Targeting the Eye: RNA-Based Therapies, Interferences, and Delivery Strategies
Abstract
1. Introduction
2. Posterior Eye Diseases and Ocular Delivery
2.1. Anatomy of the Eye
2.2. Posterior Eye Diseases
2.3. Ocular Drug Delivery
2.4. RNA Delivery
2.5. Particulate Systems for Ocular Delivery
2.6. Nanosystems for Ocular RNA Therapeutics
2.6.1. Polymeric Nanocarriers
2.6.2. Lipid Nanocarriers
2.6.3. Inorganic Nanocarriers
2.6.4. Biological Nanocarriers
2.6.5. Others: RNA Nanoparticles
3. RNA-Based Approach to Study the Mechanisms of Eye Diseases
3.1. Small Interfering RNA (siRNA)
3.2. MicroRNA (miRNA) and Short Hairpin RNA (shRNA)
4. RNA-Based Approach to Treat Eye Diseases
4.1. Small Interfering RNA (siRNA) Treatments
4.2. RNA Interference by microRNA (miRNA) and Short Hairpin RNA (shRNA)
4.3. RNA Aptamers
4.4. Antisense Oligonucleotides (ASO)
4.5. Other Therapeutics
4.6. Challenges and Future Direction in RNA Development for Eye Diseases
5. Clinical Trials of RNA Therapeutics for Eye Disease Treatments
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Williams, M.A.; McKay, G.J.; Chakravarthy, U. Complement inhibitors for age-related macular degeneration. Cochrane Database Syst. Rev. 2014, 2014, CD009300. [Google Scholar] [CrossRef]
- Ni, X.; Castanares, M.; Mukherjee, A.; Lupold, S.E. Nucleic acid aptamers: Clinical applications and promising new horizons. Curr. Med. Chem. 2011, 18, 4206–4214. [Google Scholar] [CrossRef]
- Gupta, A.; Kafetzis, K.N.; Tagalakis, A.D.; Yu-Wai-Man, C. RNA therapeutics in ophthalmology—Translation to clinical trials. Exp. Eye Res. 2021, 205, 108482. [Google Scholar] [CrossRef] [PubMed]
- Halloy, F.; Biscans, A.; Bujold, K.E.; Debacker, A.; Hill, A.C.; Lacroix, A.; Luige, O.; Stromberg, R.; Sundstrom, L.; Vogel, J.; et al. Innovative developments and emerging technologies in RNA therapeutics. RNA Biol. 2022, 19, 313–332. [Google Scholar] [CrossRef] [PubMed]
- Booth, B.J.; Nourreddine, S.; Katrekar, D.; Savva, Y.; Bose, D.; Long, T.J.; Huss, D.J.; Mali, P. RNA editing: Expanding the potential of RNA therapeutics. Mol. Ther. 2023, 31, 1533–1549. [Google Scholar] [CrossRef] [PubMed]
- Congdon, N.; O’Colmain, B.; Klaver, C.C.; Klein, R.; Muñoz, B.; Friedman, D.S.; Kempen, J.; Taylor, H.R.; Mitchell, P.; Eye Diseases Prevalence Research Group. Causes and prevalence of visual impairment among adults in the United States. Arch. Ophthalmol. 2004, 122, 477–485. [Google Scholar] [CrossRef]
- Kanwar, J.R.; Shankaranarayanan, J.S.; Gurudevan, S.; Kanwar, R.K. Aptamer-based therapeutics of the past, present and future: From the perspective of eye-related diseases. Drug Discov. Today 2014, 19, 1309–1321. [Google Scholar] [CrossRef]
- Witmer, A.N.; Vrensen, G.F.J.M.; Van Noorden, C.J.F.; Schlingemann, R.O. Vascular endothelial growth factors and angiogenesis in eye disease. Prog. Retin. Eye Res. 2003, 22, 1–29. [Google Scholar] [CrossRef]
- Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in signaling and disease: Beyond discovery and development. Cell 2019, 176, 1248–1264. [Google Scholar] [CrossRef]
- Asahara, T.; Chen, D.; Takahashi, T.; Fujikawa, K.; Kearney, M.; Magner, M.; Yancopoulos, G.D.; Isner, J.M. Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ. Res. 1998, 83, 233–240. [Google Scholar] [CrossRef]
