Intrathecal Therapies for Neurodegenerative Diseases: A Review of Current Approaches and the Urgent Need for Advanced Delivery Systems
Abstract
1. Introduction
2. Intrathecal Route: Principles and First-Generation Devices
3. Intrathecal Therapies in NDDs: A Clinical Trial Landscape
3.1. Alzheimer’s Disease
3.1.1. Asos in Alzheimer’s Disease
3.1.2. Monoclonal Antibodies in Alzheimer’s Disease
3.1.3. Gene Therapy in Alzheimer’s Disease
- -
- Nonuniform Vector Distribution: Even with intrathecal delivery, complete cortical and hippocampal coverage remains difficult, especially in older patients with altered CSF dynamics or brain atrophy.
- -
- Preexisting Immunity to AAV Serotypes: Up to 60% of the population harbors neutralizing antibodies to common AAVs, which may reduce efficacy or pose safety risks.
- -
- Dose Escalation Risks: High-dose IT vector administration, as seen in spinal muscular atrophy (SMA) gene therapy, carries risks of aseptic meningitis, liver toxicity, and sensory neuronopathy [65].
3.2. Parkinson’s Disease
3.2.1. Gene Therapy in Parkinson’s Disease
3.2.2. Neurotrofic Factors in Parkinson’s Disease
3.3. Huntington’s Disease
3.4. Amyotrophic Lateral Sclerosis
3.5. Spinal Muscular Atrophy (SMA)—A Success Story and Path Forward
4. Challenges in Intrathecal Drug Delivery and Potential Alternatives
5. Next-Generation Drug Delivery Systems for Intrathecal Therapies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAV | Adeno-associated viruses |
AD | Alzheimer’s disease |
ALS | Amyotrophic lateral sclerosis |
ARIA | Amyloid-related imaging abnormalities |
Aβ | Amyloid beta |
CM | Cisterna magna |
CSF | Cerebrospinal fluid |
HD | Huntington disease |
IT | Intrathecal |
NDD | Neurodegenerative disorder |
PD | Parkinson’s disease |
siRNA | Small interfering RNA |
References
- Van Schependom, J.; D’haeseleer, M. Advances in Neurodegenerative Diseases. J. Clin. Med. 2023, 12, 1709. [Google Scholar] [CrossRef] [PubMed]
- Safiri, S.; Jolfayi, A.G.; Fazlollahi, A.; Morsali, S.; Sarkesh, A.; Sorkhabi, A.D.; Golabi, B.; Aletaha, R.; Asghari, K.M.; Hamidi, S.; et al. Alzheimer’s disease: A comprehensive review of epidemiology, risk factors, symptoms diagnosis, management, caregiving, advanced treatments and associated challenges. Front. Med. 2024, 11, 1474043. [Google Scholar] [CrossRef] [PubMed]
- Kamatham, P.T.; Shukla, R.; Khatri, D.K.; Vora, L.K. Pathogenesis, diagnostics, and therapeutics for Alzheimer’s disease: Breaking the memory barrier. Ageing Res. Rev. 2024, 101, 102481. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.D.; Yi, L.X.; Wang, D.Q.; Lim, T.M.; Tan, E.K. Role of dopamine in the pathophysiology of Parkinson’s disease. Transl. Neurodegener. 2023, 12, 44. [Google Scholar] [CrossRef]
- Váradi, C. Clinical Features of Parkinson’s Disease: The Evolution of Critical Symptoms. Biology 2020, 9, 103. [Google Scholar] [CrossRef]
- Dickson, D.W. Neuropathology of Parkinson disease. Parkinsonism. Relat. Disord. 2018, 46, S30–S33. [Google Scholar] [CrossRef]
- Stoker, T.B.; Mason, S.L.; Greenland, J.C.; Holden, S.T.; Santini, H.; Barker, R.A. Huntington’s disease: Diagnosis and management. Pract. Neurol. 2021, 22, 32–41. [Google Scholar] [CrossRef]
- McColgan, P.; Tabrizi, S.J. Huntington’s disease: A clinical review. Eur. J. Neurol. 2017, 25, 24–34. [Google Scholar] [CrossRef]
- Segura, T.; Medrano, I.H.; Collazo, S.; Maté, C.; Sguera, C.; Del Rio-Bermudez, C.; Casero, H.; Salcedo, I.; García-García, J.; Alcahut-Rodríguez, C.; et al. Symptoms timeline and outcomes in amyotrophic lateral sclerosis using artificial intelligence. Sci. Rep. 2023, 13, 702. [Google Scholar] [CrossRef]
- Wang, H.; Guan, L.; Deng, M. Recent progress of the genetics of amyotrophic lateral sclerosis and challenges of gene therapy. Front. Neurosci. 2023, 17, 1170996. [Google Scholar] [CrossRef]
- Wareham, L.K.; Liddelow, S.A.; Temple, S.; Benowitz, L.I.; Di Polo, A.; Wellington, C.; Goldberg, J.L.; He, Z.; Duan, X.; Bu, G.; et al. Solving neurodegeneration: Common mechanisms and strategies for new treatments. Mol. Neurodegener. 2022, 17, 23. [Google Scholar] [CrossRef]
- Kadry, H.; Noorani, B.; Cucullo, L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020, 17, 69. [Google Scholar] [CrossRef]
- De Andres, J.; Hayek, S.; Perruchoud, C.; Lawrence, M.M.; Reina, M.A.; De Andres-Serrano, C.; Rubio-Haro, R.; Hunt, M.; Yaksh, T.L. Intrathecal Drug Delivery: Advances and Applications in the Management of Chronic Pain Patient. Front. Pain Res. 2022, 3, 900566. [Google Scholar] [CrossRef]
- Wichmann, T.O.; Damkier, H.H.; Pedersen, M. A Brief Overview of the Cerebrospinal Fluid System and Its Implications for Brain and Spinal Cord Diseases. Front. Hum. Neurosci. 2022, 15, 737217. [Google Scholar] [CrossRef] [PubMed]
- Sakka, L.; Coll, G.; Chazal, J. Anatomy and physiology of cerebrospinal fluid. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2011, 128, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Gan, L.; Ren, L.; Lin, Y.; Ma, C.; Lin, X. Factors influencing the blood-brain barrier permeability. Brain Res. 2022, 1788, 147937. [Google Scholar] [CrossRef]
- Prager, J.; Deer, T.; Levy, R.; Bruel, B.; Buchser, E.; Caraway, D.; Cousins, M.; Jacobs, M.; McGlothlen, G.; Rauck, R.; et al. Best Practices for Intrathecal Drug Delivery for Pain. Neuromodul. Technol. Neural Interface 2014, 17, 354–372. [Google Scholar] [CrossRef]
- Hablitz, L.M.; Plá, V.; Giannetto, M.; Vinitsky, H.S.; Stæger, F.F.; Metcalfe, T.; Nguyen, R.; Benrais, A.; Nedergaard, M. Circadian control of brain glymphatic and lymphatic fluid flow. Nat. Commun. 2020, 11, 4411. [Google Scholar] [CrossRef]
