The Diagnostic and Therapeutic Potential of Oligonucleotide Aptamers in Alzheimer’s Disease
Abstract
1. Introduction
2. Key Biomarkers of Alzheimer’s Disease Pathology
2.1. Key AD Biomarkers in Biological Fluids
2.1.1. Aβ Peptides as Biomarkers
2.1.2. Tau Proteins and Their Role in AD Pathophysiology
3. Challenges in AD Diagnosis and Future Directions
4. Chemistry, Design, and Synthesis of Oligonucleotide Aptamers
4.1. Aptamer Function
4.2. Aptamer Acquiring Through the Systematic Evolution of Ligands by Exponential Enrichment
4.3. Aptamer Selection by Computational Methods and AI-Assisted Technology
4.4. Advantages of Aptamers Against Antibodies
Aptamers | Antibodies |
---|---|
DNA, RNA, or peptide molecules [93]. | Proteins only [93]. |
High affinity, specificity, and thermal stability [93]. | Their affinity is affected by denaturation due to pH and high temperature [93]. |
Low toxicity and immunogenicity [93]. | Their presence causes immune response [93]. |
Ability to pass the BBB with their small size and easy modification [58]. | Large molecules, affected by modifications [93]. |
Simple and automated synthesis through SELEX [93]. | Expensive synthesis procedure that requires validation [93]. |
Their G-quadruplex structure detects the distinct hydrophobic areas of Aβ40 and Aβ42 [95]. | Detect only the same hydrophilic surface of Aβ40 and Aβ42 and cannot recognize them [95]. |
5. Aptamers Targeting Alzheimer’s Disease Biomarkers
5.1. Aptamers Against Aβ
5.1.1. RNA Aptamers
5.1.2. DNA Aptamers
5.1.3. Aptamers: A Tool to Detect Amyloid-Beta
Target | Aptamer | Sequence | Reference | |
---|---|---|---|---|
RNA aptamers | Aβ40 fibrils | β55 | 5′-UUUACCGUAAGGCCUGUCUUCGUUUGACA-3′ | [96] |
Aβ monomers | N2 | 5′-GGGAUGUUCUAGGCGGUUGAUGA-UAGCGUAUGCCACUCUCCUGGGACCCCCCGCCGGAUGGCCA-CAUCC-CAUCCAGAGUAGCAUAAUUGAUCCGA-3′ | [97] | |
E2 | 5′-GGGAUGUUCUAGGCGGUUGAUGA-UUUGGGGUGUCGGGCGAUUUUUAGGGUUGGGCCAGGCCGU-CAUCC-CAUCCAGAGUAGCAUAAUUGAUCCGA-3′ | |||
Aβ40 fibrils, Aβ42 fibrils, and other amyloid fibrils | KM33 and KM41 | 5′-TAATACGACTCACTATAGGGAATTCGA-GCTCGGTACC-3′ | [98] | |
Aβ42 protofibrils | E22P-AbD4 | 5′-GGGACGACCACCACCUGAUGGUCACGCCUUGGGGGAUCGACGUUUCCCACCUUGGCUGCC-3′ | [100] | |
E22P-AbD31 | 5′-GGGACGACCACCACC UGAUCGUACCACCGUUGCUAAUAA ACC UUU CUCCUUGGGGGAUCG-3′ | |||
E22P-AbD43 | 5′-GGGACGACCACCACC UGAUCGAGCUCACUUUCUACCUUUCCCACC UUCUUGGCUGCC-3′ | |||
DNA aptamers | Aβ40 oligomers | T-SO508 | 5′-GCCTGTGGTGTTGGGGCGGGTGCG-3′ | [124] |
Aβ40 oligomers | RNV95 | 5′-TGGGGGGCGGACGATAGGGGCCCCCCGGTAGGATGGACG-3′ | [26] | |
Aβ42 and Aβ40 aggregates | Aβ7-92-1H1 | 5′-CCGGTGGGGGACCAGTACAAAAGTGGGT AGGGCGGGTTGG AAAA-3′ | [25] |
5.1.4. Aβ. Aptamer Applications in Therapeutics
Target | Aptamer | Type | Sequence | Reference |
---|---|---|---|---|
AChE | Ob2 | DNA | 5′-TAATACGACTCACTATAGCAATGGTACGGTACTTCCCTTCGAAAACACCCTGCCCCTCACACAAAAGTGCACGCTACTTTGCTAA-3’ | [127] |
Aβ oligomers | AβO Aptamer | DNA | GGTGGCTGGAGGGGGCGCGAACG | [125] |
Aβ42 monomer and dimer | E22P-AbD43 | RNA | 5′-GGGACGACCACCACCUGAUCGAGCUCACUUUCUACCUUUCCCACCUUCUUGGCUGCC-3′ | [86,100] |
Aβ42 monomer | Aβ7-92-1H1 | DNA | 5′-CCGG TGGGGGACCAGTACAAAAGTGGGTAGGGCGGG TTGGAAAA-3′ | [25] |
5.2. Aptamers Against Tau Protein
5.3. Aptamers Against p-Tau
5.4. Aptamers for Novel Biomarkers and Concluding Remarks
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coyle, H.; Traynor, V.; Solowij, N. Computerized and Virtual Reality Cognitive Training for Individuals at High Risk of Cognitive Decline: Systematic Review of the Literature. Am. J. Geriatr. Psychiatry 2015, 4, 335–359. [Google Scholar] [CrossRef]
- Abubakar, M.B.; Sanusi, K.O.; Ugusman, A.; Mohamed, W.; Kamal, H.; Ibrahim, N.H.; Khoo, C.S.; Kumar, J. Alzheimer’s Disease: An Update and Insights Into Pathophysiology. Front. Aging Neurosci. 2022, 14, 742408. [Google Scholar] [CrossRef]
- Alzheimer’s Association 2021. Alzheimer’s Disease Facts and Figures Special Report Race, Ethnicity and Alzheimer’s in America. Alzheimers Dement. 2021, 17, 327–406. [Google Scholar] [CrossRef]
- Alzheimer’s Association 2022. Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2022, 18, 700–789. [Google Scholar] [CrossRef]
- Qiu, C.; Kivipelto, M.; von Strauss, E. Epidemiology of Alzheimer’s Disease: Occurrence, Determinants, and Strategies toward Intervention. Dialogues Clin. Neurosci. 2009, 11, 111–128. [Google Scholar] [CrossRef]
- Tahami Monfared, A.A.; Byrnes, M.J.; White, L.A.; Zhang, Q. Alzheimer’s Disease: Epidemiology and Clinical Progression. Neurol. Ther. 2022, 11, 553–569. [Google Scholar] [CrossRef] [PubMed]
- Nandi, A.; Counts, N.; Chen, S.; Seligman, B.; Tortorice, D.; Vigo, D.; Bloom, D.E. Global and Regional Projections of the Economic Burden of Alzheimer’s Disease and Related Dementias from 2019 to 2050: A Value of Statistical Life Approach. EClinicalMedicine 2022, 51, 101580. [Google Scholar] [CrossRef] [PubMed]
