Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (546)

Search Parameters:
Keywords = oligonucleotide therapeutics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 968 KB  
Review
Therapeutic Advances in Targeting the Amyloid-β Pathway for Alzheimer’s Disease
by Beiyu Zhang, Yunan Li, Huan Li, Xinai Shen and Zheying Zhu
Brain Sci. 2025, 15(10), 1101; https://doi.org/10.3390/brainsci15101101 (registering DOI) - 13 Oct 2025
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia, characterized by progressive cognitive decline and neuropathological hallmarks, including amyloid-β (Aβ) plaques, neurofibrillary tangles (NFTs), and neurodegeneration. Since the amyloid cascade hypothesis was proposed, Aβ has remained a central therapeutic target, with interventions [...] Read more.
Alzheimer’s disease (AD) is the most common cause of dementia, characterized by progressive cognitive decline and neuropathological hallmarks, including amyloid-β (Aβ) plaques, neurofibrillary tangles (NFTs), and neurodegeneration. Since the amyloid cascade hypothesis was proposed, Aβ has remained a central therapeutic target, with interventions aiming to reduce Aβ production, aggregation, or downstream toxicity. This review first outlines the historical development of the Aβ hypothesis and the two major APP processing pathways (α-cleavage and β-cleavage), highlighting the role of biomarkers in early diagnosis, patient stratification, and regulatory approval. We then summarize the development and clinical outcomes of anti-Aβ small-molecule drugs, including β-secretase inhibitors, γ-secretase modulators, Aβ aggregation inhibitors, receptor/synapse modulators, and metabolic or antioxidant modalities. We further review the progression of biologic therapies, with a particular focus on monoclonal antibodies, vaccines, and emerging gene-silencing strategies, such as small interfering RNA (siRNA) and antisense oligonucleotides. Finally, we discuss future perspectives, including next-generation biologics, multi-target approaches, optimized delivery platforms, and early-prevention strategies. Collectively, these efforts underscore both the challenges and opportunities in translating anti-Aβ therapies into meaningful clinical benefits for patients with AD. Full article
(This article belongs to the Section Neurodegenerative Diseases)
29 pages, 1315 KB  
Review
Targeting the Eye: RNA-Based Therapies, Interferences, and Delivery Strategies
by Mohammed S. Abdel-Raziq Hassan, Cheng Zhong, Fatma Hassan and S. Kevin Li
Pharmaceutics 2025, 17(10), 1326; https://doi.org/10.3390/pharmaceutics17101326 (registering DOI) - 13 Oct 2025
Abstract
Recent advances in molecular biology have led to the development of RNA-based therapeutics, offering significant promise for treating various eye diseases. Current RNA therapeutics include RNA aptamers, antisense oligonucleotides (ASOs), small interfering RNA (siRNA), and messenger RNA (mRNA) that can target specific genetic [...] Read more.
Recent advances in molecular biology have led to the development of RNA-based therapeutics, offering significant promise for treating various eye diseases. Current RNA therapeutics include RNA aptamers, antisense oligonucleotides (ASOs), small interfering RNA (siRNA), and messenger RNA (mRNA) that can target specific genetic and molecular pathways involved in eye disorders. In addition to their potential in therapy, RNA technologies have also provided tools for mechanistic studies to improve the understanding of eye diseases, expanding the possibilities of RNA-based treatments. Despite the utility of RNA in studying eye disease mechanisms and its potential in disease treatment, only a few RNA-based therapies have been approved for posterior eye diseases. This paper reviews RNA interference and related ocular delivery and posterior eye diseases, focusing on the use of RNA aptamers, siRNA, short hairpin RNA (shRNA), and microRNA (miRNA). Approaches using RNA to advance our understanding of eye diseases and disease treatments, particularly in the posterior segment of the eye, are discussed. It is concluded that RNA therapeutics offer a novel approach to treating a variety of eye diseases by targeting their molecular causes. siRNA, shRNA, miRNA, and ASO can directly silence disease-driving genes, while RNA aptamers bind to specific targets. Although many RNA-based therapies are still in experimental stages, they hold promise for conditions such as age-related macular degeneration (AMD), diabetic macular edema (DME), glaucoma, and inherited retinal disorders. Effective delivery methods and long-term safety are key challenges that need to be addressed for these treatments to become widely available. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

