Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (176)

Search Parameters:
Keywords = olive seeds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1889 KiB  
Article
Infrared Thermographic Signal Analysis of Bioactive Edible Oils Using CNNs for Quality Assessment
by Danilo Pratticò and Filippo Laganà
Signals 2025, 6(3), 38; https://doi.org/10.3390/signals6030038 - 1 Aug 2025
Viewed by 174
Abstract
Nutrition plays a fundamental role in promoting health and preventing chronic diseases, with bioactive food components offering a therapeutic potential in biomedical applications. Among these, edible oils are recognised for their functional properties, which contribute to disease prevention and metabolic regulation. The proposed [...] Read more.
Nutrition plays a fundamental role in promoting health and preventing chronic diseases, with bioactive food components offering a therapeutic potential in biomedical applications. Among these, edible oils are recognised for their functional properties, which contribute to disease prevention and metabolic regulation. The proposed study aims to evaluate the quality of four bioactive oils (olive oil, sunflower oil, tomato seed oil, and pumpkin seed oil) by analysing their thermal behaviour through infrared (IR) imaging. The study designed a customised electronic system to acquire thermographic signals under controlled temperature and humidity conditions. The acquisition system was used to extract thermal data. Analysis of the acquired thermal signals revealed characteristic heat absorption profiles used to infer differences in oil properties related to stability and degradation potential. A hybrid deep learning model that integrates Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) units was used to classify and differentiate the oils based on stability, thermal reactivity, and potential health benefits. A signal analysis showed that the AI-based method improves both the accuracy (achieving an F1-score of 93.66%) and the repeatability of quality assessments, providing a non-invasive and intelligent framework for the validation and traceability of nutritional compounds. Full article
Show Figures

Figure 1

24 pages, 1766 KiB  
Article
From Waste to Resource: Chemical Characterization of Olive Oil Industry By-Products for Sustainable Applications
by Maria de Lurdes Roque, Claudia Botelho and Ana Novo Barros
Molecules 2025, 30(15), 3212; https://doi.org/10.3390/molecules30153212 - 31 Jul 2025
Viewed by 256
Abstract
The olive oil industry, a key component of Southern Europe’s agricultural sector, generates large amounts of by-products during processing, including olive leaves, branches, stones, and seeds. In the context of growing environmental concerns and limited natural resources—particularly in the Mediterranean regions—there is increasing [...] Read more.
The olive oil industry, a key component of Southern Europe’s agricultural sector, generates large amounts of by-products during processing, including olive leaves, branches, stones, and seeds. In the context of growing environmental concerns and limited natural resources—particularly in the Mediterranean regions—there is increasing interest in circular economy approaches that promote the valorization of agricultural residues. These by-products are rich in bioactive compounds, particularly phenolics such as oleuropein and hydroxytyrosol, which are well known for their antioxidant and anti-inflammatory activities. This study aimed to evaluate the phenolic content and antioxidant capacity of by-products from three olive cultivars using high-performance liquid chromatography with photodiode array detection (HPLC–PDA) and mass spectrometry (MS). The leaves and seeds, particularly from the “Cobrança” and a non-identified variety, presented the highest antioxidant activity, as well as the highest concentration of phenolic compounds, demonstrating once again the direct relationship between these two parameters. The identification of the compounds present demonstrated that the leaves and branches have a high diversity of phenolic compounds, particularly secoiridoids, flavonoids, phenylpropanoids, phenylethanoids, and lignans. An inverse relationship was observed between the chlorophyll and carotenoid content and the antioxidant activity, suggesting that phenolic compounds, rather than pigments, are the major contributors to antioxidant properties. Therefore, the by-products of the olive oil industry are a valuable source of sustainable bioactive compounds for distinct industrial sectors, such as the food, nutraceutical, and pharmaceutical industries, aligning with the European strategies for resource efficiency and waste reduction in the agri-food industries. Full article
Show Figures