- Vermunt, L.; Sikkes, S.A.M.; van den Hout, A.; Handels, R.; Bos, I.; van der Flier, W.M.; Kern, S.; Ousset, P.J.; Maruff, P.; Skoog, I.; et al. Duration of Preclinical, Prodromal, and Dementia Stages of Alzheimer’s Disease in Relation to Age, Sex, and APOE Genotype. Alzheimer’s Dement. 2019, 15, 888–898. [Google Scholar] [CrossRef] [PubMed]
- Gunes, S.; Aizawa, Y.; Sugashi, T.; Sugimoto, M.; Rodrigues, P.P. Biomarkers for Alzheimer’s Disease in the Current State: A Narrative Review. Int. J. Mol. Sci. 2022, 23, 4962. [Google Scholar] [CrossRef]
- Petersen, R.C.; Negash, S. Mild Cognitive Impairment: An Overview. CNS Spectr. 2008, 13, 45–53. [Google Scholar] [CrossRef]
- Selkoe, D.J.; Hardy, J. The Amyloid Hypothesis of Alzheimer’s Disease at 25 Years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, R.H.; Nagao, T.; Gouras, G.K. Plaque Formation and the Intraneuronal Accumulation of β-Amyloid in Alzheimer’s Disease. Pathol. Int. 2017, 67, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Nimjee, S.M.; Rusconi, C.P.; Sullenger, B.A. Aptamers: An Emerging Class of Therapeutics. Annu. Rev. Med. 2005, 56, 555–583. [Google Scholar] [CrossRef]
- Carothers, J.M.; Oestreich, S.C.; Szostak, J.W. Aptamers Selected for Higher-Affinity Binding Are Not More Specific for the Target Ligand. J. Am. Chem. Soc. 2006, 128, 7929–7937. [Google Scholar] [CrossRef]
- Jayasena, S.D. Aptamers: An Emerging Class of Molecules That Rival Antibodies in Diagnostics. Clin. Chem. 1999, 9, 1628–1655. [Google Scholar] [CrossRef]
- Ellington, A.D.; Szostak, J.W. In Vitro Selection of RNA Molecules That Bind Specific Ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef]
- Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef]
- Chan, H.-N.; Xu, D.; Ho, S.-L.; He, D.; Wong, M.S.; Li, H.-W. Highly Sensitive Quantification of Alzheimer’s Disease Biomarkers by Aptamer-Assisted Amplification. Theranostics 2019, 9, 2939–2949. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, L.; Zhao, J.; Li, L.; Wang, M.; Gao, P.; Wang, Q.; Zhang, X.; Wang, W. Advances in Aptamers against Aβ and Applications in Aβ Detection and Regulation for Alzheimer’s Disease. Theranostics 2022, 12, 2095–2114. [Google Scholar] [CrossRef]
- Zamanian, J.; Khoshbin, Z.; Abnous, K.; Taghdisi, S.M.; Hosseinzadeh, H.; Danesh, N.M. Current Progress in Aptamer-Based Sensing Tools for Ultra-Low Level Monitoring of Alzheimer’s Disease Biomarkers. Biosens. Bioelectron. 2022, 197, 113789. [Google Scholar] [CrossRef]
- Choi, J.-W.; Seo, M.; Kim, K.; Kim, A.-R.; Lee, H.; Kim, H.-S.; Park, C.G.; Cho, S.W.; Kang, J.H.; Joo, J.; et al. Aptamer Nanoconstructs Crossing Human Blood–Brain Barrier Discovered via Microphysiological System-Based SELEX Technology. ACS Nano 2023, 17, 8153–8166. [Google Scholar] [CrossRef]
- Monaco, I.; Camorani, S.; Colecchia, D.; Locatelli, E.; Calandro, P.; Oudin, A.; Niclou, S.; Arra, C.; Chiariello, M.; Cerchia, L.; et al. Aptamer Functionalization of Nanosystems for Glioblastoma Targeting through the Blood–Brain Barrier. J. Med. Chem. 2017, 60, 4510–4516. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Zhao, H.; Zhu, T.; Yang, Z.; Xu, H.; Fu, Y.; Lin, F.; Pan, X.; Li, L.; et al. Enhanced in Vivo Blood–Brain Barrier Penetration by Circular Tau–Transferrin Receptor Bifunctional Aptamer for Tauopathy Therapy. J. Am. Chem. Soc. 2020, 142, 3862–3872. [Google Scholar] [CrossRef]
- Röthlisberger, P.; Hollenstein, M. Aptamer Chemistry. Adv. Drug Deliv. Rev. 2018, 134, 3–21. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, P.; Li, S.; Geng, X.; Zou, L.; Jin, M.; Zou, Q.; Wang, Q.; Yang, X.; Wang, K. Development of DNA Aptamer as a β-Amyloid Aggregation Inhibitor. ACS Appl. Bio Mater. 2020, 3, 8611–8618. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, M.; AlShamaileh, H.; Huang, H.; Tannenberg, R.K.; Chen, S.; Worrall, S.; Dodd, P.R.; Veedu, R.N. Development of DNA Aptamers Targeting Low-Molecular-Weight Amyloid-β Peptide Aggregates in Vitro. Chem. Commun. 2018, 54, 4593–4596. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, H.; Liu, L.; Li, C.; Chang, Z.; Zhu, X.; Ye, B.; Xu, M. Fabrication of an Antibody-Aptamer Sandwich Assay for Electrochemical Evaluation of Levels of β-Amyloid Oligomers. Sci. Rep. 2016, 6, 35186. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Man, Y.; Xu, S.; Wu, H.; Ling, P.; Gao, F. A Label-Free Dually-Amplified Aptamer Sensor for the Specific Detection of Amyloid-Beta Peptide Oligomers in Cerebrospinal Fluids. Anal. Chim. Acta 2023, 1266, 341298. [Google Scholar] [CrossRef]
- Wang, B.; Pan, X.; Teng, I.; Li, X.; Kobeissy, F.; Wu, Z.; Zhu, J.; Cai, G.; Yan, H.; Yan, X.; et al. Functional Selection of Tau Oligomerization-Inhibiting Aptamers. Angew. Chem. Int. Ed. 2024, 63, e202402007. [Google Scholar] [CrossRef]
- Phan, L.M.T.; Cho, S. Fluorescent Aptasensor and Colorimetric Aptablot for P-Tau231 Detection: Toward Early Diagnosis of Alzheimer’s Disease. Biomedicines 2022, 10, 93. [Google Scholar] [CrossRef]