- Hornkjøl, M.; Valnes, L.M.; Ringstad, G.; Rognes, M.E.; Eide, P.-K.; Mardal, K.-A.; Vinje, V. CSF circulation and dispersion yield rapid clearance from intracranial compartments. Front. Bioeng. Biotechnol. 2022, 10, 932469. [Google Scholar] [CrossRef]
- Stielow, M.; Witczyńska, A.; Kubryń, N.; Fijałkowski, Ł.; Nowaczyk, J.; Nowaczyk, A. The Bioavailability of Drugs—The Current State of Knowledge. Molecules 2023, 28, 8038. [Google Scholar] [CrossRef]
- Yamada, S.; Kelly, E. Cerebrospinal Fluid Dynamics and the Pathophysiology of Hydrocephalus: New Concepts. Semin. Ultrasound, CT MRI 2016, 37, 84–91. [Google Scholar] [CrossRef]
- Burman, R.; Alperin, N. CSF-to-blood toxins clearance is modulated by breathing through cranio–spinal CSF oscillation. J. Sleep Res. 2023, 33, e14029. [Google Scholar] [CrossRef]
- Li, Y.; Rusinek, H.; Butler, T.; Glodzik, L.; Pirraglia, E.; Babich, J.; Mozley, P.D.; Nehmeh, S.; Pahlajani, S.; Wang, X.; et al. Decreased CSF clearance and increased brain amyloid in Alzheimer’s disease. Fluids Barriers CNS 2022, 19, 21. [Google Scholar] [CrossRef]
- Hay, R.; Gupta, A. Continuous spinal anaesthesia. BJA Educ. 2022, 22, 295–297. [Google Scholar] [CrossRef] [PubMed]
- Rawal, N.; Tandon, B. Epidural and intrathecal morphine in intensive care units. Intensiv. Care Med. 1985, 11, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Dupoiron, D.; Autier, L.; Lebrec, N.; Seegers, V.; Folliard, C.; Patsouris, A.; Campone, M.; Augereau, P. Intrathecal Catheter for Chemotherapy in Leptomeningeal Carcinomatosis From HER2-Negative Metastatic Breast Cancer. J. Breast Cancer 2023, 26, 572–581. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Wu, L.; Qu, R.; Jiang, T.; Bai, J.; Sheng, L.; Feng, P.; Sun, J. History of development of the life-saving drug “Nusinersen” in spinal muscular atrophy. Front. Cell. Neurosci. 2022, 16, 942976. [Google Scholar] [CrossRef]
- Blair, H.A. Tofersen: First Approval. Drugs 2023, 83, 1039–1043. [Google Scholar] [CrossRef]
- Ericson, T.; Singla, P.; Kohan, L. Intrathecal Pumps. Phys. Med. Rehabil. Clin. N. Am. 2022, 33, 409–424. [Google Scholar] [CrossRef]
- Jane, L.A.; Wray, A.A. Lumbar Puncture. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557553/ (accessed on 21 April 2025).
- Hudgins, P.; Fountain, A.; Chapman, P.; Shah, L. Difficult Lumbar Puncture: Pitfalls and Tips from the Trenches. Am. J. Neuroradiol. 2017, 38, 1276–1283. [Google Scholar] [CrossRef]
- Burla, G.K.R.; Shrestha, D.; Bowen, M.; Horvath, J.D.; Martin, B.A. Evaluating the effect of injection protocols on intrathecal solute dispersion in non-human primates: An in vitro study using a cynomolgus cerebrospinal fluid system. Fluids Barriers CNS 2024, 21, 61. [Google Scholar] [CrossRef]
- Boster, A.L.; Adair, R.L.; Gooch, J.L.; Nelson, M.E.S.; Toomer, A.; Urquidez, J.; Saulino, M. Best Practices for Intrathecal Baclofen Therapy: Dosing and Long-Term Management. Neuromodulation Technol. Neural Interface 2016, 19, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Singh, E.; Gurses, M.E.; Costello, M.C.; Berke, C.; Lu, V.M.; Daggubati, L.; Komotar, R.J.; Ivan, M.E.; Shah, A.H. Intrathecal chemotherapy for leptomeningeal disease in high-grade gliomas: A systematic review. J. Neurooncol. 2024, 167, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Binyamin, Y.; Azem, K.; Heesen, M.; Gruzman, I.; Frenkel, A.; Fein, S.; Eidelman, L.A.; Garren, A.; Frank, D.; Orbach-Zinger, S. The effect of placement and management of intrathecal catheters following accidental dural puncture on the incidence of postdural puncture headache and severity: A retrospective real-world study. Anaesthesia 2023, 78, 1256–1261. [Google Scholar] [CrossRef]
- Knight, K.H.; Brand, F.M.; Mchaourab, A.S.; Veneziano, G. Implantable intrathecal pumps for chronic pain: Highlights and updates. Croat. Med. J. 2007, 48, 22–34. [Google Scholar]
- Bolash, R.; Mekhail, N. Intrathecal Pain Pumps. Neurosurg. Clin. N. Am. 2014, 25, 735–742. [Google Scholar] [CrossRef]
- Delhaas, E.; Huygen, F. Complications associated with intrathecal drug delivery systems. BJA Educ. 2020, 20, 51–57. [Google Scholar] [CrossRef]
- Passeri, E.; Elkhoury, K.; Morsink, M.; Broersen, K.; Linder, M.; Tamayol, A.; Malaplate, C.; Yen, F.T.; Arab-Tehrany, E. Alzheimer’s Disease: Treatment Strategies and Their Limitations. Int. J. Mol. Sci. 2022, 23, 13954. [Google Scholar] [CrossRef]
- Rawat, P.; Sehar, U.; Bisht, J.; Selman, A.; Culberson, J.; Reddy, P.H. Phosphorylated Tau in Alzheimer’s Disease and Other Tauopathies. Int. J. Mol. Sci. 2022, 23, 12841. [Google Scholar] [CrossRef]
- Edwards, A.L.; Collins, J.A.; Junge, C.; Kordasiewicz, H.; Mignon, L.; Wu, S.; Li, Y.; Lin, L.; DuBois, J.; Hutchison, R.M.; et al. Exploratory Tau Biomarker Results from a Multiple Ascending-Dose Study of BIIB080 in Alzheimer Disease. JAMA Neurol. 2023, 80, 1344–1352. [Google Scholar] [CrossRef]
- Mummery, C.J.; Börjesson-Hanson, A.; Blackburn, D.J.; Vijverberg, E.G.B.; De Deyn, P.P.; Ducharme, S.; Jonsson, M.; Schneider, A.; Rinne, J.O.; Ludolph, A.C.; et al. Tau-targeting antisense oligonucleotide MAPTRx in mild Alzheimer’s disease: A phase 1b, randomized, placebo-controlled trial. Nat. Med. 2023, 29, 1437–1447. [Google Scholar] [CrossRef]
- Lozupone, M.; Dibello, V.; Sardone, R.; Castellana, F.; Zupo, R.; Lampignano, L.; Bortone, I.; Stallone, R.; Altamura, M.; Bellomo, A.; et al. The development of peptide- and oligonucleotide-based drugs to prevent the formation of abnormal tau in tauopathies. Expert Opin. Drug Discov. 2023, 18, 515–526. [Google Scholar] [CrossRef]
