Degradation Modeling and Telemetry-Based Analysis of Solar Cells in LEO for Nano- and Pico-Satellites
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of Nanosatellite Missions
Selected Solar Cell Types
- Monocrystalline Silicon with Coating (Si-coated): These are monocrystalline Si solar cells with anti-reflective dielectric coatings (typically SiO2 or Si3N4). They offer high specific power and low cost but are sensitive to radiation and thermal cycling. Widely used in small satellites due to accessibility and ease of integration.
- GaAs: GaAs-based solar cells provide high efficiency in LEO due to a direct bandgap and superior radiation hardness. Typically used with quartz or oxide coatings to mitigate UV and AO degradation.
- TJ GaInP/GaAs/Ge Cells: These solar cells consist of three cascaded junctions, each optimized for a different portion of the solar spectrum. With efficiencies up to 30% and high radiation resistance, TJ cells are common in professional satellites, including high-performance CubeSats.
- CIGS (Copper Indium Gallium Selenide): This thin-film technology combines low weight, flexibility, and reasonable efficiency. CIGS cells show resilience to thermal fluctuations and moderate radiation levels, making them a promising option for future small satellite missions. Coatings typically include ZnO and CdS layers for partial protection.
2.2. Degradation Assessment
- —open-circuit voltage,
- —short-circuit current,
- F—fill factor.
- Linear degradation:
- Exponential degradation:
3. Results
3.1. Degradation by Orbital Conditions
3.1.1. Si-Coated Cell Degradation
3.1.2. GaAs Cell Degradation
3.1.3. Triple-Junction Cell Degradation (GaInP/GaAs/Ge)
3.1.4. CIGS Cell Degradation
3.1.5. Comparative Analysis of Coatings
3.2. Degradation Specific to Satellites Under 10 kg
3.3. Summary of Analysis Results
- Si (coated) solar panels show a medium level of degradation: from 25 to 35% over 6 months in orbits below 500 km. This makes them an acceptable, though not optimal, choice for very small satellites without active protection.
- GaAs panels demonstrate high radiation resistance, with degradation in the range of 10–20%, making them preferable for missions lasting over 12 months (1 year).
- TJ solar cells possess the best characteristics: efficiency losses do not exceed 15% even at low altitudes and for satellites weighing less than 10 kg.
- CIGS-based coatings show unstable behavior, especially under frequent passes through radiation belts and in the absence of thermal regulation. In the case of the Delfi-C3 mission, power losses reached approximately 40%, which is significantly higher than other technologies. However, additional empirical evidence is needed to confirm whether such degradation levels are typical for CIGS under LEO conditions.
4. Discussion
4.1. Influence of Atomic Oxygen on Solar Panel Degradation
4.2. Vulnerability of Small Satellites to Degradation
- Lack of active thermal control, leading to temperature fluctuations that accelerate coating aging.
- Use of lightweight structural materials that are less resistant to AO.
- Limited ability to apply thick or multilayer AR coatings.
- Higher surface-to-mass ratio, increasing surface exposure to the aggressive environment.
4.3. Practical Recommendations for Solar Cell Protection
4.4. Prospects for Further Research
- The development of composite AR layers resistant to AO and radiation.
- Conducting standardized ground-based AO erosion tests (e.g., using RF/EO accelerators).
- The search for lightweight protective layers applicable even under mass and volume constraints in nano- and pico-satellites.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LEO | low Earth orbit |
AO | atomic oxygen |
CIGS | CuInGaSe2 |
TID | total ionizing dose |
Si-coated | Monocrystalline Silicon with Coating |
Si | silicon |
GaAs | gallium arsenide |
CIGS | copper indium gallium selenide |
TJ | triple-junction |
References
- Garofalo, S.P.; Ardito, F.; Sanitate, N.; De Carolis, G.; Ruggieri, S.; Giannico, V.; Rana, G.; Ferrara, R.M. Robustness of Actual Evapotranspiration Predicted by Random Forest Model Integrating Remote Sensing and Meteorological Information: Case of Watermelon (Citrullus lanatus, (Thunb.) Matsum. & Nakai, 1916). Water 2025, 17, 323. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef]
- Wang, X.; Guo, J.; Zhao, Y.; Li, H. Atomic Oxygen Effects and Protection Strategies on Polymeric Materials for Space Applications: A Review. Polymers 2023, 15, 1400. [Google Scholar]
- da Silva, W.D.; Benvenho, G.L.F.; Amorim, J.H.; dos Santos, R.A.; Fernandes, R.R.; Silva, A.M.; Sousa, M.F.; Carvalho, C.E.; Santos, L.P.; Oliveira, F.H.; et al. Solar Cell Performance in Harsh Space Environments: UV, Thermal Cycling, and Combined Effects. J. Mater. Sci. Mater. Electron. 2021, 32, 23115–23128. [Google Scholar]
- García, M.; Pardo, J.L.; Anguita, J.V. Degradation of III–V Multi-Junction Solar Cells in Space Radiation Environment: A Review of Experimental Results. Renew. Sustain. Energy Rev. 2022, 156, 111993. [Google Scholar]
- Bouwmeester, J.; Gill, E. Performance of the Delfi-C3 solar panels after one year in orbit. Acta Astronaut. 2010, 67, 645–654. Available online: https://www.researchgate.net/publication/228881955_Performance_of_the_Delfi-C3_solar_panels_after_one_year_in_orbit (accessed on 25 July 2025).