- Kong, Q.; Liu, C.; Zhang, Y.; He, Y.; Zhang, R.; Wang, Y.; Zhou, Q.; Cui, F. Nucleic Acid Aptamer-Based Electrochemical Sensor for the Detection of Serum P-Tau231 and the Instant Screening Test of Alzheimer’s Disease. Microchim. Acta 2024, 191, 328. [Google Scholar] [CrossRef]
- Zhao, J.; Chang, W.; Liu, L.; Xing, X.; Zhang, C.; Meng, H.; Gopinath, S.C.B.; Lakshmipriya, T.; Chen, Y.; Liu, Y. Graphene Oxide-Gold Nanoparticle-Aptamer Complexed Probe for Detecting Amyloid Beta Oligomer by ELISA-Based Immunoassay. J. Immunol. Methods 2021, 489, 112942. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.; Kim, Y.M.; Han, H.; Cho, J.; Lim, S.; Lee, T.; Jahng, G. An Aptamer-based Magnetic Resonance Imaging Contrast Agent for Detecting Oligomeric Amyloid-β in the Brain of an Alzheimer’s Disease Mouse Model. NMR Biomed. 2023, 36, e4862. [Google Scholar] [CrossRef]
- Parekh, P.; Mu, Q.; Badachhape, A.; Bhavane, R.; Srivastava, M.; Devkota, L.; Sun, X.; Bhandari, P.; Eriksen, J.L.; Tanifum, E.; et al. A Surrogate Marker for Very Early-Stage Tau Pathology Is Detectable by Molecular Magnetic Resonance Imaging. Theranostics 2022, 12, 5504–5521. [Google Scholar] [CrossRef]
- Strimbu, K.; Tavel, J.A. What Are Biomarkers? Curr. Opin. HIV AIDS 2010, 5, 463–466. [Google Scholar] [CrossRef]
- Raichle, M.E.; Raichle, M.E. Searching for a Baseline: Functional Imaging and the Resting Human Brain. Nat. Rev. Neurosci. 2001, 2, 685–694. [Google Scholar] [CrossRef]
- Mattsson, N.; Insel, P.S.; Donohue, M.; Landau, S.; Jagust, W.J.; Shaw, L.M.; Trojanowski, J.Q.; Zetterberg, H.; Blennow, K.; Weiner, M.W. Independent Information from Cerebrospinal Fluid Amyloid-β and Florbetapir Imaging in Alzheimer’s Disease. Brain 2015, 138 Pt 3, 772–783. [Google Scholar] [CrossRef]
- Ossenkoppele, R.; Jansen, W.J.; Rabinovici, G.D.; Knol, D.L.; van der Flier, W.M.; van Berckel, B.N.M.; Scheltens, P.; Visser, P.J.; Verfaillie, S.C.J.; Zwan, M.D.; et al. Prevalence of Amyloid PET Positivity in Dementia Syndromes: A Meta-Analysis. JAMA 2015, 313, 1939–1949. [Google Scholar] [CrossRef] [PubMed]
- Perrin, R.J.; Fagan, A.M.; Holtzman, D.M. Multimodal Techniques for Diagnosis and Prognosis of Alzheimer’s Disease. Nature 2009, 461, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Blennow, K.; Mattsson, N.; Schöll, M.; Hansson, O.; Zetterberg, H. Amyloid Biomarkers in Alzheimer’s Disease. Trends Pharmacol. Sci. 2015, 36, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Fagan, A.M.; Head, D.; Shah, A.R.; Marcus, D.; Mintun, M.; Morris, J.C.; Holtzman, D.M. Decreased Cerebrospinal Fluid Aβ 42 Correlates with Brain Atrophy in Cognitively Normal Elderly. Ann. Neurol. 2009, 65, 176–183. [Google Scholar] [CrossRef]
- Schindler, S.E.; Bollinger, J.G.; Ovod, V.; Mawuenyega, K.G.; Li, Y.; Gordon, B.A.; Holtzman, D.M.; Morris, J.C.; Benzinger, T.L.S.; Xiong, C.; et al. High-Precision Plasma β-Amyloid 42/40 Predicts Current and Future Brain Amyloidosis. Neurology 2019, 93, e1647-59. [Google Scholar] [CrossRef]
- Kivisäkk, P.; Fatima, H.A.; Cahoon, D.S.; Otieno, B.; Chacko, L.; Minooei, F.; Demos, C.; Stengelin, M.; Sigal, G.; Wohlstadter, J.; et al. Clinical Evaluation of a Novel Plasma PTau217 Electrochemiluminescence Immunoassay in Alzheimer’s Disease. Sci. Rep. 2024, 14, 629. [Google Scholar] [CrossRef]
- Leuzy, A.; Ashton, N.J.; Mattsson-Carlgren, N.; Dodich, A.; Boccardi, M.; Corre, J.; Drzezga, A.; Nordberg, A.; Ossenkoppele, R.; Zetterberg, H.; et al. 2020 Update on the Clinical Validity of Cerebrospinal Fluid Amyloid, Tau, and Phospho-Tau as Biomarkers for Alzheimer’s Disease in the Context of a Structured 5-Phase Development Framework. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2121–2139. [Google Scholar] [CrossRef]
- Li, G.; Sokal, I.; Quinn, J.F.; Leverenz, J.B.; Brodey, M.; Schellenberg, G.D.; Kaye, J.A.; Raskind, M.A.; Zhang, J.; Peskind, E.R.; et al. CSF Tau/Aβ42 Ratio for Increased Risk of Mild Cognitive Impairment: A Follow-up Study. Neurology 2007, 69, 631–639. [Google Scholar] [CrossRef]
- Ossenkoppele, R.; van der Kant, R.; Hansson, O. Tau Biomarkers in Alzheimer’s Disease: Towards Implementation in Clinical Practice and Trials. Lancet Neurol. 2022, 21, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Palmqvist, S.; Janelidze, S.; Quiroz, Y.T.; Zetterberg, H.; Lopera, F.; Stomrud, E.; Su, Y.; Chen, Y.; Serrano, G.E.; Leuzy, A.; et al. Discriminative Accuracy of Plasma Phospho-Tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA 2020, 324, 772. [Google Scholar] [CrossRef]
- Mattsson-Carlgren, N.; Janelidze, S.; Bateman, R.J.; Smith, R.; Stomrud, E.; Serrano, G.E.; Reiman, E.M.; Palmqvist, S.; Dage, J.L.; Beach, T.G.; et al. Soluble P-tau217 Reflects Amyloid and Tau Pathology and Mediates the Association of Amyloid with Tau. EMBO Mol. Med. 2021, 13, e14022. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration (FDA). FDA Clears First Blood Test Used in Diagnosing Alzheimer’s Disease 2025. Available online: https://www.fda.gov/news-events/press-announcements/fda-clears-first-blood-test-used-diagnosing-alzheimers-disease (accessed on 19 May 2025).