- White, R.R.; Shan, S.; Rusconi, C.P.; Shetty, G.; Dewhirst, M.W.; Kontos, C.D.; Sullenger, B.A. Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2. Proc. Natl. Acad. Sci. USA 2003, 100, 5028–5033. [Google Scholar] [CrossRef] [PubMed]
- Akwii, R.G.; Sajib, M.S.; Zahra, F.T.; Mikelis, C.M. Role of Angiopoietin-2 in vascular physiology and pathophysiology. Cells 2019, 8, 471. [Google Scholar] [CrossRef] [PubMed]
- Oliner, J.; Min, H.; Leal, J.; Yu, D.; Rao, S.; You, E.; Tang, X.; Kim, H.; Meyer, S.; Han, S.J.; et al. Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell 2004, 6, 507–516. [Google Scholar] [CrossRef]
- Yu, X.; Sha, J.; Xiang, S.; Qin, S.; Conrad, P.; Ghosh, S.K.; Weinberg, A.; Ye, F. Suppression of KSHV-induced angiopoietin-2 inhibits angiogenesis, infiltration of inflammatory cells, and tumor growth. Cell Cycle 2016, 15, 2053–2065. [Google Scholar] [CrossRef]
- Shirley, M. Faricimab: First approval. Drugs 2022, 82, 825–830. [Google Scholar] [CrossRef]
- Edelhauser, H.F.; Rowe-Rendleman, C.L.; Robinson, M.R.; Dawson, D.G.; Chader, G.J.; Grossniklaus, H.E.; Rittenhouse, K.D.; Wilson, C.G.; Weber, D.A.; Kuppermann, B.D.; et al. Ophthalmic drug delivery systems for the treatment of retinal diseases: Basic research to clinical applications. Investig. Ophthalmol. Vis. Sci. 2010, 51, 5403–5420. [Google Scholar] [CrossRef] [PubMed]
- Ghate, D.; Edelhauser, H.F. Ocular drug delivery. Expert. Opin. Drug Deliv. 2006, 3, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Robinson, M.R. Novel drug delivery systems for retinal diseases: A review. Ophthalmic Res. 2009, 41, 124–135. [Google Scholar] [CrossRef]
- Hartman, R.R.; Kompella, U.B. Intravitreal, subretinal, and suprachoroidal injections: Evolution of microneedles for drug delivery. J. Ocul. Pharmacol. Ther. 2018, 34, 141–153. [Google Scholar] [CrossRef]
- Araujo, J.; Gonzalez, E.; Egea, M.A.; Garcia, M.L.; Souto, E.B. Nanomedicines for ocular NSAIDs: Safety on drug delivery. Nanomedicine 2009, 5, 394–401. [Google Scholar] [CrossRef]
- Zimmer, A.; Kreuter, J. Microspheres and nanoparticles used in ocular delivery systems. Adv. Drug Deliv. Rev. 1995, 16, 61–73. [Google Scholar] [CrossRef]
- Gaudana, R.; Jwala, J.; Boddu, S.H.; Mitra, A.K. Recent perspectives in ocular drug delivery. Pharm. Res. 2009, 26, 1197–1216. [Google Scholar] [CrossRef] [PubMed]
- Del Amo, E.M.; Urtti, A. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov. Today 2008, 13, 135–143. [Google Scholar] [CrossRef]
- Frenkel, R.E.; Haji, S.A.; La, M.; Frenkel, M.P.; Reyes, A. A protocol for the retina surgeon’s safe initial intravitreal injections. Clin. Ophthalmol. 2010, 4, 1279–1285. [Google Scholar] [CrossRef]
- Ausayakhun, S.; Yuvaves, P.; Ngamtiphakom, S.; Prasitsilp, J. Treatment of cytomegalovirus retinitis in AIDS patients with intravitreal ganciclovir. J. Med. Assoc. Thai 2005, 88 (Suppl. 9), S15–S20. [Google Scholar] [PubMed]
- Zhu, Y.; Zhu, L.; Wang, X.; Jin, H. RNA-based therapeutics: An overview and prospectus. Cell Death Dis. 2022, 13, 644. [Google Scholar] [CrossRef] [PubMed]
- Dowdy, S.F. Overcoming cellular barriers for RNA therapeutics. Nat. Biotechnol. 2017, 35, 222–229. [Google Scholar] [CrossRef]
- Crooke, S.T.; Witztum, J.L.; Bennett, C.F.; Baker, B.F. RNA-targeted therapeutics. Cell Metab. 2018, 27, 714–739. [Google Scholar] [CrossRef]
