Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,857)

Search Parameters:
Keywords = onboard

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 67780 KB  
Article
YOLO-GRBI: An Enhanced Lightweight Detector for Non-Cooperative Spatial Target in Complex Orbital Environments
by Zimo Zhou, Shuaiqun Wang, Xinyao Wang, Wen Zheng and Yanli Xu
Entropy 2025, 27(9), 902; https://doi.org/10.3390/e27090902 (registering DOI) - 25 Aug 2025
Abstract
Non-cooperative spatial target detection plays a vital role in enabling autonomous on-orbit servicing and maintaining space situational awareness (SSA). However, due to the limited computational resources of onboard embedded systems and the complexity of spaceborne imaging environments, where spacecraft images often contain small [...] Read more.
Non-cooperative spatial target detection plays a vital role in enabling autonomous on-orbit servicing and maintaining space situational awareness (SSA). However, due to the limited computational resources of onboard embedded systems and the complexity of spaceborne imaging environments, where spacecraft images often contain small targets that are easily obscured by background noise and characterized by low local information entropy, many existing object detection frameworks struggle to achieve high accuracy with low computational cost. To address this challenge, we propose YOLO-GRBI, an enhanced detection network designed to balance accuracy and efficiency. A reparameterized ELAN backbone is adopted to improve feature reuse and facilitate gradient propagation. The BiFormer and C2f-iAFF modules are introduced to enhance attention to salient targets, reducing false positives and false negatives. GSConv and VoV-GSCSP modules are integrated into the neck to reduce convolution operations and computational redundancy while preserving information entropy. YOLO-GRBI employs the focal loss for classification and confidence prediction to address class imbalance. Experiments on a self-constructed spacecraft dataset show that YOLO-GRBI outperforms the baseline YOLOv8n, achieving a 4.9% increase in mAP@0.5 and a 6.0% boost in mAP@0.5:0.95, while further reducing model complexity and inference latency. Full article
(This article belongs to the Special Issue Space-Air-Ground-Sea Integrated Communication Networks)
29 pages, 5017 KB  
Article
A Two-Stage T-Norm–Choquet–OWA Resource Aggregator for Multi-UAV Cooperation: Theoretical Proof and Validation
by Linchao Zhang, Jun Peng, Lei Hang and Zhongyang Cheng
Drones 2025, 9(9), 597; https://doi.org/10.3390/drones9090597 (registering DOI) - 25 Aug 2025
Abstract
Multi-UAV cooperative missions demand millisecond-level coordination across three key resource dimensions—battery energy, wireless bandwidth, and onboard computing power—where traditional Min or linearly weighted schedulers struggle to balance safety with efficiency. We propose a prediction-enhanced two-stage T-norm–Choquet–OWA resource aggregator. First, an LSTM-EMA model forecasts [...] Read more.
Multi-UAV cooperative missions demand millisecond-level coordination across three key resource dimensions—battery energy, wireless bandwidth, and onboard computing power—where traditional Min or linearly weighted schedulers struggle to balance safety with efficiency. We propose a prediction-enhanced two-stage T-norm–Choquet–OWA resource aggregator. First, an LSTM-EMA model forecasts resource trajectories 3 s ahead; next, a first-stage T-norm (min) pinpoints the bottleneck resource, and a second-stage Choquet–OWA, driven by an adaptive interaction measure ϕ, elastically compensates according to instantaneous power usage, achieving a “bottleneck-first, efficiency-recovery” coordination strategy. Theoretical analysis establishes monotonicity, tight bounds, bottleneck prioritization, and Lyapunov stability, with node-level complexity of only O(1). In joint simulations involving 360 UAVs, the method holds the average round-trip time (RTT) at 55 ms, cutting latency by 5%, 10%, 15%, and 20% relative to Min, DRL-PPO, single-layer OWA, and WSM, respectively. Jitter remains within 11 ms, the packet-loss rate stays below 0.03%, and residual battery increases by about 12% over the best heuristic baseline. These results confirm the low-latency, high-stability benefits of the prediction-based peak-shaving plus two-stage fuzzy aggregation approach for large-scale UAV swarms. Full article
(This article belongs to the Section Drone Communications)
20 pages, 4388 KB  
Article
Investigation of Cryogenic Mechanical Performance of Epoxy Resin and Carbon Fibre-Reinforced Polymer Composites for Cryo-Compressed Hydrogen Storage Onboard Gas Vessels
by Liangliang Qi, Keqing Wang, Zhoutian Ge, Zhuangzhuang Cao, Peiyu Hu, Yuhang He, Sohail Yasin and Jianfeng Shi
Polymers 2025, 17(17), 2296; https://doi.org/10.3390/polym17172296 (registering DOI) - 25 Aug 2025
Abstract
To address the brittle matrix failure frequently observed in filament-wound composite layers of onboard pressure vessels operating under cryogenic and high-pressure conditions, we studied a bisphenol-A epoxy resin (DGEBA) system modified with polyetheramine (T5000) and 3,4-Epoxycyclohexylmethyl 3′,4′-epoxycyclohexanecarboxylate (CY179). The curing and rheological behavior [...] Read more.
To address the brittle matrix failure frequently observed in filament-wound composite layers of onboard pressure vessels operating under cryogenic and high-pressure conditions, we studied a bisphenol-A epoxy resin (DGEBA) system modified with polyetheramine (T5000) and 3,4-Epoxycyclohexylmethyl 3′,4′-epoxycyclohexanecarboxylate (CY179). The curing and rheological behavior of the modified resin were first evaluated, revealing a favorable processing, with viscosity suitable for wet-filament winding. Subsequently, its coefficient of thermal expansion (CTE) and tensile properties were characterized over the 300 K–90 K range, demonstrating a linear increase in elastic modulus and tensile strength with decreasing temperature. Carbon fibre-reinforced polymer composites (CFRP) were then fabricated using this resin system, and both longitudinal and transverse tensile tests, along with microscopic fracture surface analyses, were conducted. The results showed that CFRP-0° specimens exhibited an initial increase followed by a decrease in elastic modulus with decreasing temperature, whereas CFRP-90° specimens demonstrated pronounced cryogenic strengthening, with tensile strength and modulus enhanced by 52.2% and 82.4%, respectively. The findings provide comprehensive properties for the studied resin system and its CFRP under room temperature (RT) to cryogenic conditions, offering a basis for the design and engineering of cryo-compressed hydrogen storage vessels. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

