Implementation of the Stack-CNN Algorithm for Space Debris Detection on FPGA Board
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Stack-CNN Algorithm
2.1.1. Stacking Method
2.1.2. Quantized CNN Architecture
2.2. FPGA Implementation
2.2.1. Design Flow and Toolchain
2.2.2. Model Optimization and Quantization
2.3. Simulation Framework for Evaluating Detection Efficency of the Quantized Stack-CNN Algorithm
2.4. Prototype Detector Description
- (a)
- Front section: This contains the optical system, which includes a 25 cm diameter Fresnel lens.
- (b)
- Back section: This part has all the connector to comunicate with the electronics inside.
- (c)
- Inner section: This is the most relevant part and it houses the EC with four photomultiplier tubes arranged in a 16 × 16 pixel matrix. Located behind the photomultipliers are four custom ASICs developed by the JEM-EUSO program [22], which are responsible for converting the analog signals from the photomultipliers into digital signals. Behind the PDM there are the electronic components of the data acquisition system, including two Zynq boards (Xilinx Zynq-7000 and Xilinx Artix-7), as well as the high-voltage power supply board that provides the necessary voltage for the photomultiplier operation.
Observation Conditions and Data Collection
3. Results
3.1. Algorithm Profiling Results
3.2. Stack-CNN Performances, Simulation Framework
3.3. Stack-CNN Performances and Experimental Campaigns
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DISCARD | Stack-CNN Demonstrator: AI Algorithm for Space Debris Detection |
FPGA | Field Programmable Gate Array |
CNN | Convolutional Neural Network |
AI | Artificial Intelligence |
LEO | Low Earth Orbit |
NASA | National Aeronautics and Space Administration |
ESA | European Space Agency |
GTU | Gate Time Unit |
JEM-EUSO | Joint Exploratory Missions for Extreme Universe Space Observatory |
SBR | Signal to Background Ratio |
GEO | Geostationary Earth Orbit |
FoV | Field of View |
Mini-EUSO | Multiwavelength Imaging New Instrument for the Extreme Universe Space Observatory |
ReLU | Rectified Linear Unit |
SNR | Signal to Noise Ratio |
VART | Vitis Ai RunTime |
API | Application Programming Interface |
QAT | Quantization-Aware Training |
BRAM | Block Random Access Memory |
DSP | Digital Signal Processor |
LUT | Look Up Table |
ONNX | Open Neural Network Exchange |
SD | Space Debris |
PhFS | Photon rate at Focal Surface |
FS | Focal Surface |
EC | Elementary Cell |
ASIC | Application-Specific Integrated Circuit |
PDM | Photon Detection Module |
SSH | Secure SHell |
DPU | Data Processing Unit |
References
- European Space Agency (ESA). Space Debris by the Numbers. 2023. Available online: https://www.esa.int/Safety_Security/Space_Debris/Space_debris_by_the_numbers (accessed on 1 June 2025).
- NASA Orbital Debris Program Office. Orbital Debris FAQs. 2022. Available online: https://orbitaldebris.jsc.nasa.gov/faq/ (accessed on 1 June 2025).
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Tao, J.; Cao, Y.; Ding, M. SDebrisNet: A Spatial–Temporal Saliency Network for Space Debris Detection. Appl. Sci. 2023, 13, 4955. [Google Scholar] [CrossRef]
- Montanaro, A.; Ebisuzaki, T.; Bertaina, M. Stack-CNN algorithm: A new approach for the detection of space objects. J. Space Saf. Eng. 2022, 9, 72–82. [Google Scholar] [CrossRef]
- Yanagisawa, T.; Nakajima, A.; Kimura, T.; Isobe, T.; Futami, H.; Suzuki, M. Detection of small GEO debris by use of the stacking method. Trans. Jpn. Soc. Aeronaut. Space Sci. 2003, 51, 61–70. [Google Scholar] [CrossRef]