21 pages, 5214 KB  
Article
microRNA-22 Inhibition Stimulates Mitochondrial Homeostasis and Intracellular Degradation Pathways to Prevent Muscle Wasting
by Simone Tomasini, Emanuele Monteleone, Anna Altieri, Francesco Margiotta, Fereshteh Dardmeh, Hiva Alipour, Anja Holm, Sakari Kauppinen and Riccardo Panella
Int. J. Mol. Sci. 2025, 26(20), 9900; https://doi.org/10.3390/ijms26209900 (registering DOI) - 11 Oct 2025
Abstract
MicroRNA-22 (miR-22) is a negative regulator of mitochondrial biogenesis, as well as lipid and glucose metabolism, in metabolically active tissues. Silencing miR-22 holds promise as a potential treatment of obesity and metabolic syndrome, as it restores metabolic capacity—enhancing oxidative metabolism—and reduces ectopic fat [...] Read more.
MicroRNA-22 (miR-22) is a negative regulator of mitochondrial biogenesis, as well as lipid and glucose metabolism, in metabolically active tissues. Silencing miR-22 holds promise as a potential treatment of obesity and metabolic syndrome, as it restores metabolic capacity—enhancing oxidative metabolism—and reduces ectopic fat accumulation in chronic obesity, a driver of impaired metabolic flexibility and muscle mass loss. Intramuscular adipose accumulation and defective mitochondrial function are features associated with obese-mediated muscle atrophy and hallmarks of neuromuscular disorders such as Duchenne muscular dystrophy. Therefore, miR-22 could represent a compelling molecular target to improve muscle health across various muscle-wasting conditions. This study describes a pharmacological strategy for the inhibition of miR-22 in skeletal muscle by employing a mixmer antisense oligonucleotide (ASO, anti-miR-22). Administration of the ASO in a mouse model of obesity positively modulated myogenesis while protecting dystrophic mice from muscle function decline, enhancing fatigue resistance, and limiting pathological fibrotic remodeling. Mechanistically, we show that anti-miR-22 treatment promotes derepression of genes involved in mitochondrial homeostasis, favoring oxidative fiber content regardless of the disease model, thus promoting a more resilient phenotype. Furthermore, we suggest that miR-22 inhibition increases autophagy by transcriptional activation of multiple negative regulators of mammalian target of rapamycin (mTOR) signaling to decrease immune infiltration and fibrosis. These findings position miR-22 as a promising therapeutic target for muscle atrophy and support its potential to restore muscle health. Full article
(This article belongs to the Special Issue MicroRNAs as Biomarkers and Therapeutic Targets in Human Diseases)
Show Figures

Figure 1

24 pages, 1310 KB  
Review
Interferon-α for Immune Modulation in Chronic Hepatitis B Toward Functional Cure
by Asha Ashuo, Jia Liu, Zhenghong Yuan and Jieliang Chen
Viruses 2025, 17(10), 1358; https://doi.org/10.3390/v17101358 - 10 Oct 2025
Viewed by 277
Abstract
Chronic hepatitis B (CHB) remains a major global health challenge, largely due to the persistence of covalently closed circular DNA (cccDNA) and impaired host immunity. Interferon-α (IFN-α), a key antiviral cytokine, not only directly restricts HBV replication but also orchestrates innate and adaptive [...] Read more.
Chronic hepatitis B (CHB) remains a major global health challenge, largely due to the persistence of covalently closed circular DNA (cccDNA) and impaired host immunity. Interferon-α (IFN-α), a key antiviral cytokine, not only directly restricts HBV replication but also orchestrates innate and adaptive immune responses. This review summarizes current advances in IFN-α-mediated immune regulation, highlighting its effects across diverse immune cell populations. Evidence indicates that IFN-α can reprogram immune responses to promote viral clearance, although clinical efficacy is limited by modest response rates and adverse effects. Recent progress in cytokine engineering, subtype research, and rational combination strategies—including nucleo(s/t)ide analogs, RNA interference therapeutics, antisense oligonucleotides, therapeutic vaccines, and beyond—has expanded opportunities to improve treatment outcomes. While challenges remain, these advances lay the foundation for optimizing IFN-α–based interventions and highlight IFN-α as a key driver for innovative therapies aimed at achieving a functional cure of chronic hepatitis B. Full article
(This article belongs to the Special Issue Cellular Immune Response to Hepatitis Viruses)
Show Figures