10 pages, 1375 KB  
Proceeding Paper
Mapping Soil Moisture Using Drones: Challenges and Opportunities
by Ricardo Díaz-Delgado, Pauline Buysse, Thibaut Peres, Thomas Houet, Yannick Hamon, Mikaël Faucheux and Ophelie Fovert
Eng. Proc. 2025, 94(1), 18; https://doi.org/10.3390/engproc2025094018 (registering DOI) - 25 Aug 2025
Abstract
Droughts are becoming more frequent, severe, and impactful across the globe. Agroecosystems, which are human-made ecosystems with high water demand that provide essential ecosystem services, are vulnerable to extreme droughts. Although water use efficiency in agriculture has increased in rec ent decades, drought [...] Read more.
Droughts are becoming more frequent, severe, and impactful across the globe. Agroecosystems, which are human-made ecosystems with high water demand that provide essential ecosystem services, are vulnerable to extreme droughts. Although water use efficiency in agriculture has increased in rec ent decades, drought management should be based on long-term, proactive strategies rather than crisis management. The AgrHyS network of sites in French Brittany collects high-resolution soil moisture data from agronomic stations and catchments to improve understanding of temporal soil moisture dynamics and enhance water use efficiency. Frequent mapping of soil moisture and plant water stress is crucial for assessing water stress risk in the context of global warming. Although satellite remote sensing provides reliable, periodic global data on surface soil moisture, it does so at a very coarse spatial resolution. The intrinsic spatial heterogeneity of surface soil moisture requires a higher spatial resolution in order to address upcoming challenges on a local scale. Drones are an excellent tool for upscaling point measurements to catchment level using different onboard cameras. In this study, we evaluated the potential of multispectral images, thermal images and LiDAR data captured in several concurrent drone flights for high-resolution mapping of soil moisture spatial variability, using in situ point measurements of soil water content and plant water stress in both agricultural areas and natural ecosystems. Statistical models were fitted to map soil water content in two areas: a natural marshland and a grassland-covered agricultural field. Our results demonstrate the statistical significance of topography, land surface temperature and red band reflectance in the natural area for retrieving soil water content. In contrast, the grasslands were best predicted by the transformed normalised difference vegetation index (TNDVI). Full article
Show Figures