- Bertaina, M.; Ebisuzaki, T.; Hamada, T.; Ikeda, H.; Kawasaki, Y.; Sawabe, T.; Takahashi, Y. The trigger system of the JEM-EUSO project. In Proceedings of the 30th International Cosmic Ray Conference (Merida), Merida, Mexico, 3–11 July 2007. [Google Scholar]
- Ghaffari, A.; Benabdenbi, M.; El Ghazi, H.; El Oualkadi, A. CNN2Gate: An implementation of convolutional neural networks inference on FPGAs with automated design space exploration. Electronics 2020, 9, 2200. [Google Scholar] [CrossRef]
- Pineau, D.; Felicetti, L. Design of an optical system for a Multi-CubeSats debris surveillance mission. Acta Astronaut. 2023, 210, 535–546. [Google Scholar] [CrossRef]
- Liu, L. Design of optical system for space-based space debris detection. In Proceedings of the Proc. SPIE 13278, Seventh Global Intelligent Industry Conference (GIIC 2024), Shenzhen, China, 30 March–1 April 2024; p. 132781H. [Google Scholar] [CrossRef]
- Michel, M.; Ceeh, H.; Cirillo, G.; Utzmann, J.; Kraft, S. The Space-Based Optical Component (SBOC) instrument for passive optical in-situ detection of small space debris. In Proceedings of the 2nd International Orbital Debris Conference (IOC II), Sugar Land, TX, USA, 4–7 December 2023; p. 6130. [Google Scholar]
- Pistellato, M.; Bergamasco, F.; Bigaglia, G.; Gasparetto, A.; Albarelli, A.; Boschetti, M.; Passerone, R. Quantization-Aware NN Layers with High-throughput FPGA Implementation for Edge AI. Sensors 2023, 23, 4667. [Google Scholar] [CrossRef] [PubMed]
- Olivi, L.; Montanaro, A.; Barbieri, C.; Maris, M.F.; Bertaina, M.; Ebisuzaki, T. Refined STACK-CNN for Meteor and Space Debris Detection in Highly Variable Backgrounds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 10432–10453. [Google Scholar] [CrossRef]
- Casolino, M.; Battisti, M.; Belov, A.; Bertaina, M.; Bisconti, F.; Blin-Bondil, S.; Cafagna, F.; Cambiè, G.; Capel, F.; Churilo, I.; et al. Mini-EUSO experiment to study UV emission of terrestrial and astrophysical origin onboard of the International Space Station. Proc. Sci. 2019, 212, ICRC2019. [Google Scholar] [CrossRef]
- Battisti, M.; Bertaina, M.; Parizot, E.; Abrate, M.; Barghini, D.; Belov, A.; Bisconti, F.; Blaksley, C.; Blin, S.; Capel, F.; et al. An end-to-end calibration of the Mini-EUSO detector in space. Astropart. Phys. 2025, 165, 103057. [Google Scholar] [CrossRef]
- Zeiler, M.D. ADADELTA: An Adaptive Learning Rate Method. arXiv 2012, arXiv:1212.5701. [Google Scholar] [CrossRef]
- Xilinx. Brevitas: Quantization-Aware Training in PyTorch. 2021. Available online: https://github.com/Xilinx/brevitas (accessed on 1 July 2025).
- Lenail, A. NN-SVG: Publication-Ready Neural Network Architecture Schematics. 2019. Available online: https://github.com/alexlenail/NN-SVG (accessed on 1 July 2025).
- ONNX Community. Open Neural Network Exchange (ONNX). 2019. Available online: https://onnx.ai (accessed on 1 July 2025).
- AMD/Xilinx. Vitis AI: Development Environment for AI Inference on Xilinx Platforms. 2023. Available online: https://github.com/Xilinx/Vitis-AI (accessed on 1 July 2025).
- Bacholle, S.; Barrillon, P.; Battisti, M.; Belov, A.; Bertaina, M.; Bisconti, F.; Blaksley, C.; Blin-Bondil, S.; Cafagna, F.; Cambiè, G.; et al. Mini-EUSO mission to study Earth UV emissions on board the ISS. Astrophys. J. Suppl. Ser. 2021, 253, 36. [Google Scholar] [CrossRef]
- Peat, C. Heavens-Above: Satellite Tracking. 2024. Available online: https://www.heavens-above.com (accessed on 4 July 2024).
- SpaceX. Application for Fixed Satellite Service. FCC Filing SATLOA2016111500118. 2016. Available online: https://fcc.report/IBFS/SAT-LOA-20161115-00118 (accessed on 1 July 2025).