Figure 1

35 pages, 2877 KB  
Review
RNA-Targeting Techniques: A Comparative Analysis of Modern Approaches for RNA Manipulation in Cancer Research and Therapeutics
by Michaela A. Boti, Marios A. Diamantopoulos and Andreas Scorilas
Genes 2025, 16(10), 1168; https://doi.org/10.3390/genes16101168 - 2 Oct 2025
Viewed by 688
Abstract
RNA-targeting techniques have emerged as powerful tools in cancer research and therapeutics, offering precise and programmable control over gene expression at the post-transcriptional level. Once viewed as passive intermediates in the central dogma, RNA molecules are now recognized as dynamic regulators of cellular [...] Read more.
RNA-targeting techniques have emerged as powerful tools in cancer research and therapeutics, offering precise and programmable control over gene expression at the post-transcriptional level. Once viewed as passive intermediates in the central dogma, RNA molecules are now recognized as dynamic regulators of cellular function, capable of influencing transcription, translation, and epigenetic regulation. Advances in high-throughput sequencing technologies, transcriptomics, and structural RNA biology have uncovered a diverse landscape of coding and non-coding RNAs involved in oncogenesis, drug resistance, and tumor progression. In response, several RNA-targeting strategies have been developed to modulate these transcripts, including antisense oligonucleotides (ASOs), RNA interference (RNAi), CRISPR-Cas13 systems, small molecules, and aptamers. This review provides a comparative analysis of these technologies, highlighting their molecular mechanisms, therapeutic potential, and current limitations. Emphasis is placed on the translational progress of RNA-targeting agents, including recent FDA approvals and ongoing clinical trials for cancer indications. Through a critical comparison of these strategies, this review underscores the growing significance of RNA-targeting technologies as a foundation for next-generation cancer therapeutics and precision oncology. Full article
(This article belongs to the Section RNA)
Show Figures

Figure 1

13 pages, 981 KB  
Review
Isoform-Specific Roles and Therapeutic Targeting of RUNX1 in Hematopoiesis and Leukemogenesis
by Seungjun Kim and Kiwon Lee
Hemato 2025, 6(3), 33; https://doi.org/10.3390/hemato6030033 - 17 Sep 2025
Viewed by 439
Abstract
Runt-related transcription factor 1 (RUNX1) is a key transcription factor in hematopoiesis, producing multiple major isoforms, RUNX1A, B, and C, via alternative promoter usage and splicing. These isoforms have distinct roles in hematopoiesis and leukemogenesis. Imbalances in isoform expression, such as RUNX1A overexpression [...] Read more.
Runt-related transcription factor 1 (RUNX1) is a key transcription factor in hematopoiesis, producing multiple major isoforms, RUNX1A, B, and C, via alternative promoter usage and splicing. These isoforms have distinct roles in hematopoiesis and leukemogenesis. Imbalances in isoform expression, such as RUNX1A overexpression or RUNX1C loss, contribute to leukemogenesis in disorders. RUNX1 isoform expression is regulated by transcriptional, epigenetic, and splicing mechanisms and is further influenced by genome architecture. Pathogenic variants, including truncations and fusion proteins, disrupt isoform homeostasis and transcriptional control for the target genes in hematopoiesis. Recent therapeutic strategies aim to restore isoform balance rather than inhibit RUNX1 globally. Approaches include splice-switching oligonucleotides, CRISPR-based promoter modulation, and enhancer-targeted therapies. Understanding isoform-specific RUNX1 biology offers new opportunities for precision treatment of hematologic malignancies. Full article
(This article belongs to the Section Leukemias)
Show Figures