Figure 1

26 pages, 5828 KB  
Article
Optimizing Evacuation Signage Layouts in Symmetrical Cruise Ship Theaters Considering Passenger Mobility and Visual Asymmetries
by You Kong, Kaibo Jin, Haihong Xu, Bo Yu and Ruijie Li
Symmetry 2025, 17(9), 1383; https://doi.org/10.3390/sym17091383 - 24 Aug 2025
Abstract
The growing participation of elderly individuals in cruise tourism introduces asymmetry in passenger mobility and perception, posing challenges for onboard emergency evacuation. To address this, an interactive cellular automata model that enables dynamic human–signage interaction, incorporating age-dependent variations in walking speed and visual [...] Read more.
The growing participation of elderly individuals in cruise tourism introduces asymmetry in passenger mobility and perception, posing challenges for onboard emergency evacuation. To address this, an interactive cellular automata model that enables dynamic human–signage interaction, incorporating age-dependent variations in walking speed and visual field. The model simulates passenger behavior during evacuation by integrating a static potential field, signage attraction, and directional guidance mechanisms. A bi-objective optimization framework is proposed to determine the optimal signage layout for symmetrical cruise ship theaters, balancing evacuation effectiveness across age groups with design constraints such as economic considerations. The optimization uses a genetic algorithm through simulation experiments under varying age compositions and smoke concentration levels. Results indicate that age-sensitive and interactive signage design substantially enhances evacuation efficiency, particularly for elderly passengers and under limited visibility conditions. This study offers practical insights into signage layout strategies for enhancing shipboard evacuation safety in diverse demographic and environmentally complex scenarios. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

30 pages, 1456 KB  
Article
Adaptive Stochastic GERT Modeling of UAV Video Transmission for Urban Monitoring Systems
by Serhii Semenov, Magdalena Krupska-Klimczak, Michał Frontczak, Jian Yu, Jiang He and Olena Chernykh
Appl. Sci. 2025, 15(17), 9277; https://doi.org/10.3390/app15179277 - 23 Aug 2025
Viewed by 50
Abstract
The growing use of unmanned aerial vehicles (UAVs) for real-time video surveillance in smart city and smart region infrastructures requires reliable and delay-aware data transmission models. In urban environments, UAV communication links are subject to stochastic variability, leading to jitter, packet loss, and [...] Read more.
The growing use of unmanned aerial vehicles (UAVs) for real-time video surveillance in smart city and smart region infrastructures requires reliable and delay-aware data transmission models. In urban environments, UAV communication links are subject to stochastic variability, leading to jitter, packet loss, and unstable video delivery. This paper presents a novel approach based on the Graphical Evaluation and Review Technique (GERT) for modeling the transmission of video frames from UAVs over uncertain network paths with probabilistic feedback loops and lognormally distributed delays. The proposed model enables both analytical and numerical evaluation of key Quality-of-Service (QoS) metrics, including mean transmission time and jitter, under varying levels of channel variability. Additionally, the structure of the GERT-based framework allows integration with artificial intelligence mechanisms, particularly for adaptive routing and delay prediction in urban conditions. Spectral analysis of the system’s characteristic function is also performed to identify instability zones and guide buffer design. The results demonstrate that the approach supports flexible, parameterized modeling of UAV video transmission and can be extended to intelligent, learning-based control strategies in complex smart city environments. This makes it suitable for a wide range of applications, including traffic monitoring, infrastructure inspection, and emergency response. Beyond QoS optimization, the framework explicitly accommodates security and privacy preserving operations (e.g., encryption, authentication, on-board redaction), enabling secure UAV video transmission in urban networks. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