- Lätt, S.; Slavinskis, A.; Ilbis, E.; Kvell, U.; Voormansik, K.; Kulu, E.; Pajusalu, M.; Kuuste, H.; Sunter, I.; Eenmae, T.; et al. ESTCube-1 nanosatellite: Design, integration and launch. Proc. Est. Acad. Sci. 2014, 63, 200–209. [Google Scholar] [CrossRef]
- Macosko, J.; Johnson, B.; Lee, M.; Smith, R.; Chen, T.; Garcia, P.; Kim, H.; Patel, D.; Nguyen, L.; Brown, A.; et al. CubeSat Solar Array Degradation: Results from NASA Missions; NASA Technical Reports; NASA: Washington, DC, USA, 2018. Available online: https://ntrs.nasa.gov/citations/20180005282 (accessed on 25 July 2025).
- Panchenko, A.A.; Saranina, E.V.; Minaev, B.F.; Ågren, H.; Belik, A.A. New Aspects of the Airglow Problem and Reactivity of the Dioxygen Quintet O2(5Πg) State in the MLT Region as Predicted by DFT Calculations. J. Phys. Chem. A 2020, 124, 9638–9655. [Google Scholar] [CrossRef]
- Minaev, B.; Ågren, H.; Tian, H.; Ning, Z.; Li, X. Organometallic Materials for Electroluminescent and Photovoltaic Devices. In Organic Light Emitting Diode—Material, Process and Devices; Ko, S.H., Ed.; InTech: Rijeka, Croatia, 2011; ISBN 978-953-307-273-9. Available online: https://pdfs.semanticscholar.org/98c6/8e24c74b0688f8b732e96a3cd00f1778ab11.pdf (accessed on 25 July 2025).
- Jansen, H.V.; Gill, E.; Roozeboom, F. Performance of the first flight experiment with dedicated space CIGS cells onboard the Delfi-C3 nanosatellite. In Proceedings of the 6th European Workshop on Microelectronics Education (EWME), Taipei, Taiwan, 13 October 2011; Available online: https://www.researchgate.net/publication/224186945 (accessed on 25 July 2025).
- Mason, J.; Woods, T.N.; Caspi, A. MinXSS-1 CubeSat mission: Operations, anomalies, and lessons learned. J. Spacecr. Rocket. 2017, 54, 1259–1271. [Google Scholar]
- European Space Agency. SPENVIS—Space Environment Information System. ESA Official Tool. 2023. Available online: https://www.spenvis.oma.be (accessed on 10 July 2025).