Figure 1

16 pages, 1390 KB  
Review
Potential Applications of RNase P Ribozyme Against Hepatitis B Virus
by Thomas Sorrell, Yujun Liu and Fenyong Liu
Molecules 2025, 30(18), 3725; https://doi.org/10.3390/molecules30183725 - 12 Sep 2025
Viewed by 524
Abstract
Nucleic acid-based gene-interfering molecules, such as antisense oligonucleotides, ribozymes, and small interfering RNA (siRNA), represent exciting gene-targeting agents for therapeutic applications. RNase P ribozymes derived from M1 RNA, the catalytic RNA subunit of RNase P in Escherichia coli, have shown great promise [...] Read more.
Nucleic acid-based gene-interfering molecules, such as antisense oligonucleotides, ribozymes, and small interfering RNA (siRNA), represent exciting gene-targeting agents for therapeutic applications. RNase P ribozymes derived from M1 RNA, the catalytic RNA subunit of RNase P in Escherichia coli, have shown great promise as a novel nucleic acid-based gene interference approach to modulate gene expression. When M1 RNA is covalently linked to a guide sequence (GS), it can be engineered into a sequence-specific endonuclease M1GS ribozyme, which can hydrolyze any mRNA that base-pairs with the guide sequence. M1GS activity enhancement has been achieved through an in vitro selection process that introduced mutations into M1 RNA. This selection process generated ribozyme variants with improved cleavage efficiency and substrate affinity. Hepatitis B virus (HBV) chronically infects more than 250 million people worldwide and is the leading cause of cirrhosis and liver cancer globally. Current FDA-approved drugs cannot completely eliminate HBV chronic infections. RNase P ribozymes have recently been demonstrated to effectively inhibit HBV gene expression and replication in human cells. This review summarizes the recent progress in using RNase P ribozymes to inhibit HBV infection and discusses prospects for developing engineered RNase P ribozymes for therapeutic applications against HBV infection and associated diseases. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

30 pages, 875 KB  
Review
MicroRNA Landscape in Hepatocellular Carcinoma: Metabolic Re-Wiring, Predictive and Diagnostic Biomarkers, and Emerging Therapeutic Targets
by Dimitris Liapopoulos, Panagiotis Sarantis, Theodora Biniari, Thaleia-Eleftheria Bousou, Eleni-Myrto Trifylli, Ioanna A. Anastasiou, Stefania Kokkali, Dimitra Korakaki, Spyridon Pantzios, Evangelos Koustas, Ioannis Elefsiniotis and Michalis V. Karamouzis
Biomedicines 2025, 13(9), 2243; https://doi.org/10.3390/biomedicines13092243 - 11 Sep 2025
Viewed by 1480
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality, in part due to late diagnosis and limited prognostic tools. In recent years, microRNAs, small, non-coding regulators of gene expression, have emerged as key modulators of tumor metabolism, microenvironmental crosstalk, and therapeutic response [...] Read more.
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality, in part due to late diagnosis and limited prognostic tools. In recent years, microRNAs, small, non-coding regulators of gene expression, have emerged as key modulators of tumor metabolism, microenvironmental crosstalk, and therapeutic response in HCC. This narrative review synthesizes evidence published from January 2000 through April 2025, focusing on four interrelated themes: (1) miRNA-driven metabolic rewiring; (2) circulating and exosomal miRNAs as diagnostic and (3) predictive biomarkers; (4) miRNA-based therapeutic strategies. We conducted a targeted PubMed search using terms related to HCC, miRNA biology, biomarkers, metabolism, and therapy, supplemented by manual reference mining. Preclinical and clinical studies reveal that loss of tumor-suppressor miRNAs and gain of oncomiRs orchestrate glycolysis, lipid and glutamine metabolism, and stromal-immune remodeling. Circulating miRNA signatures, including single- and multimarker panels, demonstrate diagnostic AUCs up to 0.99 for early-stage HCC and distinguish HCC from cirrhosis more accurately than alpha-fetoprotein. Predictively, miRNAs such as miR-21 and miR-486-3p correlate with sorafenib resistance, while tissue and exosomal miRNAs forecast recurrence and survival after curative therapy. Therapeutic manipulation, restoring tumor-suppressor miRNAs via mimics or AAV vectors and inhibiting oncomiRs with antagomirs or LNA oligonucleotides, yields potent anti-tumor effects in models, affecting cell cycle, apoptosis, angiogenesis, and immune activation. Despite technical and delivery challenges, early-phase trials validate target engagement and inform safety optimization. In this review, we highlight opportunities to integrate miRNA biomarkers into surveillance algorithms and combine miRNA therapeutics with existing modalities, charting a roadmap toward precision-guided management of HCC. Full article
Show Figures