- Burnett, J.C.; Rossi, J.J. RNA-based therapeutics: Current progress and future prospects. Chem. Biol. 2012, 19, 60–71. [Google Scholar] [CrossRef]
- Alshaikh, R.A.; Waeber, C.; Ryan, K.B. Polymer based sustained drug delivery to the ocular posterior segment: Barriers and future opportunities for the treatment of neovascular pathologies. Adv. Drug Deliv. Rev. 2022, 187, 114342. [Google Scholar] [CrossRef]
- Mainardes, R.M.; Urban, M.C.; Cinto, P.O.; Khalil, N.M.; Chaud, M.V.; Evangelista, R.C.; Gremiao, M.P. Colloidal carriers for ophthalmic drug delivery. Curr. Drug Targets 2005, 6, 363–371. [Google Scholar] [CrossRef]
- Motwani, S.K.; Chopra, S.; Talegaonkar, S.; Kohli, K.; Ahmad, F.J.; Khar, R.K. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: Formulation, optimisation and in vitro characterisation. Eur. J. Pharm. Biopharm. 2008, 68, 513–525. [Google Scholar] [CrossRef]
- Pepic, I.; Hafner, A.; Lovric, J.; Pirkic, B.; Filipovic-Grcic, J. A nonionic surfactant/chitosan micelle system in an innovative eye drop formulation. J. Pharm. Sci. 2010, 99, 4317–4325. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, Y.; Li, Y.; Yang, X.; Zhang, P.; Hou, H.; Shi, Y.; Song, C. Inhibitory efficacy of intravitreal dexamethasone acetate-loaded PLGA nanoparticles on choroidal neovascularization in a laser-induced rat model. J. Ocul. Pharmacol. Ther. 2007, 23, 527–540. [Google Scholar] [CrossRef]
- Zhang, X.P.; Sun, J.G.; Yao, J.; Shan, K.; Liu, B.H.; Yao, M.D.; Ge, H.M.; Jiang, Q.; Zhao, C.; Yan, B. Effect of nanoencapsulation using poly (lactide-co-glycolide) (PLGA) on anti-angiogenic activity of bevacizumab for ocular angiogenesis therapy. Biomed. Pharmacother. 2018, 107, 1056–1063. [Google Scholar] [CrossRef]
- Seyfoddin, A.; Shaw, J.; Al-Kassas, R. Solid lipid nanoparticles for ocular drug delivery. Drug Deliv. 2010, 17, 467–489. [Google Scholar] [CrossRef] [PubMed]
- Souto, E.B.; Doktorovova, S.; Gonzalez-Mira, E.; Egea, M.A.; Garcia, M.L. Feasibility of lipid nanoparticles for ocular delivery of anti-inflammatory drugs. Curr. Eye Res. 2010, 35, 537–552. [Google Scholar] [CrossRef]
- Tong, Y.C.; Chang, S.F.; Kao, W.W.; Liu, C.Y.; Liaw, J. Polymeric micelle gene delivery of bcl-xL via eye drop reduced corneal apoptosis following epithelial debridement. J. Control. Release 2010, 147, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Bochot, A.; Fattal, E. Liposomes for intravitreal drug delivery: A state of the art. J. Control. Release 2012, 161, 628–634. [Google Scholar] [CrossRef]
- Kaur, I.P.; Rana, C.; Singh, H. Development of effective ocular preparations of antifungal agents. J. Ocul. Pharmacol. Ther. 2008, 24, 481–493. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, M.H.; Jo, D.H.; Yu, Y.S.; Lee, T.G.; Kim, J.H. The inhibition of retinal neovascularization by gold nanoparticles via suppression of VEGFR-2 activation. Biomaterials 2011, 32, 1865–1871. [Google Scholar] [CrossRef] [PubMed]
- Masse, F.; Ouellette, M.; Lamoureux, G.; Boisselier, E. Gold nanoparticles in ophthalmology. Med. Res. Rev. 2019, 39, 302–327. [Google Scholar] [CrossRef]