20 pages, 10949 KB  
Article
Optimal Flight Speed and Height Parameters for Computer Vision Detection in UAV Search
by Luka Lanča, Matej Mališa, Karlo Jakac and Stefan Ivić
Drones 2025, 9(9), 595; https://doi.org/10.3390/drones9090595 - 23 Aug 2025
Viewed by 63
Abstract
Unmanned Aerial Vehicles (UAVs) equipped with onboard cameras and deep-learning-based object detection algorithms are increasingly used in search operations. This study investigates the optimal flight parameters, specifically flight speed and ground sampling distance (GSD), to maximize a search efficiency metric called effective coverage. [...] Read more.
Unmanned Aerial Vehicles (UAVs) equipped with onboard cameras and deep-learning-based object detection algorithms are increasingly used in search operations. This study investigates the optimal flight parameters, specifically flight speed and ground sampling distance (GSD), to maximize a search efficiency metric called effective coverage. A custom dataset of 4468 aerial images with 35,410 annotated cardboard targets was collected and used to evaluate the influence of flight conditions on detection accuracy. The effects of flight speed and GSD were analyzed using regression modeling, revealing a trade-off between the area coverage and detection confidence of trained YOLOv8 and YOLOv11 models. Area coverage was modeled based on flight speed and camera specifications, enabling an estimation of the effective coverage. The results provide insights into how the detection performance varies across different operating conditions and demonstrate that a balance point exists where the combination of the detection reliability and coverage efficiency is optimized. Our table of the optimal flight regimes and metrics for the most commonly used cameras in UAV operations offers practical guidelines for efficient and reliable mission planning. Full article
Show Figures

Figure 1

19 pages, 2776 KB  
Article
Implementation of the Stack-CNN Algorithm for Space Debris Detection on FPGA Board
by Matteo Abrate, Federico Reynaud, Mario Edoardo Bertaina, Antonio Giulio Coretti, Andrea Frasson, Antonio Montanaro, Raffaella Bonino and Roberta Sirovich
Appl. Sci. 2025, 15(17), 9268; https://doi.org/10.3390/app15179268 - 23 Aug 2025
Viewed by 95
Abstract
The detection of faint, fast-moving objects such as space debris, in optical data is a major challenge due to their low signal-to-background ratio and short visibility time. This work addresses this issue by implementing the Stack-CNN algorithm, originally designed for offline analysis, on [...] Read more.
The detection of faint, fast-moving objects such as space debris, in optical data is a major challenge due to their low signal-to-background ratio and short visibility time. This work addresses this issue by implementing the Stack-CNN algorithm, originally designed for offline analysis, on an FPGA-based platform to enable real-time triggering capabilities in constrained space hardware environments. The Stack-CNN combines a stacking method to enhance the signal-to-noise ratio of moving objects across multiple frames with a lightweight convolutional neural network optimized for embedded inference. The FPGA implementation was developed using a Xilinx Zynq Ultrascale+ platform and achieves low-latency, power-efficient inference compatible with CubeSat systems. Performance was evaluated using both a physics-based simulation framework and data acquired during outdoor experimental campaigns. The trigger maintains high detection efficiency for 10 cm-class targets up to 30–40 km distance and reliably detects real satellite tracks with signal levels as low as 1% above background. These results validate the feasibility of on-board real-time debris detection using embedded AI, and demonstrate the robustness of the algorithm under realistic operational conditions. The study was conducted in the context of a broader technology demonstration project, called DISCARD, aimed at increasing space situational awareness capabilities on small platforms. Full article
(This article belongs to the Special Issue Application of Machine Learning in Space Engineering)
Show Figures