Figure 1

25 pages, 1910 KB  
Review
The Diagnostic and Therapeutic Potential of Oligonucleotide Aptamers in Alzheimer’s Disease
by Georgios Katsipis, Eleni E. Tzekaki, Sophia Iasonidou and Anastasia A. Pantazaki
Cells 2025, 14(18), 1424; https://doi.org/10.3390/cells14181424 - 11 Sep 2025
Viewed by 897
Abstract
Alzheimer’s disease (AD) is the neurodegenerative condition with the outmost future challenges, with timely diagnosis and treatment being the most urgent. Discovery of more and more biomarkers is widely attempted; however, current diagnostic methods often lack sensitivity, specificity, and accessibility. Nucleotide aptamers—short, highly [...] Read more.
Alzheimer’s disease (AD) is the neurodegenerative condition with the outmost future challenges, with timely diagnosis and treatment being the most urgent. Discovery of more and more biomarkers is widely attempted; however, current diagnostic methods often lack sensitivity, specificity, and accessibility. Nucleotide aptamers—short, highly specific oligonucleotide or ligands—are now recognized as highly promising molecular agents for both measuring and targeting key AD biomarkers, with the most notorious being amyloid-beta (Aβ), tau protein, and disease-associated microRNAs (miRNAs). This review provides a comprehensive analysis of nucleotide aptamers related to AD, detailing their mechanisms of selection, recent advances in biosensing applications, and therapeutic potential. Aptamers, targeting the most significant biomarkers of AD, are mainly discussed, as well as ones interacting with novel, promising biomarkers, with a special aim on miRNAs. Additionally, aptamers are compared with conventional antibody-based approaches, highlighting their advantages in terms of stability, cost-effectiveness, and ease of modification. By elucidating the role of aptamers in AD diagnosis and treatment, this review underscores their promise as next-generation tools for precision medicine and neurodegenerative disease management. Full article
Show Figures