Figure 1

15 pages, 1273 KiB  
Article
Fungal Pretreatment of Alperujo for Bioproduct Recovery and Detoxification: Comparison of Two White Rot Fungi
by Viviana Benavides, Gustavo Ciudad, Fernanda Pinto-Ibieta, Elisabet Aranda, Victor Ramos-Muñoz, Maria A. Rao and Antonio Serrano
Agronomy 2025, 15(8), 1851; https://doi.org/10.3390/agronomy15081851 - 31 Jul 2025
Viewed by 198
Abstract
Alperujo, a solid by-product from the two-phase olive oil extraction process, poses significant environmental challenges due to its high organic load, phytotoxicity, and phenolic content. At the same time, it represents a promising feedstock for recovering value-added compounds such as phenols and volatile [...] Read more.
Alperujo, a solid by-product from the two-phase olive oil extraction process, poses significant environmental challenges due to its high organic load, phytotoxicity, and phenolic content. At the same time, it represents a promising feedstock for recovering value-added compounds such as phenols and volatile fatty acids (VFAs). When used as a substrate for white rot fungi (WRF), it also produces ligninolytic enzymes. This study explores the use of two native WRF, Anthracophyllum discolor and Stereum hirsutum, for the biotransformation of alperujo under solid-state fermentation conditions, with and without supplementation of copper and manganese, two cofactors known to enhance fungal enzymatic activity. S. hirsutum stood out for its ability to release high concentrations of phenolic compounds (up to 6001 ± 236 mg gallic acid eq L−1) and VFAs (up to 1627 ± 325 mg L−1) into the aqueous extract, particularly with metal supplementation. In contrast, A. discolor was more effective in degrading phenolic compounds within the solid matrix, achieving a 41% reduction over a 30-day period. However, its ability to accumulate phenolics and VFAs in the extract was limited. Both WRF exhibited increased enzymatic activities (particularly Laccase and Manganese Peroxidase) with the addition of Cu-Mn, highlighting the potential of the aqueous extract as a natural source of biocatalysts. Phytotoxicity assays using Solanum lycopersicum seeds confirmed a partial detoxification of the treated alperujo. However, none of the fungi could entirely eliminate inhibitory effects on their own, suggesting the need for complementary stabilization steps before agricultural reuse. Overall, the results indicate that S. hirsutum, especially when combined with metal supplementation, is better suited for valorizing alperujo through the recovery of bioactive compounds. Meanwhile, A. discolor may be more suitable for detoxifying the solid phase strategies. These findings support the integration of fungal pretreatment into biorefinery schemes that valorize agroindustrial residues while mitigating environmental issues. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

19 pages, 2110 KiB  
Article
Comprehensive Quality Comparison of Camellia vietnamensis Seed Oil from Different Cultivars in Hainan Island
by Shuao Xie, Jin Zhao, Shuaishuai Shen, Yougen Wu, Huageng Yang, Jing Yu, Ya Liu and Dongmei Yang
Agronomy 2025, 15(8), 1845; https://doi.org/10.3390/agronomy15081845 - 30 Jul 2025
Viewed by 182
Abstract
Camellia vietnamensis grows in a unique tropical environment, and its seed oil has a rich aroma. The content of unsaturated fatty acids in C. vietnamensis oil is up to 90%, which can regulate human lipid metabolism and prevent cardiovascular and cerebrovascular diseases. Compared [...] Read more.
Camellia vietnamensis grows in a unique tropical environment, and its seed oil has a rich aroma. The content of unsaturated fatty acids in C. vietnamensis oil is up to 90%, which can regulate human lipid metabolism and prevent cardiovascular and cerebrovascular diseases. Compared with olive oil, C. vietnamensis oil has a higher content of unsaturated fatty acids. This study used eleven C. vietnamensis cultivars cultivated on Hainan Island. Among the 11 cultivars, “Boao 1” had fruits with the largest vertical diameter of 45.05 mm, while “Haida 1” had fruits with the largest horizontal diameter, single-fruit weight, and fresh 100-grain weight of 53.5 mm, 70.6 g, and 479.01 g, respectively. “Boao 3” had an acid value and peroxide value of 1.59 mg/g and 3.50 mmol/kg, respectively, and its saponification value content was 213.18 mg/g. “Boao 5” had the highest iodine value, 101.86 g/100 g, among the 11 cultivars. The content of unsaturated fatty acids in the seed oil of 11 cultivars ranged from 84.87% to 87.38%. The qRT-PCR results confirmed that “Boao 3” had a higher content of flavonoids and fatty acids than other cultivars. The comprehensive analysis of physiological and biochemical indices showed that the top five cultivars were “Haida 1”, “Boao 3”, “Haida 2”, “Boao 1”, and “Boao 5”. These five cultivars were suitable for large-scale cultivation in tropical regions, such as Hainan Island. This study provided a theoretical basis for the breeding of C. vietnamensis cultivars in tropical regions. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

