Investigation of Cryogenic Mechanical Performance of Epoxy Resin and Carbon Fibre-Reinforced Polymer Composites for Cryo-Compressed Hydrogen Storage Onboard Gas Vessels
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Modified EP
2.3. Preparation of CFRP
2.4. Characterization
2.4.1. Processing Properties
2.4.2. Mechanical Properties and Fracture Morphology
2.4.3. Fibre Volume Fraction
2.4.4. Fracture Surface Analysis
3. Results and Discussion
3.1. Processing Properties of the EP System
3.2. Low-Temperature Mechanical Properties of the EP
3.2.1. CTE of the EP
3.2.2. Tensile Properties of the EP and Evolution with Temperature
3.2.3. Fractographic Characterization of EP Tensile Specimens
3.3. Low-Temperature Mechanical Properties of CFRP
3.3.1. Determination of Fibre Volume Fraction in CFRP Specimens
3.3.2. Thermal Expansion Behavior of CFRP
3.3.3. Longitudinal Tensile Properties of CFRP at Cryogenic Temperatures and Their Evolution
3.3.4. Transverse Tensile Properties of CFRP at Cryogenic Temperatures and Their Evolution
3.3.5. Fractographic Characteristics of CFRP Tensile Specimens
4. Conclusions
- The modified resin system exhibits a viscosity of approximately 800 mPa·s at ambient temperature, with curing onset and completion temperatures of 72.9 °C and 210.9 °C, respectively. These characteristics ensure favorable processability and thermosetting behavior, satisfying the requirements for wet-filament winding. Based on its rheological and curing profiles, a three-stage curing schedule, encompassing pre-curing, primary curing, and post-curing phases, was developed to ensure complete crosslinking and structural stability during molding.
- The tensile strength and elastic modulus of the modified resin system increase linearly as the temperature decreases. At 90 K, these properties are enhanced by approximately 77% and 180%, respectively, compared with their values at 300 K. This strengthening is primarily attributed to the restricted mobility of molecular chains and the reduction in free volume at low temperature, which together increase the stiffness of the resin network. Nevertheless, SEM observations of fracture surfaces reveal that the resin retains a measurable degree of plastic deformability even under cryogenic conditions. This is evidenced by the presence of ductile fracture features, including dimples, crack deflection, particle pull-out, and interfacial debonding. Furthermore, small phase-separated domains formed during the modification process serve as crack-pinning sites, diverting crack propagation paths and promoting energy absorption during fracture. These combined microstructural mechanisms account for the concurrent low-temperature strengthening and partial retention of plasticity in the modified resin.
- CFRP-0° specimens exhibit a fibre breakage-dominated failure mode, with minimal variations in tensile strength and elastic modulus across temperatures. At 90 K, the tensile strength and elastic modulus increase by approximately 4.3% and 7.7%, respectively, compared with their 300 K values. The elastic modulus shows a non-monotonic trend—rising initially and then slightly decreasing—whereas the tensile strength follows an approximately linear increase with decreasing temperature. CFRP-90° specimens, in contrast, exhibit a failure mode governed by both matrix cracking and fibre–matrix interfacial debonding. Their mechanical properties are highly temperature-sensitive: at 90 K, the tensile strength and transverse modulus increase by approximately 52.2% and 82.4%, respectively, relative to 300 K, with both properties demonstrating a linear upward trend as the temperature decreases.