Figure 1

14 pages, 412 KB  
Article
Do Novices Struggle with AI Web Design? An Eye-Tracking Study of Full-Site Generation Tools
by Chen Chu, Jianan Zhao and Zhanxun Dong
Multimodal Technol. Interact. 2025, 9(9), 85; https://doi.org/10.3390/mti9090085 - 22 Aug 2025
Viewed by 124
Abstract
AI-powered full-site web generation tools promise to democratize website creation for novice users. However, their actual usability and accessibility for novice users remain insufficiently studied. This study examines interaction barriers faced by novice users when using Wix ADI to complete three tasks: Task [...] Read more.
AI-powered full-site web generation tools promise to democratize website creation for novice users. However, their actual usability and accessibility for novice users remain insufficiently studied. This study examines interaction barriers faced by novice users when using Wix ADI to complete three tasks: Task 1 (onboarding), Task 2 (template customization), and Task 3 (product page creation). Twelve participants with no web design background were recruited to perform these tasks while their behavior was recorded via screen capture and eye-tracking (Tobii Glasses 2), supplemented by post-task interviews. Task completion rates declined significantly in Task 2 (66.67%) and 3 (33.33%). Help-seeking behaviors increased significantly, particularly during template customization and product page creation. Eye-tracking data indicated elevated cognitive load in later tasks, with fixation count and saccade count peaking in Task 2 and pupil diameter peaking in Task 3. Qualitative feedback identified core challenges such as interface ambiguity, limited transparency in AI control, and disrupted task logic. These findings reveal a gap between AI tool affordances and novice user needs, underscoring the importance of interface clarity, editable transparency, and adaptive guidance. As full-site generators increasingly target general users, lowering barriers for novice audiences is essential for equitable access to web creation. Full article
Show Figures

Figure 1

15 pages, 2044 KB  
Article
Degradation Modeling and Telemetry-Based Analysis of Solar Cells in LEO for Nano- and Pico-Satellites
by Angsagan Kenzhegarayeva, Kuanysh Alipbayev and Algazy Zhauyt
Appl. Sci. 2025, 15(16), 9208; https://doi.org/10.3390/app15169208 - 21 Aug 2025
Viewed by 196
Abstract
In the last decades, small satellites such as CubeSats and PocketQubes have become popular platforms for scientific and applied missions in low Earth orbit (LEO). However, prolonged exposure to atomic oxygen, ultraviolet radiation, and thermal cycling in LEO leads to gradual degradation of [...] Read more.
In the last decades, small satellites such as CubeSats and PocketQubes have become popular platforms for scientific and applied missions in low Earth orbit (LEO). However, prolonged exposure to atomic oxygen, ultraviolet radiation, and thermal cycling in LEO leads to gradual degradation of onboard solar panels, reducing mission lifetime and performance. This study addresses the need to quantify and compare the degradation behavior of different solar cell technologies and protective coatings used in nanosatellites and pico-satellites. The aim is to evaluate the in-orbit performance of monocrystalline silicon (Si), gallium arsenide (GaAs), triple-junction (TJ) structures, and copper indium gallium selenide (CIGS) cells under varying orbital and satellite parameters. Telemetry data from recent small satellite missions launched after 2020, combined with numerical modeling in GNU Octave, were used to assess degradation trends. The models were validated using empirical mission data, and statistical goodness-of-fit metrics (RMSE, R2) were applied to evaluate linear and exponential degradation patterns. Results show that TJ cells exhibit the highest resistance to LEO-induced degradation, while Si-based panels experience more pronounced power loss, especially in orbits below 500 km. Furthermore, smaller satellites (<10 kg) display higher degradation rates due to lower thermal inertia and limited shielding. These findings provide practical guidance for the selection of solar cell technologies, anti-degradation coatings, and protective strategies for long-duration CubeSat missions in diverse LEO environments. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