Graphical abstract

23 pages, 1852 KB  
Review
Contemporary and Emerging Therapeutics in Cardiovascular-Kidney-Metabolic (CKM) Syndrome: In Memory of Professor Akira Endo
by Inderjeet Singh Bharaj, Ajit Brar, Aayushi Kacheria, Karen Purewal, Austin Simister, Umabalan Thirupathy, Palak Gupta, Jasraj Kahlon, Juzer Munaim, Ei Ei Thwe, Samer Ibrahim, Valerie Martinez Vargas and Krishnaswami Vijayaraghavan
Biomedicines 2025, 13(9), 2192; https://doi.org/10.3390/biomedicines13092192 - 8 Sep 2025
Viewed by 1268
Abstract
Cardiovascular-kidney-metabolic (CKM) syndrome is a multifaceted, systemic disorder characterized by the interplay of cardiovascular disease (CVD), chronic kidney disease (CKD), type 2 diabetes mellitus (T2DM), and obesity. This review synthesizes current and emerging therapeutic strategies aimed at addressing the shared pathophysiologic mechanisms driving [...] Read more.
Cardiovascular-kidney-metabolic (CKM) syndrome is a multifaceted, systemic disorder characterized by the interplay of cardiovascular disease (CVD), chronic kidney disease (CKD), type 2 diabetes mellitus (T2DM), and obesity. This review synthesizes current and emerging therapeutic strategies aimed at addressing the shared pathophysiologic mechanisms driving CKM progression, such as insulin resistance, inflammation, oxidative stress, and neurohormonal activation. Established pharmacotherapies that include sodium-glucose cotransporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1 RAs), and nonsteroidal mineralocorticoid receptor antagonists like finerenone have demonstrated robust efficacy in reducing cardiovascular events, slowing renal decline, and improving metabolic outcomes. Additionally, novel agents targeting lipoprotein(a), interleukin-6, and hepatic fat accumulation are expanding the therapeutic landscape. RNA-based therapies, including antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs), are designed to modulate lipoprotein(a) and PCSK9 expression. Artificial intelligence (AI) is also emerging as a transformative tool for personalized CKM management, enhancing risk prediction and clinical decision-making. The review highlights the relevance of metabolic dysfunction-associated steatotic liver disease (MASLD) as a CKM modifier and discusses the approval of resmetirom, a selective thyroid hormone receptor β agonist, for noncirrhotic MASH. By integrating evidence from clinical trials, mechanistic studies, and emerging technologies, this review provides a comprehensive resource for clinicians and researchers navigating the evolving field of CKM syndrome. Full article
Show Figures

Figure 1

30 pages, 1334 KB  
Review
Intrathecal Therapies for Neurodegenerative Diseases: A Review of Current Approaches and the Urgent Need for Advanced Delivery Systems
by Thomas Gabriel Schreiner, Manuel Menéndez-González, Oliver Daniel Schreiner and Romeo Cristian Ciobanu
Biomedicines 2025, 13(9), 2167; https://doi.org/10.3390/biomedicines13092167 - 5 Sep 2025
Viewed by 1585
Abstract
Neurodegenerative diseases (NDDs) pose an immense global health burden, and developing effective treatments is hindered by the blood–brain barrier (BBB). Intrathecal (IT) administration of therapeutics directly into the cerebrospinal fluid (CSF) bypasses the BBB, offering a promising avenue for antisense oligonucleotides (ASOs), gene [...] Read more.
Neurodegenerative diseases (NDDs) pose an immense global health burden, and developing effective treatments is hindered by the blood–brain barrier (BBB). Intrathecal (IT) administration of therapeutics directly into the cerebrospinal fluid (CSF) bypasses the BBB, offering a promising avenue for antisense oligonucleotides (ASOs), gene therapies, antibodies, and stem cells for these disorders. This review synthesizes the current landscape of IT therapies for Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and Amyotrophic Lateral Sclerosis based on the current literature and ClinicalTrials.gov. We highlight key trials and approaches, including the success of ASOs in spinal muscular atrophy and recent progress in other NDDs. However, the efficacy of these novel treatments is often constrained by the limitations of first-generation IT delivery systems, which struggle with uneven distribution, systemic leakage, and the demands of modern biologics. Drawing from recent analyses, we underscore the critical shortcomings of current devices and point out the innovations needed in shaping next-generation systems: subcutaneous access ports, CSF flow platforms, AI-driven adaptive dosing, nanoporous membranes, intrathecal pseudodelivery, and hydrogel scaffolds. We conclude by emphasizing the urgent need for these advanced IT drug delivery systems, alongside rigorous comparative assessments, cost–benefit analyses, and clear regulatory pathways to fully realize the potential of emerging CNS therapies and transform NDD management. Full article
Show Figures