- Hung, C.; Fertan, E.; Livesey, F.J.; Klenerman, D.; Patani, R. APP antisense oligonucleotides reduce amyloid-β aggregation and rescue endolysosomal dysfunction in Alzheimer’s disease. Brain 2024, 147, 2325–2333. [Google Scholar] [CrossRef] [PubMed]
- Klinkovskij, A.; Shepelev, M.; Isaakyan, Y.; Aniskin, D.; Ulasov, I. Advances of Genome Editing with CRISPR/Cas9 in Neurodegeneration: The Right Path towards Therapy. Biomedicines 2023, 11, 3333. [Google Scholar] [CrossRef] [PubMed]
- Baryakova, T.H.; Pogostin, B.H.; Langer, R.; McHugh, K.J. Overcoming barriers to patient adherence: The case for developing innovative drug delivery systems. Nat. Rev. Drug Discov. 2023, 22, 387–409. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-H.; Kim, S.; Nam, Y.; Park, Y.H.; Shin, S.M.; Moon, M. Second-generation anti-amyloid monoclonal antibodies for Alzheimer’s disease: Current landscape and future perspectives. Transl. Neurodegener. 2025, 14, 6. [Google Scholar] [CrossRef]
- Pardridge, W.M. Blood-Brain Barrier and Delivery of Protein and Gene Therapeutics to Brain. Front. Aging Neurosci. 2020, 11, 373. [Google Scholar] [CrossRef]
- Hampel, H.; Elhage, A.; Cho, M.; Apostolova, L.G.; Nicoll, J.A.R.; Atri, A. Amyloid-related imaging abnormalities (ARIA): Radiological, biological and clinical characteristics. Brain 2023, 146, 4414–4424. [Google Scholar] [CrossRef]
- Cummings, J.L. Maximizing the benefit and managing the risk of anti-amyloid monoclonal antibody therapy for Alzheimer’s disease: Strategies and research directions. Neurotherapeutics 2025, 22, e00570. [Google Scholar] [CrossRef]
- Ataei, B.; Hokmabadi, M.; Asadi, S.; Asadifard, E.; Zarch, S.M.A.; Najafi, S.; Bagheri-Mohammadi, S. A review of the advances, insights, and prospects of gene therapy for Alzheimer’s disease: A novel target for therapeutic medicine. Gene 2024, 912, 148368. [Google Scholar] [CrossRef]
- Rodrigues, B.d.S.; Kanekiyo, T.; Singh, J. Nerve Growth Factor Gene Delivery across the Blood–Brain Barrier to Reduce Beta Amyloid Accumulation in AD Mice. Mol. Pharm. 2020, 17, 2054–2063. [Google Scholar] [CrossRef]
- Arora, S.; Kanekiyo, T.; Singh, J. Functionalized nanoparticles for brain targeted BDNF gene therapy to rescue Alzheimer’s disease pathology in transgenic mouse model. Int. J. Biol. Macromol. 2022, 208, 901–911. [Google Scholar] [CrossRef]
- Wang, D.; Tai, P.W.L.; Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 2019, 18, 358–378. [Google Scholar] [CrossRef] [PubMed]
- Issa, S.S.; Shaimardanova, A.A.; Solovyeva, V.V.; Rizvanov, A.A. Various AAV Serotypes and Their Applications in Gene Therapy: An Overview. Cells 2023, 12, 785. [Google Scholar] [CrossRef] [PubMed]
- Pattali, R.; Mou, Y.; Li, X.-J. AAV9 Vector: A Novel modality in gene therapy for spinal muscular atrophy. Gene Ther. 2019, 26, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, A.M.; Rafi, M.A.; Bagel, J.H.; Brisson, B.K.; Marshall, M.S.; Salvador, J.P.; Jiang, X.; Swain, G.P.; Prociuk, M.L.; Odonnell, P.A.; et al. AAVrh10 Gene Therapy Ameliorates Central and Peripheral Nervous System Disease in Canine Globoid Cell Leukodystrophy (Krabbe Disease). Hum. Gene Ther. 2018, 29, 785–801. [Google Scholar] [CrossRef]
- Wang, L.; Ma, L.; Gao, Z.; Wang, Y.; Qiu, J. Significance of gene therapy in neurodegenerative diseases. Front. Neurosci. 2025, 19, 1515255. [Google Scholar] [CrossRef]
- Amadoro, G.; Latina, V.; Balzamino, B.O.; Squitti, R.; Varano, M.; Calissano, P.; Micera, A. Nerve Growth Factor-Based Therapy in Alzheimer’s Disease and Age-Related Macular Degeneration. Front. Neurosci. 2021, 15, 735928. [Google Scholar] [CrossRef]
- Saxena, S.K.; Ansari, S.; Maurya, V.K.; Kumar, S.; Sharma, D.; Malhotra, H.S.; Tiwari, S.; Srivastava, C.; Paweska, J.T.; Abdel-Moneim, A.S.; et al. Neprilysin-Mediated Amyloid Beta Clearance and Its Therapeutic Implications in Neurodegenerative Disorders. ACS Pharmacol. Transl. Sci. 2024, 7, 3645–3657. [Google Scholar] [CrossRef]
- Marino, M.; Holt, M.G. AAV Vector-Mediated Antibody Delivery (A-MAD) in the Central Nervous System. Front. Neurol. 2022, 13, 870799. [Google Scholar] [CrossRef]
- Shi, H.-Z.; Wang, Y.-J.; Wang, Y.-X.; Xu, L.-F.; Pan, W.; Shi, L.; Wang, J. The potential benefits of PGC-1α in treating Alzheimer’s disease are dependent on the integrity of the LLKYL L3 motif: Effect of regulating mitochondrial axonal transportation. Exp. Gerontol. 2024, 194, 112514. [Google Scholar] [CrossRef]
- Shao, C.Y.; Mirra, S.S.; Sait, H.B.R.; Sacktor, T.C.; Sigurdsson, E.M. Postsynaptic degeneration as revealed by PSD-95 reduction occurs after advanced Aβ and tau pathology in transgenic mouse models of Alzheimer’s disease. Acta Neuropathol. 2011, 122, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Ewaisha, R.; Anderson, K.S. Immunogenicity of CRISPR therapeutics—Critical considerations for clinical translation. Front. Bioeng. Biotechnol. 2023, 11, 1138596. [Google Scholar] [CrossRef] [PubMed]
- García-González, N.; Gonçalves-Sánchez, J.; Gómez-Nieto, R.; Gonçalves-Estella, J.M.; López, D.E. Advances and Challenges in Gene Therapy for Neurodegenerative Diseases: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 12485. [Google Scholar] [CrossRef] [PubMed]
- Poewe, W.; Seppi, K.; Marini, K.; Mahlknecht, P. New hopes for disease modification in Parkinson’s Disease. Neuropharmacology 2020, 171, 108085. [Google Scholar] [CrossRef]
- Freitas, M.E.; Hess, C.W.; Fox, S.H. Motor Complications of Dopaminergic Medications in Parkinson’s Disease. Semin. Neurol. 2017, 37, 147–157. [Google Scholar] [CrossRef]