- Future research will focus on regulating resin content and fibre volume fraction to elucidate their influence on interfacial bonding, thermal expansion, and low-temperature mechanical behavior, while also systematically assessing the evolution of mechanical performance and damage mechanisms under thermal shock and cycling to better approximate service conditions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Farooq, U.; Bertana, V.; Mossotti, G.; Ferrero, S.; Scaltrito, L. Sustainable Manufacturing of Lightweight Hybrid Nanocomposites for Electric Vehicle Battery Enclosures. Polymers 2025, 17, 1056. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Potluri, P.; Yousaf, Z.; Wilkinson, A. Multi-scale reinforcement of epoxy composites—Use of carbon fibre fabrics coated with an epoxy binder containing MWCNTs for improved interlaminar fracture resistance. Compos. Part B Eng. 2019, 165, 109–119. [Google Scholar] [CrossRef]
- Tostes, M.d.V.P.H.; d’Almeida, J.R.M. Effect of UV Radiation Exposure and Simulated Particle Erosion Damage on the Mechanical Behavior of Carbon/Glass Hybrid Composites. Polymers 2025, 17, 861. [Google Scholar] [CrossRef]
- Kim, Y.S.; Ko, M.J.; Kim, S.W.; Lee, J.; Kim, J.-s.; Oh, Y.; Um, M.K.; Yi, J.W. Novel co-molding of carbon-fiber-reinforced thermoplastic and thermoset composites for optimized interfacial load distribution. Compos. Part B Eng. 2025, 307, 112860. [Google Scholar] [CrossRef]
- Gentilleau, B.; Touchard, F.; Grandidier, J.C. Numerical study of influence of temperature and matrix cracking on type IV hydrogen high pressure storage vessel behavior. Compos. Struct. 2014, 111, 98–110. [Google Scholar] [CrossRef]
- Kim, M.-G.; Sang-Guk, K.; Chun-Gon, K.; Kong, C.-W. Tensile Properties of Carbon Fiber Composites with Different Resin Compositions at Cryogenic Temperatures. Adv. Compos. Mater. 2010, 19, 63–77. [Google Scholar] [CrossRef]
- Timmerman, J.F.; Tillman, M.S.; Hayes, B.S.; Seferis, J.C. Matrix and fiber influences on the cryogenic microcracking of carbon fiber/epoxy composites. Compos. Part A Appl. Sci. Manuf. 2002, 33, 323–329. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, Y.; Zhang, C.; Xu, Z.; Li, X.; Zhao, G.; Ni, Z. Properties improvement of composite layer of cryo-compressed hydrogen storage vessel by polyethylene glycol modified epoxy resin. Int. J. Hydrogen Energy 2023, 48, 5576–5594. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, J.; Zhou, J.; Zhang, D.; Zhang, A. Dramatic toughness enhancement of benzoxazine/epoxy thermosets with a novel hyperbranched polymeric ionic liquid. Chem. Eng. J. 2018, 334, 1371–1382. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, J.; Wu, M.; Liu, S.; Zhao, J. Design and synthesis of anhydride-terminated imide oligomer containing phosphorus and fluorine for high-performance flame-retarded epoxy resins. Chem. Eng. J. 2023, 461, 142063. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, L.; Ling, Y.; Ge, Y.; Huang, C.; Zhou, S.; Xia, S.; Liang, M.; Zou, H. Enhanced mechanical and adhesive properties of PDMS coatings via in-situ formation of uniformly dispersed epoxy reinforcing phase. Prog. Org. Coat. 2023, 174, 107319. [Google Scholar] [CrossRef]