Figure 1

18 pages, 841 KB  
Review
Naturally Occurring PCSK9 Inhibitors: An Updated Review
by Jungmoo Huh and Hyunwoo Kim
Molecules 2025, 30(17), 3582; https://doi.org/10.3390/molecules30173582 - 2 Sep 2025
Viewed by 1944
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key modulator of low-density lipoprotein cholesterol (LDL-C) levels and emerged as an attractive therapeutic target for the treatment of hypercholesterolemia and cardiovascular diseases. Although statins and ezetimibe have been widely used to manage these disorders, [...] Read more.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key modulator of low-density lipoprotein cholesterol (LDL-C) levels and emerged as an attractive therapeutic target for the treatment of hypercholesterolemia and cardiovascular diseases. Although statins and ezetimibe have been widely used to manage these disorders, concerns regarding side effects and high costs have driven ongoing efforts to search for alternative therapeutic candidates. To date, several classes of PCSK9 inhibitors, including monoclonal antibodies, oligonucleotides, proteins, and peptides, have been approved or are under clinical trials. In this review, we summarize 57 newly identified compounds derived from natural products showing inhibitory effects against PCSK9 reported between 2020 and April 2025. These compounds were isolated from 18 plants species and belong to various structural classes, including isoprenoids, flavonoids, alkaloids, and phenolic derivatives. Full article
Show Figures

Graphical abstract

40 pages, 470 KB  
Review
Biologics as Therapeutical Agents Under Perspective Clinical Studies for Alzheimer’s Disease
by Huan Li, Xinai Shen, Beiyu Zhang and Zheying Zhu
Molecules 2025, 30(17), 3479; https://doi.org/10.3390/molecules30173479 - 24 Aug 2025
Viewed by 1551
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterised by cognitive decline, synaptic loss, and multifaceted pathology involving amyloid-β (Aβ) aggregation, tau hyperphosphorylation, neuroinflammation, and impaired proteostasis. In recent years, biologic therapies, such as monoclonal antibodies, vaccines, antisense oligonucleotides (ASOs), and gene therapies, [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterised by cognitive decline, synaptic loss, and multifaceted pathology involving amyloid-β (Aβ) aggregation, tau hyperphosphorylation, neuroinflammation, and impaired proteostasis. In recent years, biologic therapies, such as monoclonal antibodies, vaccines, antisense oligonucleotides (ASOs), and gene therapies, have gained prominence as promising disease-modifying strategies. In this review, we provide a comprehensive synthesis of current biologic approaches under clinical evaluation for AD. Drawing on data curated from ClinicalTrials.gov (as of 2025), we systematically summarise the molecular targets, therapeutic modalities, mechanisms of action, trial phases, and sponsors of over 60 biologic agents. These include Aβ-directed antibodies targeting distinct conformers such as protofibrils, pyroglutamate-modified species, and soluble oligomers; tau-targeted immunotherapies and RNA-based interventions; and emerging platforms focused on neuroimmune modulation, peptide hormones, and microbiota-based strategies. Gene and RNA therapeutics, particularly ASOs and small interfering RNAs (siRNAs) delivered intrathecally or via lipid nanoparticles, are also reviewed for their potential to modulate intracellular targets with high specificity. We also analyse the historical landscape of biologic candidates that failed to reach approval, discussing key reasons for trial discontinuation, including lack of clinical efficacy, safety concerns (e.g., amyloid-related imaging abnormalities), or inadequate biomarker responses. These cases offer crucial insights for refining future drug design. Looking ahead, we highlight major challenges and evolving perspectives in AD biologic therapy: expanding therapeutic targets beyond Aβ and tau, overcoming delivery barriers to the brain, designing prevention-oriented and genetically stratified trials, and navigating regulatory and ethical considerations. Together, these efforts signal a paradigm shift in AD drug development, from symptomatic treatment to mechanism-based precision biologics. By integrating real-time clinical trial data with mechanistic insight, this review aims to inform both translational research and therapeutic innovation in AD. Full article
(This article belongs to the Special Issue Therapeutic Agents for Neurodegenerative Disorders—2nd Edition)
Show Figures