- Unnikrishnan, G.; Joy, A.; Megha, M.; Kolanthai, E.; Senthilkumar, M. Exploration of inorganic nanoparticles for revolutionary drug delivery applications: A critical review. Discov. Nano 2023, 18, 157. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, T.; Li, J.; Tao, Y. Advances in development of exosomes for ophthalmic therapeutics. Adv. Drug Deliv. Rev. 2023, 199, 114899. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Li, S.K.; Liu, H.; Liu, C.Y.; LaSance, K.; Haque, F.; Shu, D.; Guo, P. Ocular delivery of pRNA nanoparticles: Distribution and clearance after subconjunctival injection. Pharm. Res. 2014, 31, 1046–1058. [Google Scholar] [CrossRef]
- Zhong, C.; Shi, Z.; Binzel, D.W.; Jin, K.; Li, X.; Guo, P.; Li, S.K. Posterior eye delivery of angiogenesis-inhibiting RNA nanoparticles via subconjunctival injection. Int. J. Pharm. 2024, 657, 124151. [Google Scholar] [CrossRef]
- Fattal, E.; Bochot, A. Ocular delivery of nucleic acids: Antisense oligonucleotides, aptamers and siRNA. Adv. Drug Deliv. Rev. 2006, 58, 1203–1223. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, Y.; Khan, M.M.; Xiao, F.; Chen, W.; Tao, W.; Yao, K.; Kong, N. Ocular RNA nanomedicine: Engineered delivery nanoplatforms in treating eye diseases. Trends Biotechnol. 2024, 42, 1439–1452. [Google Scholar] [CrossRef]
- Xiao, Y.; Tang, Z.; Huang, X.; Chen, W.; Zhou, J.; Liu, H.; Liu, C.; Kong, N.; Tao, W. Emerging mRNA technologies: Delivery strategies and biomedical applications. Chem. Soc. Rev. 2022, 51, 3828–3845. [Google Scholar] [CrossRef] [PubMed]
- Saiding, Q.; Zhang, Z.; Chen, S.; Xiao, F.; Chen, Y.; Li, Y.; Zhen, X.; Khan, M.M.; Chen, W.; Koo, S.; et al. Nano-bio interactions in mRNA nanomedicine: Challenges and opportunities for targeted mRNA delivery. Adv. Drug Deliv. Rev. 2023, 203, 115116. [Google Scholar] [CrossRef]
- Chaharband, F.; Daftarian, N.; Kanavi, M.R.; Varshochian, R.; Hajiramezanali, M.; Norouzi, P.; Arefian, E.; Atyabi, F.; Dinarvand, R. Trimethyl chitosan-hyaluronic acid nano-polyplexes for intravitreal VEGFR-2 siRNA delivery: Formulation and in vivo efficacy evaluation. Nanomedicine 2020, 26, 102181. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, J.S.; Alqahtani, F.Y.; Aleanizy, F.S.; Radwan, A.A.; Bari, A.; Alqahtani, Q.H.; Abdelhady, H.G.; Alsarra, I. MicroRNA-539-5p-loaded PLGA nanoparticles grafted with iRGD as a targeting treatment for choroidal neovascularization. Pharmaceutics 2022, 14, 243. [Google Scholar] [CrossRef]
- Tan, G.; Liu, D.; Zhu, R.; Pan, H.; Li, J.; Pan, W. A core-shell nanoplatform as a nonviral vector for targeted delivery of genes to the retina. Acta Biomater. 2021, 134, 605–620. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.; Geetha, K.M. Lipid nanoparticles in the development of mRNA vaccines for COVID-19. J. Drug Deliv. Sci. Technol. 2022, 74, 103553. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021, 6, 1078–1094. [Google Scholar] [CrossRef]
- Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid nanoparticles–From liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 2021, 15, 16982–17015. [Google Scholar] [CrossRef]
- Patel, S.; Ryals, R.C.; Weller, K.K.; Pennesi, M.E.; Sahay, G. Lipid nanoparticles for delivery of messenger RNA to the back of the eye. J. Control. Release 2019, 303, 91–100. [Google Scholar] [CrossRef]
- Hagigit, T.; Abdulrazik, M.; Valamanesh, F.; Behar-Cohen, F.; Benita, S. Ocular antisense oligonucleotide delivery by cationic nanoemulsion for improved treatment of ocular neovascularization: An in-vivo study in rats and mice. J. Control. Release 2012, 160, 225–231. [Google Scholar] [CrossRef]