- Huh, Y.E.; Usnich, T.; Scherzer, C.R.; Klein, C.; Chung, S.J. GBA1 Variants and Parkinson’s Disease: Paving the Way for Targeted Therapy. J. Mov. Disord. 2023, 16, 261–278. [Google Scholar] [CrossRef]
- Vieira, S.R.L.; Schapira, A.H.V. Glucocerebrosidase mutations and Parkinson disease. J. Neural Transm. 2022, 129, 1105–1117. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, H.; Tang, B.; Guo, J. Clinical, mechanistic, biomarker, and therapeutic advances in GBA1-associated Parkinson’s disease. Transl. Neurodegener. 2024, 13, 48. [Google Scholar] [CrossRef]
- Fregno, I.; Pérez-Carmona, N.; Rudinskiy, M.; Soldà, T.; Bergmann, T.J.; Ruano, A.; Delgado, A.; Cubero, E.; Bellotto, M.; García-Collazo, A.M.; et al. Allosteric Modulation of GCase Enhances Lysosomal Activity and Reduces ER Stress in GCase-Related Disorders. Int. J. Mol. Sci. 2025, 26, 4392. [Google Scholar] [CrossRef]
- Abeliovich, A.; Hefti, F.; Sevigny, J.; Björklund, A.; Bloem, B.R.; Brundin, P.; Federoff, H. Gene Therapy for Parkinson’s Disease Associated with GBA1 Mutations. J. Park. Dis. 2021, 11, S183–S188. [Google Scholar] [CrossRef]
- Patel, R.V.; Nanda, P.; Richardson, R.M. Neurosurgical gene therapy for central nervous system diseases. Neurotherapeutics 2024, 21, e00434. [Google Scholar] [CrossRef]
- Cavallieri, F.; Cury, R.G.; Guimarães, T.; Fioravanti, V.; Grisanti, S.; Rossi, J.; Monfrini, E.; Zedde, M.; Di Fonzo, A.; Valzania, F.; et al. Recent Advances in the Treatment of Genetic Forms of Parkinson’s Disease: Hype or Hope? Cells 2023, 12, 764. [Google Scholar] [CrossRef]
- Menozzi, E.; Toffoli, M.; Schapira, A.H. Targeting the GBA1 pathway to slow Parkinson disease: Insights into clinical aspects, pathogenic mechanisms and new therapeutic avenues. Pharmacol. Ther. 2023, 246, 108419. [Google Scholar] [CrossRef]
- Mendell, J.R.; Connolly, A.M.; Lehman, K.J.; Griffin, D.A.; Khan, S.Z.; Dharia, S.D.; Quintana-Gallardo, L.; Rodino-Klapac, L.R. Testing preexisting antibodies prior to AAV gene transfer therapy: Rationale, lessons and future considerations. Mol. Ther.–Methods Clin. Dev. 2022, 25, 74–83. [Google Scholar] [CrossRef]
- El Ouaamari, Y.; Bos, J.V.D.; Willekens, B.; Cools, N.; Wens, I. Neurotrophic Factors as Regenerative Therapy for Neurodegenerative Diseases: Current Status, Challenges and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 3866. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Mukhida, K.; Mendez, I. GDNF therapy for Parkinson’s disease. Expert Rev. Neurother. 2008, 8, 1125–1139. [Google Scholar] [CrossRef] [PubMed]
- Barker, R.A.; Saarma, M.; Svendsen, C.N.; Morgan, C.; Whone, A.; Fiandaca, M.S.; Luz, M.; Bankiewicz, K.S.; Fiske, B.; Isaacs, L.; et al. Neurotrophic factors for Parkinson’s disease: Current status, progress, and remaining questions. Conclusions from a 2023 workshop. J. Park. Dis. 2024, 14, 1659–1676. [Google Scholar] [CrossRef]
- Van Laar, A.D.; Christine, C.W.; Phielipp, N.; Larson, P.S.; Elder, J.B.; Merola, A.; Sebastian, W.S.; Fiandaca, M.S.; Kells, A.P.; Wisniewski, M.E.; et al. Intraputaminal Delivery of Adeno-Associated Virus Serotype 2–Glial Cell Line–Derived Neurotrophic Factor in Mild or Moderate Parkinson’s Disease. Mov. Disord. 2025, 40, 1297–1306. [Google Scholar] [CrossRef]
- Pardridge, W.M. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022, 14, 1283. [Google Scholar] [CrossRef]
- Richardson, R.M.; Kells, A.P.; Rosenbluth, K.H.; Salegio, E.A.; Fiandaca, M.S.; Larson, P.S.; Starr, P.A.; Martin, A.J.; Lonser, R.R.; Federoff, H.J.; et al. Interventional MRI-guided Putaminal Delivery of AAV2-GDNF for a Planned Clinical Trial in Parkinson’s Disease. Mol. Ther. 2011, 19, 1048–1057. [Google Scholar] [CrossRef]
- Stefani, A.; Pierantozzi, M.; Cardarelli, S.; Stefani, L.; Cerroni, R.; Conti, M.; Garasto, E.; Mercuri, N.B.; Marini, C.; Sucapane, P. Neurotrophins as Therapeutic Agents for Parkinson’s Disease; New Chances From Focused Ultrasound? Front. Neurosci. 2022, 16, 846681. [Google Scholar] [CrossRef]
- Yao, J.-Y.; Liu, T.; Hu, X.-R.; Sheng, H.; Chen, Z.-H.; Zhao, H.-Y.; Li, X.-J.; Wang, Y.; Hao, L. An insight into allele-selective approaches to lowering mutant huntingtin protein for Huntington’s disease treatment. Biomed. Pharmacother. 2024, 180, 117557. [Google Scholar] [CrossRef] [PubMed]
- Caron, N.S.; Banos, R.; Aly, A.E.; Xie, Y.; Ko, S.; Potluri, N.; Anderson, C.; Black, H.F.; Anderson, L.M.; Gordon, B.; et al. Cerebrospinal fluid mutant huntingtin is a biomarker for huntingtin lowering in the striatum of Huntington disease mice. Neurobiol. Dis. 2022, 166, 105652. [Google Scholar] [CrossRef] [PubMed]
- McColgan, P.; Thobhani, A.; Boak, L.; Schobel, S.A.; Nicotra, A.; Palermo, G.; Trundell, D.; Zhou, J.; Schlegel, V.; Ducray, P.S.; et al. Tominersen in Adults with Manifest Huntington’s Disease. N. Engl. J. Med. 2023, 389, 2203–2205. [Google Scholar] [CrossRef]
- Tabrizi, S.J.; Estevez-Fraga, C.; van Roon-Mom, W.M.C.; Flower, M.D.; Scahill, R.I.; Wild, E.J.; Muñoz-Sanjuan, I.; Sampaio, C.; Rosser, A.E.; Leavitt, B.R. Potential disease-modifying therapies for Huntington’s disease: Lessons learned and future opportunities. Lancet Neurol. 2022, 21, 645–658. [Google Scholar] [CrossRef]
- Boareto, M.; Yamamoto, Y.; Long, J.D.; Sampaio, C.; McColgan, P.; Diack, C.; Ducray, P.S. Modeling Disease Progression and Placebo Response in Huntington Disease. Neurology 2025, 104, e213646. [Google Scholar] [CrossRef]