- Juganavar, A.; Joshi, A.; Shegekar, T. Navigating Early Alzheimer’s Diagnosis: A Comprehensive Review of Diagnostic Innovations. Cureus 2023, 15, e44937. [Google Scholar] [CrossRef] [PubMed]
- Kiddle, S.J.; Sattlecker, M.; Proitsi, P.; Simmons, A.; Westman, E.; Bazenet, C.; Nelson, S.K.; Williams, S.; Hodges, A.; Johnston, C.; et al. Candidate Blood Proteome Markers of Alzheimer’s Disease Onset and Progression: A Systematic Review and Replication Study. J. Alzheimer’s Dis. 2014, 38, 515–531. [Google Scholar] [CrossRef]
- Jack, C.R.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a Biological Definition of Alzheimer’s Disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef]
- Rhodes, A.; Smithers, N.; Chapman, T.; Parsons, S.; Rees, S. The Generation and Characterisation of Antagonist RNA Aptamers to MCP-1. FEBS Lett. 2001, 506, 85–90. [Google Scholar] [CrossRef]
- Stoltenburg, R.; Nikolaus, N.; Strehlitz, B. Capture-SELEX: Selection of DNA Aptamers for Aminoglycoside Antibiotics. J. Anal. Methods Chem. 2012, 2012, 415697. [Google Scholar] [CrossRef]
- Crivianu-Gaita, V.; Thompson, M. Aptamers, Antibody ScFv, and Antibody Fab’ Fragments: An Overview and Comparison of Three of the Most Versatile Biosensor Biorecognition Elements. Biosens. Bioelectron. 2016, 85, 32–45. [Google Scholar] [CrossRef]
- Lakhin, A.V.; Tarantul, V.Z.; Gening, L. Aptamers: Problems, Solutions and Prospects. Acta Naturae 2013, 5, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Kara, N.; Ayoub, N.; Ilgu, H.; Fotiadis, D.; Ilgu, M. Aptamers Targeting Membrane Proteins for Sensor and Diagnostic Applications. Molecules 2023, 28, 3728. [Google Scholar] [CrossRef]
- Murakami, K.; Izuo, N.; Bitan, G. Aptamers Targeting Amyloidogenic Proteins and Their Emerging Role in Neurodegenerative Diseases. J. Biol. Chem. 2022, 298, 101478. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-L.; Lv, C.; Li, Z.-H.; Jiang, S.; Cai, D.; Liu, S.-S.; Wang, T.; Zhang, K.-H. Analysis of Aptamer-Target Binding and Molecular Mechanisms by Thermofluorimetric Analysis and Molecular Dynamics Simulation. Front. Chem. 2023, 11, 1144347. [Google Scholar] [CrossRef] [PubMed]
- Lohnes, B.J.; Goff, A.J.; Hartwig, U.F.; Poddar, N.K. Enhancing Aptamer Selection in Alzheimer’s Disease: Integrating Structure Prediction and Molecular Dynamics Simulations. Sci. Rep. 2025, 15, 26865. [Google Scholar] [CrossRef]
- Farrar, C.T.; William, C.M.; Hudry, E.; Hashimoto, T.; Hyman, B.T. RNA Aptamer Probes as Optical Imaging Agents for the Detection of Amyloid Plaques. PLoS ONE 2014, 9, e89901. [Google Scholar] [CrossRef]
- Teng, I.-T.; Li, X.; Yadikar, H.A.; Yang, Z.; Li, L.; Lyu, Y.; Pan, X.; Wang, K.K.; Tan, W. Identification and Characterization of DNA Aptamers Specific for Phosphorylation Epitopes of Tau Protein. J. Am. Chem. Soc. 2018, 140, 14314–14323. [Google Scholar] [CrossRef]
- Lee, J.H.; Kang, D.Y.; Lee, T.; Kim, S.U.; Oh, B.K.; Choi, J.W. Signal Enhancement of Surface Plasmon Resonance Based Immunosensor Using Gold Nanoparticle-Antibody Complex for β-Amyloid (1-40) Detection. J. Nanosci. Nanotechnol. 2009, 9, 7155–7160. [Google Scholar] [CrossRef]
- de Oliveira, M.A.S.; Hilt, S.; Chang, C.-W.; Lee, C.; Voss, J.C.; Chan, J.W. Surface-Enhanced Raman Scattering Sensing Platform for Detecting Amyloid-β Peptide Interaction with an Aggregation Inhibitor. Appl. Opt. 2020, 59, 7490–7495. [Google Scholar] [CrossRef]
- Li, F.; Stewart, C.; Yang, S.; Shi, F.; Cui, W.; Zhang, S.; Wang, H.; Huang, H.; Chen, M.; Han, J. Optical Sensor Array for the Early Diagnosis of Alzheimer’s Disease. Front. Chem. 2022, 10, 874864. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Wu, J.; Chai, K.; Hu, X.; Hu, Y.; Shi, S.; Yao, T. A Turn-on Unlabeled Colorimetric Biosensor Based on Aptamer-AuNPs Conjugates for Amyloid-β Oligomer Detection. Talanta 2023, 260, 124649. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cao, Z.; Lu, Y. Functional Nucleic Acid Sensors. Chem. Rev. 2009, 109, 1948–1998. [Google Scholar] [CrossRef]
- Soukup, G.A.; Breaker, R.R. Engineering Precision RNA Molecular Switches. Proc. Natl. Acad. Sci. USA 1999, 96, 3584–3589. [Google Scholar] [CrossRef]
- Xiao, Y.; Lubin, A.A.; Heeger, A.J.; Plaxco, K.W. Label-Free Electronic Detection of Thrombin in Blood Serum by Using an Aptamer-Based Sensor. Angew. Chem. Int. Ed. 2005, 44, 5456–5459. [Google Scholar] [CrossRef]
- Chávez, J.L.; Lyon, W.; Kelley-Loughnane, N.; Stone, M.O. Theophylline Detection Using an Aptamer and DNA-Gold Nanoparticle Conjugates. Biosens. Bioelectron. 2010, 26, 23–28. [Google Scholar] [CrossRef]
- Chai, C.; Xie, Z.; Grotewold, E. SELEX (Systematic Evolution of Ligands by EXponential Enrichment), as a Powerful Tool for Deciphering the Protein–DNA Interaction Space. In Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2011; ISBN 9781617791536. [Google Scholar]
- Liu, Q.; Zhang, W.; Chen, S.; Zhuang, Z.; Zhang, Y.; Jiang, L.; Lin, J.S. SELEX Tool: A Novel and Convenient Gel-Based Diffusion Method for Monitoring of Aptamer-Target Binding. J. Biol. Eng. 2020, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, M.; Nilsen-Hamilton, M.; Ilgu, M.; Berzal-Herranz, A.; Carver, R.J. Aptamer Applications in Neuroscience. Pharmaceuticals 2021, 14, 1260. [Google Scholar] [CrossRef]