35 pages, 10915 KB  
Review
Geochemistry of Mars with Laser-Induced Breakdown Spectroscopy (LIBS): ChemCam, SuperCam, and MarSCoDe
by Roger C. Wiens, Agnes Cousin, Samuel M. Clegg, Olivier Gasnault, Zhaopeng Chen, Sylvestre Maurice and Rong Shu
Minerals 2025, 15(8), 882; https://doi.org/10.3390/min15080882 - 21 Aug 2025
Viewed by 238
Abstract
Laser-induced breakdown spectroscopy (LIBS) has been used to explore the chemistry of three regions of Mars on respective missions by NASA and CNSA, with CNES contributions. All three LIBS instruments use ~100 mm diameter telescopes projecting pulsed infrared laser beams of 10–14 mJ [...] Read more.
Laser-induced breakdown spectroscopy (LIBS) has been used to explore the chemistry of three regions of Mars on respective missions by NASA and CNSA, with CNES contributions. All three LIBS instruments use ~100 mm diameter telescopes projecting pulsed infrared laser beams of 10–14 mJ to enable LIBS at 2–10 m distances, eliminating the need to position the rover and instrument directly onto targets. Over 1.3 million LIBS spectra have been used to provide routine compositions for eight major elements and several minor and trace elements on >3000 targets on Mars. Onboard calibration targets common to all three instruments allow careful intercomparison of results. Operating over thirteen years, ChemCam on Curiosity has explored lacustrine sediments and diagenetic features in Gale crater, which was a long-lasting (>1 My) lake during Mars’ Hesperian period. SuperCam on Perseverance is exploring the ultramafic igneous floor, fluvial–deltaic features, and the rim of Jezero crater. MarSCoDe on the Zhurong rover investigated for one year the local blocks, soils, and transverse aeolian ridges of Utopia Planitia. The pioneering work of these three stand-off LIBS instruments paves the way for future space exploration with LIBS, where advantages of light-element (H, C, N, O) quantification can be used on icy regions. Full article
Show Figures

Graphical abstract

10 pages, 4876 KB  
Proceeding Paper
Permanent Train-Side GNSS Multipath Characterization Considering Time-Correlation for Safe Railway Localization
by Ana Kliman, Anja Grosch and Omar Garcia Crespillo
Eng. Proc. 2025, 88(1), 71; https://doi.org/10.3390/engproc2025088071 - 20 Aug 2025
Viewed by 319
Abstract
Railway transportation systems have high accuracy and high integrity demands for safe localization. In the future, railway signaling is expected to rely on onboard sensors like Global Navigation Satellite Systems (GNSSs) in order to reduce installation and maintenance costs. GNSS position determination can, [...] Read more.
Railway transportation systems have high accuracy and high integrity demands for safe localization. In the future, railway signaling is expected to rely on onboard sensors like Global Navigation Satellite Systems (GNSSs) in order to reduce installation and maintenance costs. GNSS position determination can, however, be highly degraded because of the presence of multipath on the train and railway environment. This paper tackles the characterization of multipath in code measurements caused exclusively by the antenna installation and derives a conservative error model of the antenna-installation-induced multipath and noise. First, we isolate multipath and noise from other GNSS errors using the Code-Minus-Carrier method. Second, an overbounding error model is derived. The limitation of modeling with restricted set of real data typically found in practice is discussed and we review methods that ensure the independence of samples. A new approach that creates separate data sets is ultimately proposed to derive an overbounding sigma. The presented methodology is supported by real measurements collected in an open-sky railway scenario. The derived models can be used as a reference nominal error models to build the null hypothesis of fault detection algorithms that detects the presence of excessive multipath in dynamic scenarios or as a part of a total error budget consideration. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

36 pages, 2830 KB  
Review
Real-Time, Continuous Monitoring of Tissue Chips as an Emerging Opportunity for Biosensing
by John S. Cognetti and Benjamin L. Miller
Sensors 2025, 25(16), 5153; https://doi.org/10.3390/s25165153 - 19 Aug 2025
Viewed by 512
Abstract
Tissue chips (TCs), otherwise known as organs-on-a-chip (OoC), organ chips (OCs), or microphysiological systems (MPS), are rapidly gaining prominence as an extension of or even replacement for traditional animal models of disease physiology. They also have recognized utility in the context of drug [...] Read more.
Tissue chips (TCs), otherwise known as organs-on-a-chip (OoC), organ chips (OCs), or microphysiological systems (MPS), are rapidly gaining prominence as an extension of or even replacement for traditional animal models of disease physiology. They also have recognized utility in the context of drug development: for example, data from TCs can now be submitted in place of some animal testing to the FDA. In principle, TCs are structured to allow measurement of any number of outputs that yield information about the tissue. However, to date, measurements made during experiments with TCs have been largely restricted to immunofluorescence microscopy and benchtop assays performed on media extracted from the cell culture within the device. With the development of biosensors that are sensitive and have an ever-shrinking footprint, on-board biosensing is now in the early stages of exploration. This review discusses the importance of tissue chips and the advances in sensing that will aid the complexity and utility of tissue chip research moving forward. We cover several sensing modalities, including electrical and optical sensing modes. Finally, challenges and opportunities for the future are discussed. Full article
(This article belongs to the Special Issue Feature Review Papers in Optical Sensors)
Show Figures