22 pages, 3083 KiB  
Article
Evaluating the Effect of Thermal Treatment on Phenolic Compounds in Functional Flours Using Vis–NIR–SWIR Spectroscopy: A Machine Learning Approach
by Achilleas Panagiotis Zalidis, Nikolaos Tsakiridis, George Zalidis, Ioannis Mourtzinos and Konstantinos Gkatzionis
Foods 2025, 14(15), 2663; https://doi.org/10.3390/foods14152663 - 29 Jul 2025
Viewed by 355
Abstract
Functional flours, high in bioactive compounds, have garnered increasing attention, driven by consumer demand for alternative ingredients and the nutritional limitations of wheat flour. This study explores the thermal stability of phenolic compounds in various functional flours using visible, near and shortwave-infrared (Vis–NIR–SWIR) [...] Read more.
Functional flours, high in bioactive compounds, have garnered increasing attention, driven by consumer demand for alternative ingredients and the nutritional limitations of wheat flour. This study explores the thermal stability of phenolic compounds in various functional flours using visible, near and shortwave-infrared (Vis–NIR–SWIR) spectroscopy (350–2500 nm), integrated with machine learning (ML) algorithms. Random Forest models were employed to classify samples based on flour type, baking temperature, and phenolic concentration. The full spectral range yielded high classification accuracy (0.98, 0.98, and 0.99, respectively), and an explainability framework revealed the wavelengths most relevant for each class. To address concerns regarding color as a confounding factor, a targeted spectral refinement was implemented by sequentially excluding the visible region. Models trained on the 1000–2500 nm and 1400–2500 nm ranges showed minor reductions in accuracy, suggesting that classification is not solely driven by visible characteristics. Results indicated that legume and wheat flours retain higher total phenolic content (TPC) under mild thermal conditions, whereas grape seed flour (GSF) and olive stone flour (OSF) exhibited notable thermal stability of TPC even at elevated temperatures. These first findings suggest that the proposed non-destructive spectroscopic approach enables rapid classification and quality assessment of functional flours, supporting future applications in precision food formulation and quality control. Full article
Show Figures

Figure 1

15 pages, 2118 KiB  
Article
Oxidative Stability of Phytosterols in Camellia Seed Oil During Heating: The Impact of Different Antioxidants
by Dongkun Zhao, Xin Wang, Sicong You, Lijuan Wang, Usman Amjad, Baocheng Xu, Xinjing Dou and Lili Liu
Foods 2025, 14(13), 2297; https://doi.org/10.3390/foods14132297 - 28 Jun 2025
Viewed by 383
Abstract
Phytosterols (PS) have specific oxidation rules in different lipid media. After oxidation, PS will form oxidation products, which has potential physiological toxicity to the human body. Camellia seed oil (CSO) is a unique emerging edible oil in China. This oil has a fatty [...] Read more.
Phytosterols (PS) have specific oxidation rules in different lipid media. After oxidation, PS will form oxidation products, which has potential physiological toxicity to the human body. Camellia seed oil (CSO) is a unique emerging edible oil in China. This oil has a fatty acid composition similar to olive oil, in which oleic acid is dominant. In order to solve the thermal oxidation of PS in CSO at high temperature (180 °C), we studied its antioxidant strategy by evaluating different antioxidants. Four antioxidants—BHA, TBHQ, epigallocatechin gallate (EGCG), and α-tocopherol (VE)—along with one synergist, citric acid (CA), were selected and used in this study. The antioxidant effects of different combinations (single antioxidant, single antioxidant + CA, mixed antioxidant, mixed antioxidant + CA) were compared. After 180 min of heating, the PS and phytosterols oxidation products (7α-hydroxy-, 7β-hydroxy-, 5α,6α-epoxy-, 5β,6β-epoxy-, 7-keto-, and trihydroxy-PS) were estimated by GC-MS. Through comparative analysis, the results showed that the combination of mixed antioxidants and CA had the best antioxidant effect, and the inhibition rate of VE + TBHQ +CA was as high as 42%, which had a breakthrough significance for stabilizing the thermal oxidation of PS in camellia seed oil. At the same time, it also provides a valuable reference for ensuring the edible safety of camellia seed oil in Chinese food heating habits. Full article
(This article belongs to the Special Issue Healthy Lipids for Food Processing)
Show Figures