- Gao, C.; Chen, H.; Xu, H.; Wu, Z.; Dong, X. Molecular Dynamics Simulation of Hydrogen Permeation Behavior in Epoxy Resin Systems. Polymers 2025, 17, 1755. [Google Scholar] [CrossRef]
- Hohe, J.; Neubrand, A.; Fliegener, S.; Beckmann, C.; Schober, M.; Weiss, K.-P.; Appel, S. Performance of fiber reinforced materials under cryogenic conditions—A review. Compos. Part A Appl. Sci. Manuf. 2021, 141, 106226. [Google Scholar] [CrossRef]
- Cha, J.; Jun, G.H.; Park, J.K.; Kim, J.C.; Ryu, H.J.; Hong, S.H. Improvement of modulus, strength and fracture toughness of CNT/Epoxy nanocomposites through the functionalization of carbon nanotubes. Compos. Part B Eng. 2017, 129, 169–179. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, X.; Liu, X.; Wei, W.; Li, X. Facile synthesis of hyperbranched epoxy resin for combined flame retarding and toughening modification of epoxy thermosets. Chem. Eng. J. 2024, 482, 148992. [Google Scholar] [CrossRef]
- Cheng, C.; Chen, Z.; Huang, Z.; Zhang, C.; Tusiime, R.; Zhou, J.; Sun, Z.; Liu, Y.; Yu, M.; Zhang, H. Simultaneously improving mode I and mode II fracture toughness of the carbon fiber/epoxy composite laminates via interleaved with uniformly aligned PES fiber webs. Compos. Part A Appl. Sci. Manuf. 2020, 129, 105696. [Google Scholar] [CrossRef]
- Zhang, Z.; Niu, P.; Zhao, Z.; Sun, A.; Wei, L.; Zhu, J.; Li, Y. Co-enhancement of toughness and strength of room-temperature curing epoxy adhesive derived from hydroxyl-terminated polybutadiene based polyurethane resin. Eur. Polym. J. 2024, 219, 113373. [Google Scholar] [CrossRef]
- Van Velthem, P.; Gabriel, S.; Pardoen, T.; Bailly, C.; Ballout, W. Synergy between Phenoxy and CSR Tougheners on the Fracture Toughness of Highly Cross-Linked Epoxy-Based Composites. Polymers 2021, 13, 2477. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Huang, R.; Tan, L. Advances in Toughening Modification Methods for Epoxy Resins: A Comprehensive Review. Polymers 2025, 17, 1288. [Google Scholar] [CrossRef]
- He, Y.X.; Sang, Y.F.; Zhang, L.; Yao, D.H.; Sun, K.B.; Zhang, Y.Q. Coefficient of thermal expansion and mechanical properties at cryogenic temperature of core–shell rubber particle modified epoxy. Plast. Rubber Compos. 2014, 43, 89–97. [Google Scholar] [CrossRef]
- Feng, Q.; Yang, J.; Liu, Y.; Xiao, H.; Fu, S. Simultaneously Enhanced Cryogenic Tensile Strength, Ductility and Impact Resistance of Epoxy Resins by Polyethylene Glycol. J. Mater. Sci. Technol. 2014, 30, 90–96. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Z.-K.; Liu, Y.; Xiao, H.-M.; Feng, Q.-P.; Fu, S.-Y. Simultaneously enhanced cryogenic tensile strength and fracture toughness of epoxy resins by carboxylic nitrile-butadiene nano-rubber. Compos. Part A Appl. Sci. Manuf. 2013, 55, 178–187. [Google Scholar] [CrossRef]
- Feki, I.; Shirinbayan, M.; Nouira, S.; Bi, R.T.; Maeso, J.-B.; Thomas, C.; Fitoussi, J. Composites in high-pressure hydrogen storage: A review of multiscale characterization and mechanical behavior. Compos. Part C Open Access 2025, 16, 100555. [Google Scholar] [CrossRef]