- Liddy, V.; West, D.; Nguyen, M.; Boak, L.; Schobel, S.; Olivier, N.; Hodge, K.; HD-COPE; Townhill, J. F14 Collaborating with the community to conduct clinical trials in huntington’s disease: Lessons from the tominersen phase iii generation HD1 study. J. Neurol. Neurosurg. Psychiatry 2021, 92, A24–A25. [Google Scholar] [CrossRef]
- Estevez-Fraga, C.; Tabrizi, S.J.; Wild, E.J.; Morton, J. Huntington’s Disease Clinical Trials Corner: August 2023. J. Huntington’s Dis. 2023, 12, 169–185. [Google Scholar] [CrossRef]
- Claassen, D.O.; Corey-Bloom, J.; Dorsey, E.R.; Edmondson, M.; Kostyk, S.K.; LeDoux, M.S.; Reilmann, R.; Rosas, H.D.; Walker, F.; Wheelock, V.; et al. Genotyping single nucleotide polymorphisms for allele-selective therapy in Huntington disease. Neurol. Genet. 2020, 6, e430. [Google Scholar] [CrossRef]
- Svrzikapa, N.; Longo, K.A.; Prasad, N.; Boyanapalli, R.; Brown, J.M.; Dorset, D.; Yourstone, S.; Powers, J.; Levy, S.E.; Morris, A.J.; et al. Investigational Assay for Haplotype Phasing of the Huntingtin Gene. Mol. Ther.–Methods Clin. Dev. 2020, 19, 162–173. [Google Scholar] [CrossRef]
- Tabrizi, S.J.; Leavitt, B.R.; Landwehrmeyer, G.B.; Wild, E.J.; Saft, C.; Barker, R.A.; Blair, N.F.; Craufurd, D.; Priller, J.; Rickards, H.; et al. Targeting huntingtin expression in patients with Huntington’s disease. N. Engl. J. Med. 2019, 380, 2307–2316. [Google Scholar] [CrossRef]
- Byun, S.; Lee, M.; Kim, M. Gene Therapy for Huntington’s Disease: The Final Strategy for a Cure? J. Mov. Disord. 2022, 15, 15–20. [Google Scholar] [CrossRef]
- Kotowska-Zimmer, A.; Przybyl, L.; Pewinska, M.; Suszynska-Zajczyk, J.; Wronka, D.; Figiel, M.; Olejniczak, M. A CAG repeat-targeting artificial miRNA lowers the mutant huntingtin level in the YAC128 model of Huntington’s disease. Mol. Ther.–Nucleic Acids 2022, 28, 702–715. [Google Scholar] [CrossRef]
- Ferguson, M.W.; Kennedy, C.J.; Palpagama, T.H.; Waldvogel, H.J.; Faull, R.L.M.; Kwakowsky, A. Current and Possible Future Therapeutic Options for Huntington’s Disease. J. Central Nerv. Syst. Dis. 2022, 14. [Google Scholar] [CrossRef]
- Li, L.; Vasan, L.; Kartono, B.; Clifford, K.; Attarpour, A.; Sharma, R.; Mandrozos, M.; Kim, A.; Zhao, W.; Belotserkovsky, A.; et al. Advances in Recombinant Adeno-Associated Virus Vectors for Neurodegenerative Diseases. Biomedicines 2023, 11, 2725. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Sharma, A.R.; Bhattacharya, M.; Lee, S.-S.; Chakraborty, C. CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases. Mol. Ther. 2021, 29, 571–586. [Google Scholar] [CrossRef] [PubMed]
- Berdyński, M.; Miszta, P.; Safranow, K.; Andersen, P.M.; Morita, M.; Filipek, S.; Żekanowski, C.; Kuźma-Kozakiewicz, M. SOD1 mutations associated with amyotrophic lateral sclerosis analysis of variant severity. Sci. Rep. 2022, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Saini, A.; Chawla, P.A. Breaking barriers with tofersen: Enhancing therapeutic opportunities in amyotrophic lateral sclerosis. Eur. J. Neurol. 2023, 31, 103. [Google Scholar] [CrossRef]
- Miller, T.; Cudkowicz, M.; Shaw, P.J.; Andersen, P.M.; Atassi, N.; Bucelli, R.C.; Genge, A.; Glass, J.; Ladha, S.; Ludolph, A.L.; et al. Phase 1–2 Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. N. Engl. J. Med. 2020, 383, 109–119. [Google Scholar] [CrossRef]
- Miller, T.M.; Cudkowicz, M.E.; Genge, A.; Shaw, P.J.; Sobue, G.; Bucelli, R.C.; Chiò, A.; Van Damme, P.; Ludolph, A.C.; Glass, J.D.; et al. Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. N. Engl. J. Med. 2022, 387, 1099–1110. [Google Scholar] [CrossRef]
- Smeyers, J.; Banchi, E.-G.; Latouche, M. C9ORF72: What It Is, What It Does, and Why It Matters. Front. Cell. Neurosci. 2021, 15, 661447. [Google Scholar] [CrossRef]
- Berg, L.H.v.D.; Rothstein, J.D.; Shaw, P.J.; Babu, S.; Benatar, M.; Bucelli, R.C.; Genge, A.; Glass, J.D.; Hardiman, O.; Libri, V.; et al. Safety, tolerability, and pharmacokinetics of antisense oligonucleotide BIIB078 in adults with C9orf72-associated amyotrophic lateral sclerosis: A phase 1, randomised, double blinded, placebo-controlled, multiple ascending dose study. Lancet Neurol. 2024, 23, 901–912. [Google Scholar] [CrossRef]
- Chamakioti, M.; Karantzelis, N.; Taraviras, S. Advanced Gene-Targeting Therapies for Motor Neuron Diseases and Muscular Dystrophies. Int. J. Mol. Sci. 2022, 23, 4824. [Google Scholar] [CrossRef]
- Xiao, X.; Li, M.; Ye, Z.; He, X.; Wei, J.; Zha, Y. FUS gene mutation in amyotrophic lateral sclerosis: A new case report and systematic review. Amyotroph. Lateral Scler. Front. Degener. 2023, 25, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Meijboom, K.E.; Brown, R.H. Approaches to Gene Modulation Therapy for ALS. Neurotherapeutics 2022, 19, 1159–1179. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Li, S.; Li, X.-J.; Yin, P. Pathological insights from amyotrophic lateral sclerosis animal models: Comparisons, limitations, and challenges. Transl. Neurodegener. 2023, 12, 46. [Google Scholar] [CrossRef]
- Lejman, J.; Panuciak, K.; Nowicka, E.; Mastalerczyk, A.; Wojciechowska, K.; Lejman, M. Gene Therapy in ALS and SMA: Advances, Challenges and Perspectives. Int. J. Mol. Sci. 2023, 24, 1130. [Google Scholar] [CrossRef]
- Buccellato, F.R.; D’aNca, M.; Tartaglia, G.M.; Del Fabbro, M.; Galimberti, D. Frontotemporal dementia: From genetics to therapeutic approaches. Expert Opin. Investig. Drugs 2024, 33, 561–573. [Google Scholar] [CrossRef]
- Sadhu, C.; Lyons, C.; Oh, J.; Jagadeeswaran, I.; Gray, S.J.; Sinnett, S.E. The Efficacy of a Human-Ready miniMECP2 Gene Therapy in a Pre-Clinical Model of Rett Syndrome. Genes 2023, 15, 31. [Google Scholar] [CrossRef]