Figure 1

24 pages, 5199 KB  
Article
Analysis and Proposal of Strategies for the Management of Drone Swarms Through Wi-Fi Technologies
by Guido Betcher-Sbrolla, Elena Lopez-Aguilera and Eduard Garcia-Villegas
Drones 2025, 9(8), 584; https://doi.org/10.3390/drones9080584 - 18 Aug 2025
Viewed by 329
Abstract
The main purpose of this paper is to explore the benefits of combining two radio interfaces onboard an unmanned aerial vehicle (UAV) to communicate with a ground control station (GCS) and other UAVs inside a swarm. The goals are to use the IEEE [...] Read more.
The main purpose of this paper is to explore the benefits of combining two radio interfaces onboard an unmanned aerial vehicle (UAV) to communicate with a ground control station (GCS) and other UAVs inside a swarm. The goals are to use the IEEE 802.11ah standard (Wi-Fi HaLow) combined with the IEEE 802.11ax specification (Wi-Fi 6/6E) to enable real-time video transmission from UAVs to the GCS. While airport runway inspection serves as the proof-of-concept use case, the proposed multi-hop architectures apply to other medium-range UAV operations (i.e., a few kilometers) requiring real-time video transmission, such as natural disaster relief and agricultural monitoring. Several scenarios in which a UAV swarm performs infrastructure inspection are emulated. During the missions, UAVs have to send real-time video to the GCS through a multi-hop network when some damage in the infrastructure is found. The different scenarios are studied by means of emulation. Emulated scenarios are defined using different network architectures and radio technologies. Once the emulations finish, different performance metrics related to time, energy and the multi-hop video transmission network are analyzed. The capacity of a multi-hop network is a limiting factor for the transmission of high-quality video. As a first contribution, an expression to find this capacity from distances between UAVs in the emulated scenario is found using the NS-3 simulator. Then, this expression is applied in the algorithms in charge of composing the multi-hop network to offer on-demand quality video. However, the main contribution of this work lies in the development of efficient mechanisms for exchanging control information between UAVs and the GCS, and for forming a multi-hop network to transmit video. Full article
Show Figures

Figure 1

31 pages, 6276 KB  
Article
Enhancing Wire Arc Additive Manufacturing for Maritime Applications: Overcoming Operational Challenges in Marine and Offshore Environments
by Pavlenko Petro, Xuezhi Shi, Jinbao Wang, Zhenhua Li, Bo Yin, Hanxiang Zhou, Yuxin Zhou, Bojian Yu and Zhun Wang
Appl. Sci. 2025, 15(16), 9070; https://doi.org/10.3390/app15169070 - 18 Aug 2025
Viewed by 395
Abstract
Wire Arc Additive Manufacturing holds promise for on-board metal part production in maritime settings, yet its implementation remains limited due to the vibrational instability inherent to shipborne environments. This study addresses this critical technological barrier by analyzing the effects of marine vibrations on [...] Read more.
Wire Arc Additive Manufacturing holds promise for on-board metal part production in maritime settings, yet its implementation remains limited due to the vibrational instability inherent to shipborne environments. This study addresses this critical technological barrier by analyzing the effects of marine vibrations on process stability and proposing an integrated solution based on adaptive process control, gyrostabilized platforms, and real-time monitoring systems. The research establishes specific technical requirements for WAAM instrumentation under maritime conditions and evaluates the capabilities and limitations of existing hardware and software tools. A set of engineering recommendations is presented for improving digital modeling, thermal–mechanical monitoring, and feedback control systems. Additionally, the study highlights material-related challenges by examining the influence of alloy properties on print quality under dynamic loads. The proposed approach enhances WAAM process resilience, laying the groundwork for reliable, high-quality additive manufacturing at sea. These findings are particularly relevant to shipboard maintenance, repair, and remote fabrication tasks, marking a significant step toward the industrial adoption of WAAM in marine engineering. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

Back to TopTop