- Zhao, L.; Li, X.; Wang, Y.; Chen, Q. Effect of Coating Thickness on the Atomic Oxygen Resistance of Materials in LEO. Coatings 2023, 13, 153. [Google Scholar] [CrossRef]
- Nyman, L.; Koskinen, J.; Salo, H.; Jokinen, J.; Tuominen, M. Constructing Spacecraft Components Using Additive Manufacturing and Atomic Layer Deposition: First Steps for Integrated Electric Circuitry. J. Aerosp. Eng. 2021, 34, 04021049. [Google Scholar] [CrossRef]
- Minton, T.K. Protecting Polymers in Space with Atomic Layer Deposition. ACS Appl. Mater. Interfaces 2010, 2, 2515–2522. [Google Scholar] [CrossRef] [PubMed]
- Shroeder, D.; McNutt, L. Degradation behavior of solar cells on CubeSats. IEEE J. Photovolt. 2021, 11, 1203–1210. [Google Scholar]
- Li, W.; Zhang, H.; van Vlijmen, B.; Dechent, P.; Sauer, D.U. Forecasting battery capacity and power degradation with multi-task learning. arXiv 2021, arXiv:2111.14937. [Google Scholar] [CrossRef]
- Pajusalu, M.; Ilbis, E.; Ilves, T.; Veske, M.; Kalde, J.; Lillmaa, H.; Rantsus, R.; Pelakauskas, M.; Leitu, A.; Voormansik, K.; et al. Design and pre-flight testing of the electrical power system for the ESTCube-1 nanosatellite. Proc. Est. Acad. Sci. 2014, 63, 232–241. [Google Scholar] [CrossRef]
- Mason, J.P.; Woods, T.N.; Caspi, A.; Smith, A.B.; Johnson, C.D.; Lee, E.F.; Wang, G.H.; Patel, H.I.; Nguyen, J.K.; Fernández, L.M.; et al. Miniature X-ray Solar Spectrometer (MinXSS): CubeSat mission to study solar soft X-ray spectra. J. Spacecr. Rocket. 2016, 53, 328–339. [Google Scholar] [CrossRef]
- Gill, E.; Verhoeven, C.; Monna, G.L.E.; Hamann, R.J.; Ubbels, W.J.; Bouwmeester, J.; Aalbers, G.T.; Van Breukelen, E.D.; Rotteveel, J.; Hamann, R.; et al. Delfi-C3: Mission Design and In-Orbit Operations. Acta Astronaut. 2010. [Google Scholar]
- Ehrpais, H.; Lätt, S.; Ilbis, E.; Kvell, U.; Voormansik, K.; Kulu, E.; Pajusalu, M.; Kuuste, H.; Shvetsov, V.; Lillmaa, H.; et al. In-Orbit Performance of the ESTCube-1 Nanosatellite’s Electrical Power System. Acta Astronaut. 2016, 125, 100–110. [Google Scholar]
- Rowen, D.; Hardy, B.; Coffman, C.; O’Brien, P. Flight Results from AeroCube-6. Cal Poly Space Systems Workshop, San Luis Obispo, CA. 2015. Available online: http://mstl.atl.calpoly.edu/~workshop/archive/2015/Spring/Day%201/1440-Gangestad-Flight%20results%20from%20Aerocube-6.pdf (accessed on 10 July 2025).
- AeroCube-6 Dosimeter Equivalent Energy Thresholds and Flux Conversion Factors. APL-TOR-2017-02598. 2017. Available online: https://rbspgway.jhuapl.edu/share/ac6/TOR-2017-02598%20-%20AeroCube-6%20Dosimeter%20Equivalent%20Energy%20Thresholds%20and%20Flux%20Conversion%20Factors.pdf (accessed on 10 July 2025).
- Fleetwood, D.M. Radiation Effects on Microelectronics in Space. J. Microelectron. Reliab. 2004, 44, 323–332. [Google Scholar]
- Gangestad, J.W.; Bradford, J.E.; Kantsiper, B.; Mazur, J.E.; O’Brien, T.P.; Smith, A.R.; Carter, L.M.; Johnson, C.; Ramirez, D.; Liu, S. AeroCube-6: On-Orbit Performance of a Miniaturized Space Radiation Dosimeter. In Proceedings of the 2015 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2015; pp. 1–9. [Google Scholar]
- Banks, B.A.; de Groh, K.K. Atomic Oxygen Effects on Spacecraft Materials. NASA/TM—2003–212484. 2003. Available online: https://ntrs.nasa.gov/ (accessed on 10 July 2025).
- Tribble, A.C. The Space Environment: Implications for Spacecraft Design; Princeton University Press: Princeton, NJ, USA, 2003; ISBN 9780691007307. [Google Scholar]
- Srivastava, S.K.; Verma, S.; Sharma, S.K.; Kumar, A.; Singh, V.; Singh, S.; Dhara, S.; Tyagi, A.K. Effect of atomic oxygen on optical coatings for space applications. Opt. Mater. 2015, 46, 392–397. [Google Scholar]
- Saurova, K.; Shamro, A.; Alipbayev, K.; Nysanbaeva, S.; Karibayev, B. Research of methods to improve the accuracy of the star sensor for global navigation satellite system technology. Eng. Sci. 2024, 19, 1351. [Google Scholar] [CrossRef]
- Moldabekov, M.; Akhmedov, D.; Yelubayev, S.; Alipbayev, K.; Sukhenko, A. Features of Design and Development of the Optical Head of Star Tracker. In Proceedings of the SPIE—Sensors, Systems, and Next-Generation Satellites XVIII, Amsterdam, Netherlands, 7 October 2014; Volume 9241. Article 92410X. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9241/92411Q/Features-of-design-and-development-of-the-optical-head-of/10.1117/12.2067050.full (accessed on 25 July 2025).