- Keinath, M.C.; Prior, D.E.; Prior, T.W. Spinal Muscular Atrophy: Mutations, Testing, and Clinical Relevance. Appl. Clin. Genet. 2021, 14, 11–25. [Google Scholar] [CrossRef]
- Cancès, C.; Richelme, C.; Barnerias, C.; Espil, C. Clinical features of spinal muscular atrophy (SMA) type 2. Arch. Pediatr. 2020, 27, 7S18–7S22. [Google Scholar] [CrossRef]
- Boardman, F.K.; Young, P.J.; Griffiths, F.E. Newborn screening for spinal muscular atrophy: The views of affected families and adults. Am. J. Med. Genet. Part A 2017, 173, 1546–1561. [Google Scholar] [CrossRef] [PubMed]
- Günther, R.; Wurster, C.D.; Brakemeier, S.; Osmanovic, A.; Schreiber-Katz, O.; Petri, S.; Uzelac, Z.; Hiebeler, M.; Thiele, S.; Walter, M.C.; et al. Long-term efficacy and safety of nusinersen in adults with 5q spinal muscular atrophy: A prospective European multinational observational study. Lancet Reg. Health Eur. 2024, 39, 100862. [Google Scholar] [CrossRef] [PubMed]
- Finkel, R.S.; Mercuri, E.; Darras, B.T.; Connolly, A.M.; Kuntz, N.L.; Kirschner, J.; Chiriboga, C.A.; Saito, K.; Servais, L.; Tizzano, E.; et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1723–1732. [Google Scholar] [CrossRef] [PubMed]
- Mercuri, E.; Darras, B.T.; Chiriboga, C.A.; Day, J.W.; Campbell, C.; Connolly, A.M.; Iannaccone, S.T.; Kirschner, J.; Kuntz, N.L.; Saito, K.; et al. Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy. N. Engl. J. Med. 2018, 378, 625–635. [Google Scholar] [CrossRef]
- Pearson, S.D.; Thokala, P.; Stevenson, M.; Rind, D. The Effectiveness and Value of Treatments for Spinal Muscular Atrophy. J. Manag. Care Spec. Pharm. 2019, 25, 1300–1306. [Google Scholar] [CrossRef]
- Abbas, K.S.; Eltaras, M.M.; El-Shahat, N.A.; Abdelazeem, B.; Shaqfeh, M.; Brašić, J.R. The Safety and Efficacy of Nusinersen in the Treatment of Spinal Muscular Atrophy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Medicina 2022, 58, 213. [Google Scholar] [CrossRef]
- Engelborghs, S.; Niemantsverdriet, E.; Struyfs, H.; Blennow, K.; Brouns, R.; Comabella, M.; Dujmovic, I.; Van Der Flier, W.; Frölich, L.; Galimberti, D.; et al. Consensus guidelines for lumbar puncture in patients with neurological diseases. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2017, 8, 111–126. [Google Scholar] [CrossRef]
- Ökçesiz, I.; Dönmez, H.; Herdem, N.; Sarilar, A.Ç. Computed Tomography–Guided Lumbar Puncture: Advantages and Disadvantages. J. Comput. Assist. Tomogr. 2022, 46, 269–273. [Google Scholar] [CrossRef]
- Kouzehgarani, G.N.; Feldsien, T.; Engelhard, H.H.; Mirakhur, K.K.; Phipps, C.; Nimmrich, V.; Clausznitzer, D.; Lefebvre, D.R. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Adv. Drug Deliv. Rev. 2021, 173, 20–59. [Google Scholar] [CrossRef]
- Khoury, N.; Pizzo, M.E.; Discenza, C.B.; Joy, D.; Tatarakis, D.; Todorov, M.I.; Negwer, M.; Ha, C.; De Melo, G.L.; Sarrafha, L.; et al. Fc-engineered large molecules targeting blood-brain barrier transferrin receptor and CD98hc have distinct central nervous system and peripheral biodistribution. Nat. Commun. 2025, 16, 1822. [Google Scholar] [CrossRef] [PubMed]
- Manuel, M.-G.; Tamba, B.-I.; Leclere, M.; Mabrouk, M.; Schreiner, T.-G.; Ciobanu, R.; Cristina, T.-Z. Intrathecal Pseudodelivery of Drugs in the Therapy of Neurodegenerative Diseases: Rationale, Basis and Potential Applications. Pharmaceutics 2023, 15, 768. [Google Scholar] [CrossRef]
- Capozza, M.A.; Triarico, S.; Mastrangelo, S.; Attinà, G.; Maurizi, P.; Ruggiero, A. Narrative review of intrathecal drug delivery (IDD): Indications, devices and potential complications. Ann. Transl. Med. 2021, 9, 186. [Google Scholar] [CrossRef]
- Prasuhn, J.; Xu, J.; Hua, J.; van Zijl, P.; Knutsson, L. Exploring neurodegenerative disorders using advanced magnetic resonance imaging of the glymphatic system. Front. Psychiatry 2024, 15, 1368489. [Google Scholar] [CrossRef] [PubMed]
- Alhamadani, F.; Zhang, K.; Parikh, R.; Wu, H.; Rasmussen, T.P.; Bahal, R.; Zhong, X.-B.; Manautou, J.E. Adverse Drug Reactions and Toxicity of the Food and Drug Administration–Approved Antisense Oligonucleotide Drugs. Drug Metab. Dispos. 2022, 50, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Morganroth, J.; Bardakjian, T.M.; Dratch, L.; Quinn, C.C.; Elman, L.B. Enhancing Clinical Infrastructure for the Delivery of Intrathecal and Genetic Therapies. Neurol. Clin. Pract. 2024, 14, e200303. [Google Scholar] [CrossRef]
- Nandi, A.; Counts, N.; Chen, S.; Seligman, B.; Tortorice, D.; Vigo, D.; Bloom, D.E. Global and regional projections of the economic burden of Alzheimer’s disease and related dementias from 2019 to 2050: A value of statistical life approach. eClinicalMedicine 2022, 51, 101580. [Google Scholar] [CrossRef]
- Chen, X.; Lim, D.A.; Lawlor, M.W.; Dimmock, D.; Vite, C.H.; Lester, T.; Tavakkoli, F.; Sadhu, C.; Prasad, S.; Gray, S.J. Biodistribution of Adeno-Associated Virus Gene Therapy Following Cerebrospinal Fluid-Directed Administration. Hum. Gene Ther. 2023, 34, 94–111. [Google Scholar] [CrossRef]
- Hinderer, C.; Bell, P.; Katz, N.; Vite, C.H.; Louboutin, J.-P.; Bote, E.; Yu, H.; Zhu, Y.; Casal, M.L.; Bagel, J.; et al. Evaluation of Intrathecal Routes of Administration for Adeno-Associated Viral Vectors in Large Animals. Hum. Gene Ther. 2018, 29, 15–24. [Google Scholar] [CrossRef]
- Taghian, T.; Marosfoi, M.G.; Puri, A.S.; Cataltepe, O.; King, R.M.; Diffie, E.B.; Maguire, A.S.; Martin, D.R.; Fernau, D.; Batista, A.R.; et al. A Safe and Reliable Technique for CNS Delivery of AAV Vectors in the Cisterna Magna. Mol. Ther. 2020, 28, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Hirai, Y.; Miyake, K.; Shimada, T. Targeted gene transfer into ependymal cells through intraventricular injection of AAV1 vector and long-term enzyme replacement via the CSF. Sci. Rep. 2014, 4, 5506. [Google Scholar] [CrossRef] [PubMed]