Figure 1

36 pages, 2259 KiB  
Review
Bioactive Compounds of Agro-Industrial By-Products: Current Trends, Recovery, and Possible Utilization
by Ramesh Kumar Saini, Mohammad Imtiyaj Khan, Vikas Kumar, Xiaomin Shang, Ji-Ho Lee and Eun-Young Ko
Antioxidants 2025, 14(6), 650; https://doi.org/10.3390/antiox14060650 - 28 May 2025
Cited by 1 | Viewed by 1230
Abstract
Domestic food waste and agro-industrial by-products (AIBPs) occurring throughout the food chain, including production, processing, and storage, have become a global sustainability concern. Interestingly, this waste and these by-products contain a significant amount of commercially vital bioactive compounds, including polyphenols and carotenoids. Remarkably, [...] Read more.
Domestic food waste and agro-industrial by-products (AIBPs) occurring throughout the food chain, including production, processing, and storage, have become a global sustainability concern. Interestingly, this waste and these by-products contain a significant amount of commercially vital bioactive compounds, including polyphenols and carotenoids. Remarkably, discarded by-products such as fruit and vegetable peels contain more bioactive compounds than edible pulp. Thus, valorizing this waste and these by-products for commercially vital bioactive products can solve their disposal problems and help alleviate climate change crises. Additionally, it can generate surplus revenue, significantly improving food production and processing economics. Interestingly, several bioactive extracts derived from citrus peel, carrot pomace, olive leaf, and grape seed are commercially available, highlighting the importance of agro-food waste and by-product valorization. Considering this background information, this review aims to provide holistic information on major AIBPs; recovery methods of bioactive compounds focusing on polyphenols, carotenoids, oligosaccharides, and pectin; microencapsulation of isolated bioactive for enhanced physical, chemical, and biological properties; and their commercial application. In addition, green extraction methods are discussed, which have several advantages over conventional extraction. The concept of the circular bio-economy approach, challenges in waste valorization, and future perspective are also discussed. Full article
(This article belongs to the Special Issue Valorization of Waste Through Antioxidant Extraction and Utilization)
Show Figures