N° | Type of Solar Cell | Efficiency (AM0, %) | Radiation Resistance | Sensitivity to AO/UV | Mass/Specific Mass | Use in CubeSats | Comment |
---|---|---|---|---|---|---|---|
1 | Si coated | 14–17% | Low | High | Low/High | Often | Cheap, sensitive to degradation |
2 | GaAs | 18–22% | Medium–High | Medium | Medium/Medium | Often | Good compromise between cost and resistance |
3 | TJ (GaInP/GaAs/Ge) | 26–30% | Very High | Very Low | High/Low | Used | Maximum efficiency, expensive |
4 | CIGS | 12–15% | Medium | Medium–High | Very Low/Lightweight | Rarely | Promising but less mature option |
Altitude of An Orbit (km) | Si Coated | GaAs | TJ | CIGS |
---|---|---|---|---|
300 | 12.5 | 7.0 | 3.0 | 9.0 |
400 | 10.7 | 6.0 | 2.3 | 7.7 |
500 | 9.0 | 5.0 | 1.8 | 6.5 |
600 | 8.2 | 4.7 | 1.6 | 6.0 |
700 | 7.8 | 4.5 | 1.5 | 5.5 |
Mission | Mass (kg) | Type of Solar Panels | Orbit Altitude (km) | Power Loss Over 6 Months (%) |
---|---|---|---|---|
ESTCube-1 | 1.3 | Si (coated) | 660 | ~11% |
MinXSS-1 | 3.6 | Si (coated) | 408–412 | ~9% |
Dove (Flock) | 4–5 | Si (coated) | 475–505 | ~10–12% |
Aalto-1 | 3.5 | GaAs | 500 | ~4–5% |
PW-Sat2 | 2 | GaAs | 575 | ~6% |
Delfi-n3Xt | 3 | TJ | 600 | ~3% |
Coating | Average Degradation (% Over 6 Months) | Radiation Resistance | Suitable for <10 kg Satellites | Mass and Size Advantages |
---|---|---|---|---|
Si (coated) | 25–35% | Medium | Partially | Yes |
GaAs | 10–20% | High | Yes | Limited |
TJ | 5–15% | Very high | Yes | No |
CIGS | 20–40% | Low | No | Yes |
Coating/Material | Application | AO Resistance | Notes |
---|---|---|---|
Al2O3 (aluminum oxide) | AR coating | High | Commonly used in GaAs cells |
SiO2 (silicon dioxide) | AR coating | Medium | Prone to erosion under prolonged exposure |
FEP (fluorinated ethylene propylene) | Protective film | Very high | Used by NASA as an AO-resistant coating |
MgF2 (magnesium fluoride) | AR coating | Medium | Good optical properties, but low mechanical strength |
Metallized polymers | Barrier layer | High | Used in multilayer structures |
GaAs/TJ cells | Photovoltaic material | High | Low degradation under radiation and AO exposure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kenzhegarayeva, A.; Alipbayev, K.; Zhauyt, A. Degradation Modeling and Telemetry-Based Analysis of Solar Cells in LEO for Nano- and Pico-Satellites. Appl. Sci. 2025, 15, 9208. https://doi.org/10.3390/app15169208
Kenzhegarayeva A, Alipbayev K, Zhauyt A. Degradation Modeling and Telemetry-Based Analysis of Solar Cells in LEO for Nano- and Pico-Satellites. Applied Sciences. 2025; 15(16):9208. https://doi.org/10.3390/app15169208
Chicago/Turabian StyleKenzhegarayeva, Angsagan, Kuanysh Alipbayev, and Algazy Zhauyt. 2025. "Degradation Modeling and Telemetry-Based Analysis of Solar Cells in LEO for Nano- and Pico-Satellites" Applied Sciences 15, no. 16: 9208. https://doi.org/10.3390/app15169208
APA StyleKenzhegarayeva, A., Alipbayev, K., & Zhauyt, A. (2025). Degradation Modeling and Telemetry-Based Analysis of Solar Cells in LEO for Nano- and Pico-Satellites. Applied Sciences, 15(16), 9208. https://doi.org/10.3390/app15169208