- MacAllister, R.P.; McCully, C.M.L.; Bacher, J.; Thomas, M.L., III.; Cruz, R.; Wangari, S.; Warren, K.E. Minimally Invasive Lumbar Port System for the Collection of Cerebrospinal Fluid from Rhesus Macaques (Macaca mulatta). Comp. Med. 2016, 66, 349–352. [Google Scholar]
- González, M.M. Preparing for the new wave of intrathecal CNS therapies: Innovations in drug delivery devices. Expert. Rev. Med. Devices 2025, 22, 525–528. [Google Scholar] [CrossRef]
- Wesemann, K.; Coffey, R.J.; Wallace, M.S.; Tan, Y.; Broste, S.; Buvanendran, A. Clinical Accuracy and Safety Using the SynchroMed II Intrathecal Drug Infusion Pump. Reg. Anesthesia Pain Med. 2014, 39, 341–346. [Google Scholar] [CrossRef]
- Jamet, E. An eye-tracking study of cueing effects in multimedia learning. Comput. Human Behav. 2014, 32, 47–53. [Google Scholar] [CrossRef]
- Raj, R.; Lakshmanan, S.; Apigo, D.; Kanwal, A.; Liu, S.; Russell, T.; Madsen, J.R.; Thomas, G.A.; Farrow, R.C. Demonstration that a new flow sensor can operate in the clinical range for cerebrospinal fluid flow. Sens. Actuators A Phys. 2015, 234, 223–231. [Google Scholar] [CrossRef]
- Sun, Z.; Luan, X.; Sun, Z.; Li, D.; Hu, H.; Xue, Q.; Liu, B.; Yu, Q.; Wei, G.; Zhang, X.; et al. Bioactive Peptide Hydrogel Scaffold with High Fluidity, Thermosensitivity, and Neurotropism in 3D Spatial Structure for Promoted Repair of Spinal Cord Injury. Small 2024, 21, e2406990. [Google Scholar] [CrossRef]
- Madadi, A.K.; Sohn, M.-J. Advances in Intrathecal Nanoparticle Delivery: Targeting the Blood–Cerebrospinal Fluid Barrier for Enhanced CNS Drug Delivery. Pharmaceuticals 2024, 17, 1070. [Google Scholar] [CrossRef]
- Demeule, M.; Régina, A.; Ché, C.; Poirier, J.; Nguyen, T.; Gabathuler, R.; Castaigne, J.-P.; Béliveau, R. Identification and Design of Peptides as a New Drug Delivery System for the Brain. J. Pharmacol. Exp. Ther. 2008, 324, 1064–1072. [Google Scholar] [CrossRef]
- May, P.; Woldt, E.; Matz, R.L.; Boucher, P. The LDL receptor-related protein (LRP) family: An old family of proteins with new physiological functions. Ann. Med. 2007, 39, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Marzolo, M.-P.; Farfán, P. New Insights into the Roles of Megalin/LRP2 and the Regulation of its Functional Expression. Biol. Res. 2011, 44, 89–105. [Google Scholar] [CrossRef]
- Strazielle, N.; Ghersi-Egea, J.-F. Potential Pathways for CNS Drug Delivery Across the Blood-Cerebrospinal Fluid Barrier. Curr. Pharm. Des. 2016, 22, 5463–5476. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Xie, H. Application of stimuli-responsive hydrogel in brain disease treatment. Front. Bioeng. Biotechnol. 2024, 12, 1450267. [Google Scholar] [CrossRef]
Device/Approach | Advantages | Limitations | Patient Compliance | CNS Coverage | Relevant References |
---|---|---|---|---|---|
Lumbar puncture | Low cost Minimally invasive No surgical implantation | Patient discomfort and/or anxiety Post-puncture headache | Low-moderate (reduced adherence when weekly/monthly) | Limited for supratentorial targets | [30,31] |
Intrathecal catheters | Controlled drug delivery and dosing Possibility of combination therapies | Risk of infection, catheter dislodgement, or occlusion Routine monitoring | Moderate (requires clinic visits and patient acceptance of the implanted device) | Intermediate (improved cumulative CSF exposure, but heterogenous distribution) | [32,33,34] |
Implantable intrathecal infusion pumps | Continuous, steady-state drug delivery | Surgical implantation Pump malfunction, infections, and catheter-related complications | Moderate-high (Once implanted, minimization of repeated procedures and generally improve long-term adherence | Best for maintaining steady CSF levels (sustained gradients and homogeneous CSF concentrations for large molecules) | [35,36,37] |
Therapeutic Class | Target/Mechanism | Lead Compound/Vector | Trial Phase | Key Findings/Status |
---|---|---|---|---|
ASOs–Tau-targeted | MAPT mRNA degradation via RNase H, leading to decrease in tau protein synthesis | BIIB080 (IONIS-MAPTRx) | Phase 1b (NCT03186989); Phase 2 (NCT04986707) | Phase 1b: Well tolerated up to 60 mg IT q12w; dose-dependent decrease in CSF total and p-tau; sustained effect; exploratory imaging suggests atrophy stabilization. Phase 2 ongoing (long-term efficacy, cognition). |
ASOs–APP-targeted | APP mRNA suppression leading to decrease in Aβ42 production | Not yet publicly named | Preclinical/Early clinical | Preclinical data: substantial Aβ42 reduction without major physiological disruption; IT route used for CNS precision delivery; no late-stage trials yet. |
Monoclonal antibodies–Anti-Aβ | Direct binding to Aβ to promote clearance | Investigational anti-Aβ mAb | Phase 1 (NCT03397506) | IT administration yields higher CSF-to-plasma ratios vs. IV; potential to lower dose and reduce ARIA; PK results pending; efficacy/engagement endpoints planned in future trials. |
Gene Therapy–Neurotrophic factors | NGF/BDNF expression for cholinergic neuron support | IT-AAV-NGF; IT-AAV-BDNF | Preclinical; early clinical (e.g., NCT00087789–stereotactic NGF) | Stereotactic NGF: long-term transgene expression, ↑ ChAT; IT-AAV in animals shows hippocampal/cortical expression and memory improvement; IT-AAV-BDNF Phase 1/2 planned. |