- Penner, G.; Lecocq, S.; Chopin, A.; Vedoya, X.; Lista, S.; Vergallo, A.; Cavedo, E.; Lejeune, F.X.; Dubois, B.; Hampel, H.; et al. Aptamarker Prediction of Brain Amyloid-β Status in Cognitively Normal Individuals at Risk for Alzheimer’s Disease. PLoS ONE 2021, 16, e0243902. [Google Scholar] [CrossRef]
- Komarova, N.; Barkova, D.; Kuznetsov, A. Implementation of High-Throughput Sequencing (Hts) in Aptamer Selection Technology. Int. J. Mol. Sci. 2020, 21, 8774. [Google Scholar] [CrossRef]
- Takahashi, M.; Wu, X.; Ho, M.; Chomchan, P.; Rossi, J.J.; Burnett, J.C.; Zhou, J. High Throughput Sequencing Analysis of RNA Libraries Reveals the Influences of Initial Library and PCR Methods on SELEX Efficiency. Sci. Rep. 2016, 6, 33697. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, L.; Zhang, B.-T.; Lu, A.; Wang, Y.; Yu, Y.; Zhang, G. Artificial Intelligence in Aptamer–Target Binding Prediction. Int. J. Mol. Sci. 2021, 22, 3605. [Google Scholar] [CrossRef]
- Sun, D.; Sun, M.; Zhang, J.; Lin, X.; Zhang, Y.; Lin, F.; Zhang, P.; Yang, C.; Song, J. Computational Tools for Aptamer Identification and Optimization. TrAC Trends Anal. Chem. 2022, 157, 116767. [Google Scholar] [CrossRef]
- Fallah, A.; Havaei, S.A.; Sedighian, H.; Kachuei, R.; Fooladi, A.A.I. Prediction of Aptamer Affinity Using an Artificial Intelligence Approach. J. Mater. Chem. B 2024, 12, 8825–8842. [Google Scholar] [CrossRef]
- Kirkpatrick, P. Gliding to Success. Nat. Rev. Drug Discov. 2004, 3, 299. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber Biomolecular Simulation Programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef] [PubMed]
- Bashir, A.; Yang, Q.; Wang, J.; Hoyer, S.; Chou, W.; McLean, C.; Davis, G.; Gong, Q.; Armstrong, Z.; Jang, J.; et al. Machine Learning Guided Aptamer Refinement and Discovery. Nat. Commun. 2021, 12, 2366. [Google Scholar] [CrossRef] [PubMed]
- Bostrom, J.; Lee, C.V.; Haber, L.; Fuh, G. Improving Antibody Binding Affinity and Specificity for Therapeutic Development. In Therapeutic Antibodies: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2009; pp. 353–376. [Google Scholar]
- Božič, B.; Čučnik, S.; Kveder, T.; Rozman, B. Affinity and Avidity of Autoantibodies. In Autoantibodies; Elsevier: Amsterdam, The Netherlands, 2014; pp. 43–49. [Google Scholar]
- Chmura, A.J.; Orton, M.S.; Meares, C.F. Antibodies with Infinite Affinity. Proc. Natl. Acad. Sci. USA 2001, 98, 8480–8484. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Obata, Y.; Sekikawa, A.; Ueda, H.; Izuo, N.; Awano, T.; Takabe, K.; Shimizu, T.; Irie, K. An RNA Aptamer with Potent Affinity for a Toxic Dimer of Amyloid Β42 Has Potential Utility for Histochemical Studies of Alzheimer’s Disease. J. Biol. Chem. 2020, 295, 4870–4880. [Google Scholar] [CrossRef] [PubMed]
- Ilgu, M.; Fazlioglu, R.; Ozturk, M.; Ozsurekci, Y.; Nilsen-Hamilton, M. Aptamers for Diagnostics with Applications for Infectious Diseases. In Recent Advances in Analytical Chemistry; IntechOpen: London, UK, 2019. [Google Scholar]
- Zhou, J.; Rossi, J. Aptamers as Targeted Therapeutics: Current Potential and Challenges. Nat. Rev. Drug Discov. 2017, 16, 181–202. [Google Scholar] [CrossRef]
- Zhang, Y.; Lai, B.S.; Juhas, M. Recent Advances in Aptamer Discovery and Applications. Molecules 2019, 24, 941. [Google Scholar] [CrossRef]
- Lim, Y.C.; Kouzani, A.Z.; Duan, W. Aptasensors: A Review. J. Biomed. Nanotechnol. 2010, 6, 93–105. [Google Scholar] [CrossRef]
- Ostatná, V.; Vaisocherová, H.; Homola, J.; Hianik, T. Effect of the Immobilisation of DNA Aptamers on the Detection of Thrombin by Means of Surface Plasmon Resonance. Anal. Bioanal. Chem. 2008, 391, 1861–1869. [Google Scholar] [CrossRef]
- Radi, A.-E.; Acero Sánchez, J.L.; Baldrich, E.; O’Sullivan, C.K. Reagentless, Reusable, Ultrasensitive Electrochemical Molecular Beacon Aptasensor. J. Am. Chem. Soc. 2006, 128, 117–124. [Google Scholar] [CrossRef]
- Radi, A.-E.; Abd-Ellatief, M.R. Electrochemical Aptasensors: Current Status and Future Perspectives. Diagnostics 2021, 11, 104. [Google Scholar] [CrossRef]
- Vu, C.A.; Chen, W.Y.; Yang, Y.S.; Chan, H.W.H. Improved Biomarker Quantification of Silicon Nanowire Field-Effect Transistor Immunosensors with Signal Enhancement by RNA Aptamer: Amyloid Beta as a Case Study. Sens. Actuators B Chem. 2021, 329, 129150. [Google Scholar] [CrossRef]
- Duan, C.; Jiao, J.; Zheng, J.; Li, D.; Ning, L.; Xiang, Y.; Li, G. Polyvalent Biotinylated Aptamer Scaffold for Rapid and Sensitive Detection of Tau Proteins. Anal. Chem. 2020, 92, 15162–15168. [Google Scholar] [CrossRef] [PubMed]
- Ylera, F.; Lurz, R.; Erdmann, V.A.; Fürste, J.P. Selection of RNA Aptamers to the Alzheimer’s Disease Amyloid Peptide. Biochem. Biophys. Res. Commun. 2002, 290, 1583–1588. [Google Scholar] [CrossRef]
- Takahashi, T.; Tada, K.; Mihara, H. RNA Aptamers Selected against Amyloid β-Peptide (Aβ) Inhibit the Aggregation of Aβ. Mol. Biosyst. 2009, 5, 986–991. [Google Scholar] [CrossRef]
- Rahimi, F.; Murakami, K.; Summers, J.L.; Chen, C.H.B.; Bitan, G. RNA Aptamers Generated against Oligomeric Aβ40 Recognize Common Amyloid Aptatopes with Low Specificity but High Sensitivity. PLoS ONE 2009, 4, e7694. [Google Scholar] [CrossRef]
- Rahimi, F. Aptamers Selected for Recognizing Amyloid β-Protein—A Case for Cautious Optimism. Int. J. Mol. Sci. 2018, 19, 668. [Google Scholar] [CrossRef]