- Nachtane, M.; Tarfaoui, M.; Abichou, M.a.; Vetcher, A.; Rouway, M.; Aâmir, A.; Mouadili, H.; Laaouidi, H.; Naanani, H. An Overview of the Recent Advances in Composite Materials and Artificial Intelligence for Hydrogen Storage Vessels Design. J. Compos. Sci. 2023, 7, 119. [Google Scholar] [CrossRef]
- Grogan, D.M.; Leen, S.B.; Semprimoschnig, C.O.A.; Ó Brádaigh, C.M. Damage characterisation of cryogenically cycled carbon fibre/PEEK laminates. Compos. Part A Appl. Sci. Manuf. 2014, 66, 237–250. [Google Scholar] [CrossRef]
- Lüders, C.; Sinapius, M. Fatigue of fibre-reinforced plastics due to cryogenic thermal cycling. J. Compos. Mater. 2019, 53, 2849–2861. [Google Scholar] [CrossRef]
- Pavlick, M.M.; Johnson, W.S.; Jensen, B.; Weiser, E. Evaluation of mechanical properties of advanced polymers for composite cryotank applications. Compos. Part A Appl. Sci. Manuf. 2009, 40, 359–367. [Google Scholar] [CrossRef]
- Meng, J.; Wang, Y.; Yang, H.; Wang, P.; Lei, Q.; Shi, H.; Lei, H.; Fang, D. Mechanical properties and internal microdefects evolution of carbon fiber reinforced polymer composites: Cryogenic temperature and thermocycling effects. Compos. Sci. Technol. 2020, 191, 108083. [Google Scholar] [CrossRef]
- Gong, M.; Wang, X.F.; Zhao, J.H. Experimental study on mechanical behavior of laminates at low temperature. Cryogenics 2007, 47, 1–7. [Google Scholar] [CrossRef]
- Ekuase, O.A.; Anjum, N.; Eze, V.O.; Okoli, O.I. A Review on the Out-of-Autoclave Process for Composite Manufacturing. J. Compos. Sci. 2022, 6, 172. [Google Scholar] [CrossRef]
- Nguyen, B.N.; Merkel, D.R.; Johnson, K.I.; Gotthold, D.W.; Simmons, K.L.; Roh, H.S. Modeling the effects of loading scenario and thermal expansion coefficient on potential failure of cryo-compressed hydrogen vessels. Int. J. Hydrogen Energy 2020, 45, 24883–24894. [Google Scholar] [CrossRef]
- Yan, M.; Jiao, W.; Yang, F.; Ding, G.; Zou, H.; Xu, Z.; Wang, R. Simulation and measurement of cryogenic-interfacial-properties of T700/modified epoxy for composite cryotanks. Mater. Des. 2019, 182, 108050. [Google Scholar] [CrossRef]
Samples | Geometrical Dimensions (mm) | |||||
---|---|---|---|---|---|---|
L | w | t | L0 | h | Plies | |
CFRP-0o | 230 | 50 | ~1 | 50 | 0.5 | 3 |
CFRP-90o | 165 | 25 | ~2 | 30 | 0.5 | 6 |
Temperature /K | CTE by Extensometer /K−1 | CV | CTE by Crosshead Displacement/K−1 | CV | Average /K−1 |
---|---|---|---|---|---|
275 | 56.4 × 10−6 | 4.9% | 55.0 × 10−6 | 4.2% | 55.7 × 10−6 |
225 | 47.8 × 10−6 | 6.2% | 49.9 × 10−6 | 8.2% | 48.2 × 10−6 |
175 | 35.7 × 10−6 | 7.2% | 25.5 × 10−6 | 11.2% | 35.0 × 10−6 |
120 | 25.9 × 10−6 | 5.4% | 30.8 × 10−6 | 9.4% | 28.6 × 10−6 |
Temperature /K | Strength /MPa | CV | Modulus /MPa | CV | Elongation /% | CV |
---|---|---|---|---|---|---|
300 | 69.2 | 1.43% | 2433.2 | 1.41% | 4.66 | 5.11% |
250 | 83.9 | 2.65% | 3650.0 | 0.81% | 3.27 | 9.08% |
200 | 92.1 | 1.74% | 4630.8 | 9.99% | 2.73 | 3.55% |
150 | 103.8 | 2.36% | 5921.4 | 1.05% | 2.16 | 10.47% |
90 | 122.6 | 2.45% | 6802.2 | 1.05% | 1.97 | 10.59% |