Graphical abstract

12 pages, 1833 KB  
Article
Targeting Bacterial Adenylate Kinase mRNA with a Chimeric Antisense Oligonucleotide for Rational Antibacterial Drug Development
by Lozena A. Otcheva, Martina Traykovska and Robert Penchovsky
Molecules 2025, 30(16), 3425; https://doi.org/10.3390/molecules30163425 - 20 Aug 2025
Viewed by 740
Abstract
Multi-drug resistance in human bacterial pathogens has become a significant challenge for global healthcare this century, mainly due to the widespread misuse of antibiotics worldwide. As a result, millions of people have been affected by multi-drug-resistant bacterial infections. The antibiotic development pipelines cannot [...] Read more.
Multi-drug resistance in human bacterial pathogens has become a significant challenge for global healthcare this century, mainly due to the widespread misuse of antibiotics worldwide. As a result, millions of people have been affected by multi-drug-resistant bacterial infections. The antibiotic development pipelines cannot cope with the need to produce new antibiotics. Therefore, more productive antibiotic development methods must be invented. This paper presents an entirely rational approach for antibacterial drug discovery based on chimeric antisense oligonucleotide targeting (ASO) of the adenylate kinase mRNA in Staphylococcus aureus. The ASO is delivered into the bacteria via the cell-penetrating oligopeptide pVEC. The pVEC-ASO1 exhibits a bactericidal effect against Staphylococcus aureus, with a 50% minimal inhibitory concentration of 500 nM. The pVEC-ASO1 has a 98% survivability rate at the same concentration on cell lines. These findings strongly suggest that this chimeric ASO is a promising antibacterial drug candidate. Moreover, this is the fifth bacterial mRNA we have successfully targeted with pVEC-ASOs, providing further evidence for the efficiency of our approach. In contrast to the previous four targets, riboswitches residing in the 5′-untranslated region, we target the coding part of mRNA found in bacteria. That suggests that our approach may have much broader therapeutic applications. Full article
(This article belongs to the Special Issue Chemical Design and Synthesis of Antimicrobial Drugs)
Show Figures

Graphical abstract

25 pages, 365 KB  
Review
Nanomaterials in COPD: Emerging Therapeutic and Diagnostic Frontiers with a Focus on Metal–Organic Frameworks
by Antonio Tiralosi, Manuela Cambria, Mariachiara Campanella, Vincenzo Paratore, Cristina Russo, Lucia Malaguarnera, Maria Stella Valle and Maria Teresa Cambria
Int. J. Mol. Sci. 2025, 26(16), 8025; https://doi.org/10.3390/ijms26168025 - 19 Aug 2025
Viewed by 781
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide. Although conventional therapies are effective in controlling symptoms, they remain limited in altering the course of the disease and significantly reducing the chronic inflammation and oxidative stress [...] Read more.
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide. Although conventional therapies are effective in controlling symptoms, they remain limited in altering the course of the disease and significantly reducing the chronic inflammation and oxidative stress underlying it. In this context, nanoparticles and nanomaterials are emerging as innovative tools capable of overcoming traditional pharmacological barriers due to their ability to deliver therapeutic oligonucleotides, antioxidants, and drugs in a targeted manner, modulate immune responses, and improve the bioavailability of active compounds. In particular, metal–organic frameworks (MOFs) stand out as ideal candidates for inhalable drug delivery in COPD, owing to their permanent crystalline porous structure, high specific surface area, and versatile chemical functionalization. This review provides the most recent preclinical evidence on the use of different nanoparticles in COPD, with a focus on the therapeutic and diagnostic potential of MOFs. It discusses their biocompatibility, drug loading strategies, and controlled release mechanisms and explores future perspectives for clinical translation. Full article
(This article belongs to the Section Molecular Nanoscience)
Back to TopTop