- Obata, Y.; Murakami, K.; Kawase, T.; Hirose, K.; Izuo, N.; Shimizu, T.; Irie, K. Detection of Amyloid β Oligomers with RNA Aptamers in AppNL-G-F/NL-G-FMice: A Model of Arctic Alzheimer’s Disease. ACS Omega 2020, 5, 21531–21537. [Google Scholar] [CrossRef]
- Chen, W.; Gao, G.; Jin, Y.; Deng, C. A Facile Biosensor for Aβ40O Based on Fluorescence Quenching of Prussian Blue Nanoparticles. Talanta 2020, 216, 120930. [Google Scholar] [CrossRef]
- Zhang, Y.; Figueroa-Miranda, G.; Lyu, Z.; Zafiu, C.; Willbold, D.; Offenhäusser, A.; Mayer, D. Monitoring Amyloid-Β Proteins Aggregation Based on Label-Free Aptasensor. Sens. Actuators B Chem. 2019, 288, 535–542. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, Y.; Li, X.; Yue, Q.; Dong, X.; Du, B.; Cao, W.; Wei, Q. Dual-Quenching Electrochemiluminescence Strategy Based on Three-Dimensional Metal-Organic Frameworks for Ultrasensitive Detection of Amyloid-β. Anal. Chem. 2019, 91, 1989–1996. [Google Scholar] [CrossRef]
- Qin, J.; Cho, M.; Lee, Y. Ferrocene-Encapsulated Zn Zeolitic Imidazole Framework (ZIF-8) for Optical and Electrochemical Sensing of Amyloid-β Oligomers and for the Early Diagnosis of Alzheimer’s Disease. ACS Appl. Mater. Interfaces 2019, 11, 11743–11748. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, C.; Li, X.; Zhu, X.; Ye, B.; Xu, M. A Sensitive Aptasensor for the Detection of β-Amyloid Oligomers Based on Metal-Organic Frameworks as Electrochemical Signal Probes. Anal. Methods 2018, 10, 4430–4437. [Google Scholar] [CrossRef]
- Deng, C.; Liu, H.; Si, S.; Zhu, X.; Tu, Q.; Jin, Y.; Xiang, J. An Electrochemical Aptasensor for Amyloid-β Oligomer Based on Double-Stranded DNA as “Conductive Spring”. Microchim. Acta 2020, 187, 239. [Google Scholar] [CrossRef]
- You, M.; Yang, S.; An, Y.; Zhang, F.; He, P. A Novel Electrochemical Biosensor with Molecularly Imprinted Polymers and Aptamer-Based Sandwich Assay for Determining Amyloid-β Oligomer. J. Electroanal. Chem. 2020, 862, 114017. [Google Scholar] [CrossRef]
- Liao, X.; Zhang, C.; Shi, Z.; Shi, H.; Qian, Y.; Gao, F. Signal-on and Label-Free Electrochemical Detection of Amyloid β Oligomers Based on Dual Amplification Induced Hemin/G-Quadruplex Formation. J. Electroanal. Chem. 2020, 878, 114604. [Google Scholar] [CrossRef]
- Ke, H.; Sha, H.; Wang, Y.; Guo, W.; Zhang, X.; Wang, Z.; Huang, C.; Jia, N. Electrochemiluminescence Resonance Energy Transfer System between GNRs and Ru(Bpy)32+: Application in Magnetic Aptasensor for β-Amyloid. Biosens. Bioelectron. 2018, 100, 266–273. [Google Scholar] [CrossRef]
- Koklu, A.; Wustoni, S.; Musteata, V.-E.; Ohayon, D.; Moser, M.; McCulloch, I.; Nunes, S.P.; Inal, S. Microfluidic Integrated Organic Electrochemical Transistor with a Nanoporous Membrane for Amyloid-β Detection. ACS Nano 2021, 15, 8130–8141. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, Y.; Liu, Q. Fluorescent Sensing Platforms for Detecting and Imaging the Biomarkers of Alzheimer’s Disease. Biosensors 2023, 13, 515. [Google Scholar] [CrossRef]
- Jiang, L.-F.; Chen, B.-C.; Chen, B.; Li, X.-J.; Liao, H.-L.; Huang, H.-M.; Guo, Z.-J.; Zhang, W.-Y.; Wu, L. Detection of Aβ Oligomers Based on Magnetic-Field-Assisted Separation of Aptamer-Functionalized Fe3O4 Magnetic Nanoparticles and BaYF5:Yb,Er Nanoparticles as Upconversion Fluorescence Labels. Talanta 2017, 170, 350–357. [Google Scholar] [CrossRef]
- Kong, L.; Zhou, X.; Shi, G.; Yu, Y. Molybdenum Disulfide Nanosheets-Based Fluorescent “off-to-on” Probe for Targeted Monitoring and Inhibition of β-Amyloid Oligomers. Analyst 2020, 145, 6369–6377. [Google Scholar] [CrossRef]
- Yin, Y.; Chen, G.; Gong, L.; Ge, K.; Pan, W.; Li, N.; Machuki, J.O.; Yu, Y.; Geng, D.; Dong, H.; et al. DNAzyme-Powered Three-Dimensional DNA Walker Nanoprobe for Detection Amyloid β-Peptide Oligomer in Living Cells and in Vivo. Anal. Chem. 2020, 92, 9247–9256. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, J.; Yang, G.; He, Y.; Chen, S.; Yuan, R. Ultrasensitive Detection of Amyloid β Oligomers Based on the “DD–A” FRET Binary Probes and Quadrivalent Cruciform DNA Nanostructure-Mediated Cascaded Amplifier. ACS Appl. Mater. Interfaces 2021, 13, 32013–32021. [Google Scholar] [CrossRef] [PubMed]
- Hegnerová, K.; Bocková, M.; Vaisocherová, H.; Krištofiková, Z.; Říčný, J.; Řípová, D.; Homola, J. Surface Plasmon Resonance Biosensors for Detection of Alzheimer Disease Biomarker. Sens. Actuators B Chem. 2009, 139, 69–73. [Google Scholar] [CrossRef]
- Zheng, Y.; Geng, X.; Yang, X.; Li, S.; Liu, Y.; Liu, X.; Wang, Q.; Wang, K.; Jia, R.; Xu, Y. Exploring Interactions of Aptamers with Aβ40 Amyloid Aggregates and Its Application: Detection of Amyloid Aggregates. Anal. Chem. 2020, 92, 2853–2858. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, S.; Song, X.; Wang, H.; Wang, J.; Wang, Y.; Huang, J.; Yu, J. Robust and Universal SERS Sensing Platform for Multiplexed Detection of Alzheimer’s Disease Core Biomarkers Using PAapt-AuNPs Conjugates. ACS Sens. 2019, 4, 2140–2149. [Google Scholar] [CrossRef] [PubMed]