Property | Unit | Applicable Temperature/K | Fitting Equation | R2 |
---|---|---|---|---|
Tensile strength | MPa | 65–325 | 0.981 | |
Elastic modulus | MPa | 65–325 | 0.979 |
Samples | Mass Fraction | CV | Volume Fraction | CV |
---|---|---|---|---|
CFRP-0° | 51.64% | 5.4% | 41.20% | 6.7% |
CFRP-90° | 51.97% | 0.9% | 41.50% | 1.1% |
Sample | Temperature/K | CTE/K−1 | CV |
---|---|---|---|
CFRP-0° | 275 | 6.2 × 10−6 | 18.0% |
225 | 4.0 × 10−6 | 20.9% | |
175 | 4.7 × 10−6 | 16.1% | |
120 | 6.2 × 10−6 | 15.0% | |
CFRP-90° | 275 | 41.8 × 10−6 | 9.7% |
225 | 35.4 × 10−6 | 10.2% | |
175 | 29.9 × 10−6 | 10.9% | |
120 | 30.5 × 10−6 | 8.9% |
Temperature /K | Strength /MPa | CV | Modulus /MPa | CV | Elongation /% | CV |
---|---|---|---|---|---|---|
300 | 1928.9 | 0.61% | 95,818.8 | 0.76% | 2.05 | 0.90% |
250 | 1953.2 | 0.74% | 99,749.8 | 1.08% | 1.99 | 2.41% |
200 | 1978.3 | 1.31% | 102,423.6 | 1.84% | 1.91 | 4.16% |
150 | 1977.6 | 1.19% | 104,755.7 | 1.06% | 1.88 | 1.98% |
90 | 2010.4 | 2.13% | 103,299.4 | 1.55% | 1.95 | 3.49% |
Property | Unit | Applicable Temperature/K | Fitting Equation | R2 |
---|---|---|---|---|
Tensile strength | MPa | 65–325 | 0.649 | |
Elastic modulus | MPa | 65–325 | 0.889 |
Temperature /K | Strength /MPa | CV | Modulus /MPa | CV | Elongation /% | CV |
---|---|---|---|---|---|---|
300 | 43.1 | 4.24% | 6561.3 | 2.75% | 0.73 | 4.41% |
250 | 48.9 | 8.18% | 7759.8 | 2.48% | 0.66 | 6.24% |
200 | 51.9 | 7.06% | 9042.3 | 4.22% | 0.62 | 6.67% |
150 | 57.5 | 3.75% | 10,299.5 | 2.54% | 0.60 | 7.56% |
90 | 65.6 | 0.97% | 11,969.2 | 5.57% | 0.58 | 7.11% |
Property | Unit | Applicable Temperature/K | Fitting Equation | R2 |
---|---|---|---|---|
Tensile strength | MPa | 65–325 | 0.889 | |
Elastic modulus | MPa | 65–325 | 0.968 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, L.; Wang, K.; Ge, Z.; Cao, Z.; Hu, P.; He, Y.; Yasin, S.; Shi, J. Investigation of Cryogenic Mechanical Performance of Epoxy Resin and Carbon Fibre-Reinforced Polymer Composites for Cryo-Compressed Hydrogen Storage Onboard Gas Vessels. Polymers 2025, 17, 2296. https://doi.org/10.3390/polym17172296
Qi L, Wang K, Ge Z, Cao Z, Hu P, He Y, Yasin S, Shi J. Investigation of Cryogenic Mechanical Performance of Epoxy Resin and Carbon Fibre-Reinforced Polymer Composites for Cryo-Compressed Hydrogen Storage Onboard Gas Vessels. Polymers. 2025; 17(17):2296. https://doi.org/10.3390/polym17172296
Chicago/Turabian StyleQi, Liangliang, Keqing Wang, Zhoutian Ge, Zhuangzhuang Cao, Peiyu Hu, Yuhang He, Sohail Yasin, and Jianfeng Shi. 2025. "Investigation of Cryogenic Mechanical Performance of Epoxy Resin and Carbon Fibre-Reinforced Polymer Composites for Cryo-Compressed Hydrogen Storage Onboard Gas Vessels" Polymers 17, no. 17: 2296. https://doi.org/10.3390/polym17172296
APA StyleQi, L., Wang, K., Ge, Z., Cao, Z., Hu, P., He, Y., Yasin, S., & Shi, J. (2025). Investigation of Cryogenic Mechanical Performance of Epoxy Resin and Carbon Fibre-Reinforced Polymer Composites for Cryo-Compressed Hydrogen Storage Onboard Gas Vessels. Polymers, 17(17), 2296. https://doi.org/10.3390/polym17172296