal cancer (EC), yet chemoresistance remains a critical challenge, leading to poor outcomes and limited therapeutic success. Mitochondrial DNA (mtDNA) has emerged as a pivotal player in mediating these responses, influencing cellular metabolism, oxidative stress [...] Read more.
Chemotherapy remains a cornerstone in the treatment of esophageal cancer (EC), yet chemoresistance remains a critical challenge, leading to poor outcomes and limited therapeutic success. Mitochondrial DNA (mtDNA) has emerged as a pivotal player in mediating these responses, influencing cellular metabolism, oxidative stress regulation, and apoptotic pathways. This review provides a comprehensive overview of the mechanisms by which mtDNA alterations, including mutations and copy number variations, drive chemoresistance in EC. Specific focus is given to the role of mtDNA in metabolic reprogramming, including its contribution to the Warburg effect and lipid metabolism, as well as its impact on epithelial–mesenchymal transition (EMT) and mitochondrial bioenergetics. Recent advances in targeting mitochondrial pathways through novel therapeutic agents, such as metformin and mitoquinone, and innovative approaches like CRISPR/Cas9 gene editing, are also discussed. These interventions highlight the potential for overcoming chemoresistance and improving patient outcomes. By integrating mitochondrial diagnostics with personalized treatment strategies, we propose a roadmap for future research that bridges basic mitochondrial biology with translational applications in oncology. The insights offered in this review emphasize the critical need for continued exploration of mtDNA-targeted therapies to address the unmet needs in EC management and other diseases associated with mitochondria. Full article
(This article belongs to the Special Issue Esophageal Diseases: Molecular Basis and Therapeutic Approaches)
Show Figures

Figure 1

Back to TopTop