- Amouzadeh Tabrizi, M.; Ferré-Borrull, J.; Marsal, L.F. Highly Sensitive Aptasensor Based on Interferometric Reflectance Spectroscopy for the Determination of Amyloid β as an Alzheimer’s Disease Biomarkers Using Nanoporous Anodic Alumina. Biosens. Bioelectron. 2019, 137, 279–286. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, N.; Zhang, Y.; Liu, B.; Chang, Z.; Zhou, Y.; Hao, Y.; Ye, B.; Xu, M. A Sensitive Gold Nanoparticle-Based Aptasensor for Colorimetric Detection of Aβ1–40 Oligomers. Anal. Methods 2018, 10, 641–645. [Google Scholar] [CrossRef]
- Deng, C.; Liu, H.; Zhang, M.; Deng, H.; Lei, C.; Shen, L.; Jiao, B.; Tu, Q.; Jin, Y.; Xiang, L.; et al. Light-Up Nonthiolated Aptasensor for Low-Mass, Soluble Amyloid-β40 Oligomers at High Salt Concentrations. Anal. Chem. 2018, 90, 1710–1717. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Gu, X.; Yu, B.; Jiang, M. Switchable Electrochemical Aptasensor for Amyloid-β Oligomers Detection Based on Triple Helix Switch Coupling with AuNPs@CuMOF Labeled Signaling Displaced-Probe. Microchim. Acta 2021, 188, 49. [Google Scholar] [CrossRef]
- Tao, D.; Xie, C.; Fu, S.; Rong, S.; Song, S.; Ye, H.; Jaffrezic-Renault, N.; Guo, Z. Thionine-Functionalized Three-Dimensional Carbon Nanomaterial-Based Aptasensor for Analysis of Aβ Oligomers in Serum. Anal. Chim. Acta 2021, 1183, 338990. [Google Scholar] [CrossRef]
- Tsukakoshi, K.; Abe, K.; Sode, K.; Ikebukuro, K. Selection of DNA Aptamers That Recognize α-Synuclein Oligomers Using a Competitive Screening Method. Anal. Chem. 2012, 84, 5542–5547. [Google Scholar] [CrossRef]
- Yan, X.; Pan, Y.; Ji, L.; Gu, J.; Hu, Y.; Xia, Y.; Li, C.; Zhou, X.; Yang, D.; Yu, Y. Multifunctional Metal-Organic Framework as a Versatile Nanoplatform for Aβ Oligomer Imaging and Chemo-Photothermal Treatment in Living Cells. Anal. Chem. 2021, 93, 13823–13834. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.J.; Lee, C.H.; Lim, J.; Jang, J.; Kang, H.; Park, C.B. Photomodulating Carbon Dots for Spatiotemporal Suppression of Alzheimer’s β-Amyloid Aggregation. ACS Nano 2020, 14, 16973–16983. [Google Scholar] [CrossRef]
- Liang, Z.; Li, X.; Luo, X.; Luo, H.; Chen, Y.; Cai, M.; Zhong, X.; Fang, Y.; Guo, T.; Shi, Y.; et al. The Aptamer Ob2, a Novel AChE Inhibitor, Restores Cognitive Deficits and Alleviates Amyloidogenesis in 5×FAD Transgenic Mice. Mol. Ther. Nucleic Acids 2022, 28, 114–123. [Google Scholar] [CrossRef]
- Korecka, M.; Shaw, L.M. Mass Spectrometry-based Methods for Robust Measurement of Alzheimer’s Disease Biomarkers in Biological Fluids. J. Neurochem. 2021, 159, 211–233. [Google Scholar] [CrossRef]
- Lisi, S.; Fiore, E.; Scarano, S.; Pascale, E.; Boehman, Y.; Ducongé, F.; Chierici, S.; Minunni, M.; Peyrin, E.; Rav-elet, C. Non-SELEX Isolation of DNA Aptamers for the Homogeneous-Phase Fluorescence Anisotropy Sens-ing of Tau Proteins. Anal. Chim. Acta 2018, 1038, 173–181. [Google Scholar] [CrossRef]
- Tao, D.; Shui, B.; Gu, Y.; Cheng, J.; Zhang, W.; Jaffrezic-Renault, N.; Song, S.; Guo, Z. Development of a Label-Free Electrochemical Aptasensor for the Detection of Tau381 and Its Preliminary Application in AD and Non-AD Patients’ Sera. Biosensors 2019, 9, 84. [Google Scholar] [CrossRef] [PubMed]
- Krylova, S.M.; Musheev, M.; Nutiu, R.; Li, Y.; Lee, G.; Krylov, S.N. Tau Protein Binds Single-stranded DNA Sequence Specifically—The Proof Obtained in Vitro with Non-equilibrium Capillary Electrophoresis of Equilibrium Mixtures. FEBS Lett. 2005, 579, 1371–1375. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Wark, A.W.; Lee, H.J. Femtomolar Detection of Tau Proteins in Undiluted Plasma Using Surface Plasmon Resonance. Anal. Chem. 2016, 88, 7793–7799. [Google Scholar] [CrossRef] [PubMed]
- Shui, B.; Tao, D.; Cheng, J.; Mei, Y.; Jaffrezic-Renault, N.; Guo, Z. A Novel Electrochemical Aptamer–Antibody Sandwich Assay for the Detection of Tau-381 in Human Serum. Analyst 2018, 143, 3549–3554. [Google Scholar] [CrossRef]
- Hun, X.; Kong, X. An Enzyme Linked Aptamer Photoelectrochemical Biosensor for Tau-381 Protein Using AuNPs/MoSe2 as Sensing Material. J. Pharm. Biomed. Anal. 2021, 192, 113666. [Google Scholar] [CrossRef]
- Ahn, J.-S.; Jang, C.-H. Real-Time Detection of Tau-381 Protein Using Liquid Crystal-Based Sensors for Alzheimer’s Disease Diagnosis. Colloids Surf. B Biointerfaces 2025, 245, 114211. [Google Scholar] [CrossRef]
- Ziu, I.; Laryea, E.T.; Alashkar, F.; Wu, C.G.; Martic, S. A Dip-and-Read Optical Aptasensor for Detection of Tau Protein. Anal. Bioanal. Chem. 2020, 412, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Milà-Alomà, M.; Ashton, N.J.; Shekari, M.; Salvadó, G.; Ortiz-Romero, P.; Montoliu-Gaya, L.; Benedet, A.L.; Karikari, T.K.; Lantero-Rodriguez, J.; Vanmechelen, E.; et al. Plasma P-Tau231 and p-Tau217 as State Markers of Amyloid-β Pathology in Preclinical Alzheimer’s Disease. Nat. Med. 2022, 28, 1797–1801. [Google Scholar] [CrossRef]
- Kichkailo, A.S.; Narodov, A.A.; Komarova, M.A.; Zamay, T.N.; Zamay, G.S.; Kolovskaya, O.S.; Erakhtin, E.E.; Glazyrin, Y.E.; Veprintsev, D.V.; Moryachkov, R.V.; et al. Development of DNA Aptamers for Visualization of Glial Brain Tumors and Detection of Circulating Tumor Cells. Mol. Ther. Nucleic Acids 2023, 32, 267–288. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; Collins, J.M.; Gell, D.A.; Perry, S.; Breadmore, M.C.; Shigdar, S.; King, A.E. Isolation and Identification of the High-Affinity DNA Aptamer Target to the Brain-Derived Neurotrophic Factor (BDNF). ACS Chem. Neurosci. 2024, 15, 346–356. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, J.; Jia, W.; Xiong, H.; Qiu, W.; Xu, R.; Lin, Y. BACE1 Aptamer-Modified Tetrahedral Framework Nucleic Acid to Treat Alzheimer’s Disease in an APP-PS1 Animal Model. ACS Appl. Mater. Interfaces 2022, 14, 44228–44238. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Cheng, Y.; Zhang, S.; Zheng, X.; Wu, J. A Biolayer Interferometry-Based, Aptamer–Antibody Receptor Pair Biosensor for Real-Time, Sensitive, and Specific Detection of the Disease Biomarker TNF-α. Chem. Eng. J. 2022, 433, 133268. [Google Scholar] [CrossRef]