Figure 1

36 pages, 403 KiB  
Article
The Connection Between Socioeconomic Factors and Dietary Habits of Children with Down Syndrome in Croatia
by Maja Ergović Ravančić, Valentina Obradović and Jadranka Vraneković
Foods 2025, 14(11), 1910; https://doi.org/10.3390/foods14111910 - 28 May 2025
Viewed by 686
Abstract
Children with Down syndrome often face significant feeding difficulties and health comorbidities that may contribute to undernutrition or obesity. This study assessed dietary habits and nutritional status among 104 children with Down syndrome in Croatia, representing 11.5% of this population. Results showed that [...] Read more.
Children with Down syndrome often face significant feeding difficulties and health comorbidities that may contribute to undernutrition or obesity. This study assessed dietary habits and nutritional status among 104 children with Down syndrome in Croatia, representing 11.5% of this population. Results showed that over 30% of children aged 1 to 15 were overweight. Over 60% never consumed whole grain bread, while more than 50% avoided fish, nuts, or seeds. Despite rural families more frequently producing their own food (meat p = 0.009; fruits/vegetables p = 0.035), no significant improvement was observed in the children’s diets compared to their urban counterparts. Urban children consumed milk (p = 0.008) and fermented dairy (p = 0.005) more often. Children of university-educated mothers had higher vegetable (p = 0.031), meat (p = 0.025), olive oil (p = 0.003), and nut (p = 0.029) consumption, and a lower intake of processed meats (p = 0.008) and salty snacks (p = 0.040). Families spending less than 50% of income on food also showed significantly healthier dietary patterns. Feeding difficulties in children with Down syndrome are commonly associated with sensory sensitivities, oral-motor impairments, and comorbid medical conditions. These challenges are often intensified by parental anxiety, delayed introduction of diverse foods, and inadequate professional support. Collectively, these factors contribute to selective eating, poor nutrient intake, and disordered eating behaviors. This study underscores the need for individualized nutritional interventions that address the unique physiological and sensory requirements of both children and adults with Down syndrome. Effective strategies should extend beyond general dietary recommendations to include early exposure to a variety of food textures, specialized feeding support, and the management of coexisting health conditions. Family education and engagement play a crucial role in achieving positive nutritional outcomes. Empowering parents and caregivers—especially those in socioeconomically disadvantaged or rural communities—can facilitate the alignment of food accessibility with healthy dietary practices. The findings of this research offer valuable guidance for the development and implementation of national strategies aimed at enhancing the nutrition and long-term health of individuals with Down syndrome. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

17 pages, 1306 KiB  
Article
Biochar, Beneficial Microbes, and Agro-Industrial Byproducts in Seed Coatings: Improving Germination and Biomass in Multiple Crops
by Giandomenico Amoroso, Mohamed Idbella, Riccardo Motti, Adriano Gemini, Alessia Cozzolino and Giuliano Bonanomi
Horticulturae 2025, 11(5), 554; https://doi.org/10.3390/horticulturae11050554 - 21 May 2025
Cited by 2 | Viewed by 745
Abstract
The development of sustainable seed coating formulations is essential to enhance crop performance while reducing reliance on synthetic inputs. This study evaluates biochar-enriched coatings incorporating olive pomace, buffalo digestate, and microbial consortia from Fagus, Quercus, and Pinus forest litters, including Trichoderma [...] Read more.
The development of sustainable seed coating formulations is essential to enhance crop performance while reducing reliance on synthetic inputs. This study evaluates biochar-enriched coatings incorporating olive pomace, buffalo digestate, and microbial consortia from Fagus, Quercus, and Pinus forest litters, including Trichoderma harzianum, for their effects on seed germination and plant growth. Four crops (Diplotaxis tenuifolia, Lactuca sativa, Solanum lycopersicum, and Zea mays) were tested through germination assays and field trials. Treatments containing digestate or pomace alone significantly reduced germination and seedling growth in D. tenuifolia and L. sativa (below 25%, compared to control), due to the phytotoxic effects of ammonia, salts, and polyphenols. In contrast, biochar-based coatings mitigated these effects, enhancing germination and root elongation. The addition of T. harzianum further improved seedling establishment, likely by enhancing nutrient uptake and suppressing soilborne pathogens, with increases exceeding 100% (compared to control). Field trials confirmed these findings, showing that biochar–T. harzianum combinations improved both shoot and root biomass, particularly in L. sativa and S. lycopersicum. Z. mays displayed greater tolerance to raw by-products, though biochar remained essential for optimal growth. While forest-derived microbial consortia supported microbial balance, their effect on biomass was less pronounced. These results highlight the potential of biochar-based coatings, especially when combined with T. harzianum, as sustainable alternatives to conventional seed treatments. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Graphical abstract