- Reggiani, E.; Rabozzi, M.; Nestorov, A.M.; Scolari, A.; Stornaiuolo, L.; Santambrogio, M. Pareto optimal design space exploration for accelerated CNN on FPGA. In Proceedings of the 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Rio de Janeiro, Brazil, 20–24 May 2019; pp. 107–114. [Google Scholar] [CrossRef]
- Horstmann, A.; Wiedemann, C.; Lemmens, S.; Braun, V.; Manis, A.P.; Matney, M.; Gates, D.P.; Seago, J.; Vavrin, A.; Anz-meador, P. Flux comparison of MASTER-8 and ORDEM 3.1 modelled space debris population. In Proceedings of the 8th European Conference on Space Debris, ESA Space Debris Office, Darmstadt, Germany, 20–23 April 2021; Volume 8. Issue 1. Available online: https://conference.sdo.esoc.esa.int/proceedings/sdc8/paper/11 (accessed on 1 July 2025).
- Liou, J.C.; Johnson, N.L. Instability of the present LEO satellite populations. Adv. Space Res. 2008, 41, 1046–1053. [Google Scholar] [CrossRef]
- Braun, V.; Horstmann, A.; Lemmens, S.; Wiedemann, C.; Böttcher, L. Recent developments in space debris environment modelling, verification and validation with MASTER. In Proceedings of the 8th European Conference on Space Debris, ESA Space Debris Office, Darmstadt, Germany, 20–23 April 2021; Volume 8. Issue 1. Available online: https://conference.sdo.esoc.esa.int/proceedings/sdc8/paper/72 (accessed on 1 July 2025).
Layer | Output Shape | Parameters |
---|---|---|
Conv2D (1→16) | 160 | |
Conv2D (16→32) | 4640 | |
FC (Flatten 512 → 64) | 64 | |
FC (64 → 1) | 1 | 65 |
Total | — | 37,697 |
Property | Original Stack-CNN [6] | Quantized Stack-CNN (QAT-CNN) |
---|---|---|
Input size | ||
Quantized (8-bit) | No | Yes |
Training with QAT | No | Yes |
Number of Conv Layers | 3 | 2 |
Number of Dense Layers | 3 | 2 |
Flattened feature size | 144 | 512 |
Total parameters | 16,825 | 37,697 |
FPGA pipelining friendly | Moderate | High |
Property | Description | Value |
---|---|---|
IR Version | ONNX Intermediate Representation version | 6 |
Producer | Exporting framework and version | PyTorch 2.3.0 |
Opset Version | ONNX operator set version | 11 |
Number of Nodes | Total operations in the ONNX graph | 11 |
Number of Initializers | Trainable tensors (e.g., weights/biases) | 8 |
Input Tensor Shape | Input dimensions (N, C, H, W) | (1, 1, 16, 16) |
Output Tensor Shape | Output dimensions | (1, 1) |
Property | Original Stack-CNN [6] | Quantized Stack-CNN (QAT-CNN) |
---|---|---|
Accuracy | 99.97% | 99.90% |
Precision | 100% | 99.93% |
Recall (TPR) | 100% | 99.87% |
F1-Score | 99.97% | 99.90% |
False Positive Rate (FPR) | 0.00% | 0.067% |
Number of Test Samples | 60 | 3000 |
Predicted: 0 | Predicted: 1 | |
---|---|---|
Actual: 0 | 1499 | 1 |
Actual: 1 | 2 | 1498 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abrate, M.; Reynaud, F.; Bertaina, M.E.; Coretti, A.G.; Frasson, A.; Montanaro, A.; Bonino, R.; Sirovich, R. Implementation of the Stack-CNN Algorithm for Space Debris Detection on FPGA Board. Appl. Sci. 2025, 15, 9268. https://doi.org/10.3390/app15179268
Abrate M, Reynaud F, Bertaina ME, Coretti AG, Frasson A, Montanaro A, Bonino R, Sirovich R. Implementation of the Stack-CNN Algorithm for Space Debris Detection on FPGA Board. Applied Sciences. 2025; 15(17):9268. https://doi.org/10.3390/app15179268
Chicago/Turabian StyleAbrate, Matteo, Federico Reynaud, Mario Edoardo Bertaina, Antonio Giulio Coretti, Andrea Frasson, Antonio Montanaro, Raffaella Bonino, and Roberta Sirovich. 2025. "Implementation of the Stack-CNN Algorithm for Space Debris Detection on FPGA Board" Applied Sciences 15, no. 17: 9268. https://doi.org/10.3390/app15179268
APA StyleAbrate, M., Reynaud, F., Bertaina, M. E., Coretti, A. G., Frasson, A., Montanaro, A., Bonino, R., & Sirovich, R. (2025). Implementation of the Stack-CNN Algorithm for Space Debris Detection on FPGA Board. Applied Sciences, 15(17), 9268. https://doi.org/10.3390/app15179268