Gene Therapy–Amyloid/Tau modulation | Enzymes or RNAi to degrade Aβ or suppress tau | IT-AAV-neprilysin; tau-lowering RNAi AAV | Preclinical | IT delivery reduces plaque/tau pathology, improves cognition; IND-enabling programs ongoing for tau-lowering sequences. |
Gene Therapy–Synaptic/metabolic support | Overexpression of PGC-1α, PSD95, Homer1a | IT-AAV vectors | Preclinical | Shown to improve mitochondrial function, reduce oxidative stress, and enhance synaptic resilience in animal models. |
Therapeutic Class | Target/Mechanism | Lead Compound/Vector | Trial Phase | Key Findings/Status |
---|---|---|---|---|
Gene Therapy–GBA1-targeted | AAV9-mediated delivery of functional GBA1 gene → ↑ GCase activity → improved lysosomal function and α-synuclein clearance | PR001 | Phase 1/2 (PROPEL; NCT04127578); Natural history study (NCT04128245) | Cisterna magna infusion achieves widespread CNS biodistribution; early data: acceptable safety, dose-dependent increase in CSF GCase activity, preliminary decrease in CSF α-synuclein; long-term efficacy data pending. |
Gene Therapy–Neurotrophic factors | AAV-mediated delivery of GDNF → activation of GFRα1/RET survival signaling in nigrostriatal neurons | AAV2-GDNF | Phase 1/2 (intracerebral delivery) | Safety and target expression confirmed; limited by slow clinical benefit and delivery constraints; IT/intracisternal approaches under preclinical evaluation for broader distribution. |
Protein Delivery–Neurotrophic factors | Direct administration of GDNF protein → neuroprotection and regeneration of dopaminergic neurons | Recombinant GDNF | Phase 1 (open-label); Phase 2 (randomized) | Phase 1: motor improvement and PET dopamine signal increase; Phase 2: failed primary endpoints; delivery method variability suspected; IT route explored preclinically. |
Encapsulated Cell Therapy | Implantation of cells engineered to secrete GDNF locally | NTCELL | Early phase clinical | Designed for sustained, localized GDNF release; aims to overcome distribution and dosing limitations of protein therapy. |
Synthetic GDNF Mimetics | Small molecules mimicking GDNF, BBB-penetrant, bind GFRα1/RET | Preclinical candidates | Preclinical | Intended to bypass delivery barriers, offering non-invasive GDNF receptor activation. |
mRNA-based Neurotrophic Factor Therapy | IT-delivered mRNA encoding GDNF or related factors for in situ production | Preclinical candidates | Preclinical | Potential for adjustable, repeat dosing without permanent genetic modification. |
Challenges | Details | Potential Solutions | Relevant References |
---|---|---|---|
Anatomical | Access to the Intrathecal Space Repeated Dosing Requirements Biological Barriers | Fluoroscopy-guided or CT-guided access Neuroanesthesia support | [120,121] |
Pharmacological | Uneven Drug Distribution Limited Parenchymal Penetration | Drug structure and functionality optimization | [122,123] |
Device-Related Limitations | Technological Limitations Lack of Standardization | Device design improvement International regulations | [36,37,124] |
Logistical | Health System Limitations Economic Burden | Infrastructure improvement | [122,123] |
Ethical | Patient consent Benefit versus disease progression | Ethical regulations | [125] |
Administration Route | Procedure Characteristics | Biodistribution/CNS Targeting | Advantages | Limitations | Relevant References |
---|---|---|---|---|---|
Lumbar intrathecal | Injection into the lumbar subarachnoid space via lumbar puncture | Variable rostral distribution | Widely used; relatively safe and clinically established | Limited rostral brain penetration; potential variability in distribution | [130] |
Cisterna magna (CM) | Injection into the cisterna magna; minimally invasive techniques | Broader and more efficient rostral CNS distribution compared to lumbar | High CNS bioavailability; less invasive than intracerebral stereotaxy; reduced inflammatory response compared to intraventricular | Requires careful anatomical targeting; potential procedural risks near the brainstem | [131] |
Intraventricular | Injection directly into cerebral ventricles (often stereotactic) | Strong targeting of ependymal cells; can serve as a source of therapeutic protein secretion | Adequate for continuous therapeutic protein delivery; direct brain access | More invasive; higher risk of inflammation compared to CM route; technically complex | [133] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schreiner, T.G.; Menéndez-González, M.; Schreiner, O.D.; Ciobanu, R.C. Intrathecal Therapies for Neurodegenerative Diseases: A Review of Current Approaches and the Urgent Need for Advanced Delivery Systems. Biomedicines 2025, 13, 2167. https://doi.org/10.3390/biomedicines13092167
Schreiner TG, Menéndez-González M, Schreiner OD, Ciobanu RC. Intrathecal Therapies for Neurodegenerative Diseases: A Review of Current Approaches and the Urgent Need for Advanced Delivery Systems. Biomedicines. 2025; 13(9):2167. https://doi.org/10.3390/biomedicines13092167
Chicago/Turabian StyleSchreiner, Thomas Gabriel, Manuel Menéndez-González, Oliver Daniel Schreiner, and Romeo Cristian Ciobanu. 2025. "Intrathecal Therapies for Neurodegenerative Diseases: A Review of Current Approaches and the Urgent Need for Advanced Delivery Systems" Biomedicines 13, no. 9: 2167. https://doi.org/10.3390/biomedicines13092167
APA StyleSchreiner, T. G., Menéndez-González, M., Schreiner, O. D., & Ciobanu, R. C. (2025). Intrathecal Therapies for Neurodegenerative Diseases: A Review of Current Approaches and the Urgent Need for Advanced Delivery Systems. Biomedicines, 13(9), 2167. https://doi.org/10.3390/biomedicines13092167