14 pages, 653 KiB  
Article
The Protective Effect of FOXO3 rs2802292 G-Allele on Food Intake in a Southern Italian Cohort Affected by MASLD
by Rossella Donghia, Elisabetta Di Nicola, Rossella Tatoli, Giovanna Forte, Martina Lepore Signorile, Caterina Bonfiglio, Marialaura Latrofa, Katia De Marco, Andrea Manghisi, Vittoria Disciglio, Candida Fasano, Paola Sanese, Filomena Cariola, Antonia Lucia Buonadonna, Gianluigi Giannelli, Valentina Grossi and Cristiano Simone
Nutrients 2025, 17(8), 1315; https://doi.org/10.3390/nu17081315 - 10 Apr 2025
Cited by 1 | Viewed by 1172
Abstract
Background: Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is a cluster of conditions characterized by accumulations of fat, metabolic factors such as obesity, diabetes and high cholesterol. MASLD is now the leading cause of chronic liver disease worldwide, with a rapidly increasing trend. [...] Read more.
Background: Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is a cluster of conditions characterized by accumulations of fat, metabolic factors such as obesity, diabetes and high cholesterol. MASLD is now the leading cause of chronic liver disease worldwide, with a rapidly increasing trend. We aimed to demonstrate that genetic variants of rs2802292 SNP can influence the development of MASLD even after many years. Methods: We studied 650 participants from the NUTRIHEP cohort, both at baseline (2005–2006) and at first recall (2014–2018), and genotyped rs2802292. The validated European Prospective Investigation into Cancer and Nutrition (EPIC) questionnaire was administered during the visit, and each single food was assigned to one of 33 groups. Results: Associations of food intake at baseline with MASLD were found in the first recall, for each genotype, GG, GT, and TT, and several covariates were used to adjust models. Dressing fats other than olive oil resulted protection against MASLD in GG subjects, whereas seed oil, juices, and spirits resulted in protection against MASLD for GT subjects. An increased risk of MASLD was found for subjects with the TT genotype for white meat intake (OR = 1.018, p = 0.031, 1.002 to 1.035 95% C.I.), ready-to-eat dishes (OR = 1.015, p = 0.033, 1.001 to 1.029 95% C.I.), processed meat (OR = 1.093, p = 0.003, 1.031 to 1.158 95% C.I.), and processed fish (OR = 1.085, p = 0.037, 1.005 to 1.172 95% C.I.). Conclusions: Subjects with the TT genotype had a higher risk of developing MASLD than subjects with other genotypes. A healthier lifestyle is important to counteract liver disease. Full article
Show Figures

Graphical abstract

24 pages, 873 KiB  
Review
A Review of New Methods for Extracting Oil from Plants to Enhance the Efficiency and Physicochemical Properties of the Extracted Oils
by Hamid Bakhshabadi, Mohammad Ganje, Mehdi Gharekhani, Toktam Mohammadi-Moghaddam, Cristina Aulestia and Afsaneh Morshedi
Processes 2025, 13(4), 1124; https://doi.org/10.3390/pr13041124 - 9 Apr 2025
Cited by 2 | Viewed by 1705
Abstract
In general, there are three methods for extracting oil from various sources: mechanical, solvent, and pre-press-solvent. Each of these methods has its own advantages and disadvantages, with extraction efficiency depending on key factors such as the extraction technique, the properties of the plant [...] Read more.
In general, there are three methods for extracting oil from various sources: mechanical, solvent, and pre-press-solvent. Each of these methods has its own advantages and disadvantages, with extraction efficiency depending on key factors such as the extraction technique, the properties of the plant component matrix, and the solvent used. Factors like temperature, pressure, and time also play a role. Researchers have consistently sought to replace or complement these methods to reduce residual oil in products. This study introduces new oil extraction methods that have gained attention in recent years, including the microwave, pulsed electric field, ultrasound, supercritical fluid, enzymatic, ohmic, and combined methods to enhance efficiency. The research demonstrates that these methods increase oil extraction efficiency and bioactive compound extraction from plant sources, resulting in improved oil quality. Most methods also reduce extraction time, offering researchers and industrialists a variety of options for their oil extraction needs. However, the study notes contradictions in the results, such as varying acidity levels in the oil, which may be attributed to raw materials and study conditions. In the end, it was determined that ultrasound, pulsed electric field, and enzyme methods can be used industrially to extract oil from olives, while supercritical fluid can be used to extract oil from certain seeds. Full article
Show Figures