- Salehirozveh, M.; Bonné, R.; Kumar, P.; Abazar, F.; Dehghani, P.; Mijakovic, I.; Roy, V.A.L. Enhanced Detection of Brain-Derived Neurotrophic Factor (BDNF) Using a Reduced Graphene Oxide Field-Effect Transistor Aptasensor. Nanoscale 2025, 17, 4543–4555. [Google Scholar] [CrossRef]
- Orava, E.W.; Jarvik, N.; Shek, Y.L.; Sidhu, S.S.; Gariépy, J. A Short DNA Aptamer That Recognizes TNFα and Blocks Its Activity in Vitro. ACS Chem. Biol. 2013, 8, 170–178. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Q.; Revzin, A. An Aptasensor for Electrochemical Detection of Tumor Necrosis Factor in Human Blood. Analyst 2013, 138, 4321. [Google Scholar] [CrossRef]
- De Silva, T.; Fawzy, M.; Hasani, A.; Ghanbari, H.; Abnavi, A.; Askar, A.; Ling, Y.; Mohammadzadeh, M.R.; Kabir, F.; Ahmadi, R.; et al. Ultrasensitive Rapid Cytokine Sensors Based on Asymmetric Geometry Two-Dimensional MoS2 Diodes. Nat. Commun. 2022, 13, 7593. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Noh, S.; Park, J.A.; Park, S.-C.; Park, S.J.; Lee, J.-H.; Ahn, J.-H.; Lee, T. Recent Advances in Aptasensor for Cytokine Detection: A Review. Sensors 2021, 21, 8491. [Google Scholar] [CrossRef] [PubMed]
- Majdinasab, M.; Marty, J.L. Recent Advances in Electrochemical Aptasensors for Detection of Biomarkers. Pharmaceuticals 2022, 15, 995. [Google Scholar] [CrossRef] [PubMed]
- Ambros, V. A Hierarchy of Regulatory Genes Controls a Larva-to-Adult Developmental Switch in C. Elegans. Cell 1989, 57, 49–57. [Google Scholar] [CrossRef]
- Ambros, V.; Horvitz, H.R. Heterochronic Mutants of the Nematode Caenorhabditis Elegans. Science (1979) 1984, 226, 409–416. [Google Scholar] [CrossRef]
- Chu, H.; Kohane, D.S.; Langer, R. RNA Therapeutics—The Potential Treatment for Myocardial Infarction. Regen. Ther. 2016, 4, 83–91. [Google Scholar] [CrossRef]
- Bushati, N.; Cohen, S.M. MicroRNA Functions. Annu. Rev. Cell Dev. Biol. 2007, 23, 175–205. [Google Scholar] [CrossRef]
- Hébert, S.S.; Horré, K.; Nicolaï, L.; Papadopoulou, A.S.; Mandemakers, W.; Silahtaroglu, A.N.; Kauppinen, S.; Delacourte, A.; De Strooper, B. Loss of MicroRNA Cluster MiR-29a/b-1 in Sporadic Alzheimer’s Disease Correlates with Increased BACE1/β-Secretase Expression. Proc. Natl. Acad. Sci. USA 2008, 105, 6415–6420. [Google Scholar] [CrossRef]
- Liu, C.-G.; Zhao, Y.; Lu, Y.; Wang, P.-C. ABCA1-Labeled Exosomes in Serum Contain Higher MicroRNA-193b Levels in Alzheimer’s Disease. Biomed. Res. Int. 2021, 2021, 5450397. [Google Scholar] [CrossRef]
- Miglione, A.; Raucci, A.; Amato, J.; Marzano, S.; Pagano, B.; Raia, T.; Lucarelli, M.; Fuso, A.; Cinti, S. Printed Electrochemical Strip for the Detection of MiRNA-29a: A Possible Biomarker Related to Alzheimer’s Disease. Anal. Chem. 2022, 94, 15558–15563. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Sun, Y.; Zhang, J.; Luo, F.; Ma, H.; Guan, M.; Feng, J.; Dong, X. Dumbbell Aptamer Sensor Based on Dual Biomarkers for Early Detection of Alzheimer’s Disease. ACS Appl. Mater. Interfaces 2023, 15, 16394–16407. [Google Scholar] [CrossRef]
Target | Aptamer | Sequence | Reference |
---|---|---|---|
Tau protein isoforms (441, 381, 352, 383) | DNA aptamer 4618 | 5′-GCCTGTTGTGAGCCTCCTGTCGAACATGTTAATATTCCATCACCGACTTCTTTCTTGAGCGTTTATTCTTGTCTCCC-3′ | [129] |
DNA aptamer 4133 | 5′-GCCTGTTGTGAGCCTCCTGTCGAACCTGTCAGGTCTTTGACGAGGCTTTTCTTCTTGAGCGTTTATTCTTGTCTCCC-3′ | ||
DNA aptamer 3914 | 5′-GCCTGTTGTGAGCCTCCTGTCGAACGGTTCTTAAGGCGTCCGTCTTCATTTGTTTTGAGCGTTTATTCTTGTCTCCC-3′ | ||
DNA aptamer 3146 | 5′-GCCTGTTGTGAGCCTCCTGTCGAACCTTTGGGGTGGCTTGACGAAGAAAGTAGTTGAGCGTTTATTCTTGTCTCCC-3′ | ||
DNA aptamer 433 | 5′-GCCTGTTGTGAGCCTCCTGTCGAAGGTGTCGACACCAGCCTTTAACCCTGTGTCTTGAGCGTTTATTCTTGTCTCCC-3′ | ||
Tau 381 | ssDNA-aptamer | 5′-GCGGAGCGTGG CAGG-3′ | [130] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsipis, G.; Tzekaki, E.E.; Iasonidou, S.; Pantazaki, A.A. The Diagnostic and Therapeutic Potential of Oligonucleotide Aptamers in Alzheimer’s Disease. Cells 2025, 14, 1424. https://doi.org/10.3390/cells14181424
Katsipis G, Tzekaki EE, Iasonidou S, Pantazaki AA. The Diagnostic and Therapeutic Potential of Oligonucleotide Aptamers in Alzheimer’s Disease. Cells. 2025; 14(18):1424. https://doi.org/10.3390/cells14181424
Chicago/Turabian StyleKatsipis, Georgios, Eleni E. Tzekaki, Sophia Iasonidou, and Anastasia A. Pantazaki. 2025. "The Diagnostic and Therapeutic Potential of Oligonucleotide Aptamers in Alzheimer’s Disease" Cells 14, no. 18: 1424. https://doi.org/10.3390/cells14181424
APA StyleKatsipis, G., Tzekaki, E. E., Iasonidou, S., & Pantazaki, A. A. (2025). The Diagnostic and Therapeutic Potential of Oligonucleotide Aptamers in Alzheimer’s Disease. Cells, 14(18), 1424. https://doi.org/10.3390/cells14181424