Figure 1

33 pages, 4669 KiB  
Article
Genomic Insights into Plant Growth Promotion and Biocontrol of Bacillus velezensis Amfr20, an Olive Tree Endophyte
by Tasos-Nektarios Spantidos, Dimitra Douka, Panagiotis Katinakis and Anastasia Venieraki
Horticulturae 2025, 11(4), 384; https://doi.org/10.3390/horticulturae11040384 - 4 Apr 2025
Viewed by 1205
Abstract
The endophytic strain Amfr20 was isolated from roots of the olive tree var. Amfissa. Based on core-genome phylogenomic analyses, it was classified as Bacillus velezensis. The isolate showed positive results in numerous plant growth promoting traits, as well as in abiotic stress [...] Read more.
The endophytic strain Amfr20 was isolated from roots of the olive tree var. Amfissa. Based on core-genome phylogenomic analyses, it was classified as Bacillus velezensis. The isolate showed positive results in numerous plant growth promoting traits, as well as in abiotic stress tolerance and in colonization related traits in vitro. Furthermore, the strain exhibited antifungal activity in vitro through diffusible and volatile compounds. Whole genome analysis revealed that the strain possesses large and various arsenals of secondary metabolite biosynthetic gene clusters involved in the bioagent’s functional properties, including plant growth promotion, colonization, and plant defense elicitation, as well as having the genomic potential for abiotic stress mediation. Based on TLC-bioautography, the ethyl acetate extracts of secreted agar-diffusible compounds from Amfr20 through single and dual cultures were found to be bioactive independently of the fungal pathogen’s interaction. The bacterial endophyte also proved efficient in suppressing the severity of anthracnose olive rot and gray mold post-harvest diseases on olive fruits and table grape berries, respectively. Lastly, Amfr20 beneficially affected Arabidopsis thaliana growth under normal and saline conditions, while boosting the plant development of Solanum lycopersicum through seed biopriming and root irrigation methods. The results of this multilevel study indicate that the novel endophyte Amfr20 Bacillus velezensis is a promising bioagent that should be exploited in the future as an ecological biopesticide and/or biostimulant. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Figure 1

22 pages, 2413 KiB  
Article
A Novel Liquid Chromatographic Time-of-Flight Tandem Mass Spectrometric Method for the Determination of Secondary Metabolites in Functional Flours Produced from Grape Seed and Olive Stone Waste
by Achilleas Panagiotis Zalidis, Natasa P. Kalogiouri, Ioannis Mourtzinos, Dimitris Sarris and Konstantinos Gkatzionis
Molecules 2025, 30(7), 1527; https://doi.org/10.3390/molecules30071527 - 29 Mar 2025
Cited by 2 | Viewed by 564
Abstract
Agricultural by-products like grape pomace and olive stones are rich in bioactive compounds and can be processed into grape seed and olive stone flours.The phenolic composition of such flours still remains underexplored. This study introduces a liquid chromatographic time-of-flight tandem mass spectrometric method [...] Read more.
Agricultural by-products like grape pomace and olive stones are rich in bioactive compounds and can be processed into grape seed and olive stone flours.The phenolic composition of such flours still remains underexplored. This study introduces a liquid chromatographic time-of-flight tandem mass spectrometric method (LC-QTOF-MS/MS) to assess the phenolic profiles of functional flours from different origins and evaluate their potential use within the frame of a circular economy. Grape seed and olive stone flours from Lemnos and commercial sources were analyzed employing target, suspect, and non-target screening. Target screening resulted in the determination of 23 phenolic compounds. Suspect screening revealed phenolic diversity in flours produced in Lemnos island. Non-target screening resulted in the detection of 1042 and 1620 mass features in grape seed and olive stone flours, respectively. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) successfully differentiated samples between commercially available and those produced in Lemnos. These results underscore the phenolic richness of grape seed and olive stone flours, supporting their use as functional ingredients and reinforcing sustainability and circular economy principles in the agri-food sector. Full article
(This article belongs to the Special Issue Chromatography—The Ultimate Analytical Tool, 3rd Edition)
Show Figures

Figure 1

17 pages, 1737 KiB  
Article
Characterization of New Flavored Oils Obtained Through the Co-Milling of Olives and Vegetable Food Products
by Celeste Lazzarini, Matilde Tura, Mara Mandrioli, Marco Setti, Noureddine Mokhtari, Abdelaziz Ait Elkassia, Sara Barbieri, Enrico Valli, Alessandra Bendini and Tullia Gallina Toschi
Foods 2025, 14(4), 687; https://doi.org/10.3390/foods14040687 - 17 Feb 2025
Cited by 1 | Viewed by 713
Abstract
Consumers are increasingly attracted to innovative, gourmand, and sustainable food products. This has led to a growing interest in flavored olive oils through co-milling processing. This study explores the production and characterization of flavored olive oils obtained by co-milling olives with orange pomace, [...] Read more.
Consumers are increasingly attracted to innovative, gourmand, and sustainable food products. This has led to a growing interest in flavored olive oils through co-milling processing. This study explores the production and characterization of flavored olive oils obtained by co-milling olives with orange pomace, black pepper, and hemp seeds, aiming to enhance their sensory and compositional properties while promoting sustainability through the valorization of agri-food by-products. The flavored olive oils and their control samples were analyzed for free acidity, tocopherols, phenolic compounds, volatiles, and sensory profiles. The flavored oils exhibited an acceptable hydrolytic state and peculiar sensory notes, depending on the ingredients used, as well as enhanced compositional qualities. This research highlights the potential of using oranges and hemp by-products in flavored oil production, offering an innovative approach to reducing food waste, with the possibility of future industrial applications. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

25 pages, 1669 KiB  
Article
Enhancing Commercial Gourmet Oil Quality: The Role of Dried Cayenne Pepper Red (Capsicum annuum L.) as a Natural Additive
by Zuzana Knazicka, Branislav Galik, Ivana Novotna, Julius Arvay, Katarina Fatrcova-Sramkova, Miroslava Kacaniova, Jiri Mlcek, Eva Kovacikova, Eva Mixtajova, Tunde Jurikova, Eva Ivanisova, Adriana Kolesarova and Hana Duranova
Molecules 2025, 30(4), 927; https://doi.org/10.3390/molecules30040927 - 17 Feb 2025
Viewed by 1286
Abstract
This study assessed the potential of dried Cayenne pepper (CP; Capsicum annuum L.) as a natural additive to rice bran oil (RBO), grape seed oil (GSO), and virgin olive oil (OO). Key analyses included peroxide and acid values, oxidative stability (Rancimat method), the [...] Read more.
This study assessed the potential of dried Cayenne pepper (CP; Capsicum annuum L.) as a natural additive to rice bran oil (RBO), grape seed oil (GSO), and virgin olive oil (OO). Key analyses included peroxide and acid values, oxidative stability (Rancimat method), the composition of fatty acids (FAs) (GC-FID method), antioxidant activity (AA; DPPH method), and antimicrobial properties (disc diffusion method). Capsaicin and the dihydrocapsaicin contents in CP were quantified (HPLC-DAD method) as 1499.37 ± 3.64 and 1449.04 ± 5.14 mg/kg DW, respectively. Oleic acid (C18:1cis n9) dominated in OO (69.70%), OO-CP (69.73%), and RBO-CP (38.97%), while linoleic acid (C18:2cis n6) prevailed in RBO (41.34%), GSO (57.93%), and GSO-CP (58.03%). The addition of CP influenced the FA profile, particularly linoleic acid in OO and RBO, and all FAs in GSO. Peroxide and acid values increased significantly in RBO and GSO upon CP addition, but induction times remained unaffected. The strongest AA (77.00 ± 0.13%) was observed in OO-CP. Cayenne pepper significantly enhanced the antioxidant profiles of all oils compared to the counterparts. However, the antimicrobial activity was weak (≤5.0 mm inhibition zones) against tested microorganisms. These findings support CP as a functional additive for enhancing the nutritional and functional properties of gourmet oils, while highlighting the need for further optimization to improve stability and bioactivity. Full article
(This article belongs to the Special Issue New Insight into Edible Oil: From Food Chemistry to Health Benefits)
Show Figures

Figure 1

Back to TopTop