- Mitra, M.; Kandalam, M.; Rangasamy, J.; Shankar, B.; Maheswari, U.K.; Swaminathan, S.; Krishnakumar, S. Novel epithelial cell adhesion molecule antibody conjugated polyethyleneimine-capped gold nanoparticles for enhanced and targeted small interfering RNA delivery to retinoblastoma cells. Mol. Vis. 2013, 19, 1029–1038. [Google Scholar]
- Wang, Y.; Shahi, P.K.; Wang, X.; Xie, R.; Zhao, Y.; Wu, M.; Roge, S.; Pattnaik, B.R.; Gong, S. In vivo targeted delivery of nucleic acids and CRISPR genome editors enabled by GSH-responsive silica nanoparticles. J. Control. Release 2021, 336, 296–309. [Google Scholar] [CrossRef]
- Wang, Y.; Shahi, P.K.; Xie, R.; Zhang, H.; Abdeen, A.A.; Yodsanit, N.; Ma, Z.; Saha, K.; Pattnaik, B.R.; Gong, S. A pH-responsive silica-metal-organic framework hybrid nanoparticle for the delivery of hydrophilic drugs, nucleic acids, and CRISPR-Cas9 genome-editing machineries. J. Control. Release 2020, 324, 194–203. [Google Scholar] [CrossRef]
- Zhou, T.; He, C.; Lai, P.; Yang, Z.; Liu, Y.; Xu, H.; Lin, X.; Ni, B.; Ju, R.; Yi, W.; et al. miR-204-containing exosomes ameliorate GVHD-associated dry eye disease. Sci. Adv. 2022, 8, eabj9617. [Google Scholar] [CrossRef]
- Zhao, W.; He, X.; Liu, R.; Ruan, Q. Accelerating corneal wound healing using exosome-mediated targeting of NF-κB c-Rel. Inflamm. Regen. 2023, 43, 6. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, F.; Qiu, Y.; Wang, S.; Li, F.; Zhao, J.; Pan, C.; Tao, Y.; Yu, D.; Wei, W. Reduction of choroidal neovascularization via cleavable VEGF antibodies conjugated to exosomes derived from regulatory T cells. Nat. Biomed. Eng. 2021, 5, 968–982. [Google Scholar] [CrossRef]
- Bao, H.; Tian, Y.; Wang, H.; Ye, T.; Wang, S.; Zhao, J.; Qiu, Y.; Li, J.; Pan, C.; Ma, G.; et al. Exosome-loaded degradable polymeric microcapsules for the treatment of vitreoretinal diseases. Nat. Biomed. Eng. 2024, 8, 1436–1452. [Google Scholar] [CrossRef]
- Fischer, M.D.; Ochakovski, G.A.; Beier, B.; Seitz, I.P.; Vaheb, Y.; Kortuem, C.; Reichel, F.F.L.; Kuehlewein, L.; Kahle, N.A.; Peters, T.; et al. Efficacy and safety of retinal gene therapy using adeno-associated virus vector for patients with choroideremia: A randomized clinical trial. JAMA Ophthalmol. 2019, 137, 1247–1254. [Google Scholar] [CrossRef]
- Ghazi, N.G.; Abboud, E.B.; Nowilaty, S.R.; Alkuraya, H.; Alhommadi, A.; Cai, H.; Hou, R.; Deng, W.T.; Boye, S.L.; Almaghamsi, A.; et al. Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: Results of a phase I trial. Hum. Genet. 2016, 135, 327–343. [Google Scholar] [CrossRef] [PubMed]
- Binzel, D.W.; Khisamutdinov, E.F.; Guo, P. Entropy-driven one-step formation of Phi29 pRNA 3WJ from three RNA fragments. Biochemistry 2014, 53, 2221–2231. [Google Scholar] [CrossRef] [PubMed]
- Binzel, D.W.; Li, X.; Burns, N.; Khan, E.; Lee, W.J.; Chen, L.C.; Ellipilli, S.; Miles, W.; Ho, Y.S.; Guo, P. Thermostability, tunability, and tenacity of RNA as rubbery anionic polymeric materials in nanotechnology and nanomedicine-specific cancer targeting with undetectable toxicity. Chem. Rev. 2021, 121, 7398–7467. [Google Scholar] [CrossRef]
- Shu, Y.; Pi, F.; Sharma, A.; Rajabi, M.; Haque, F.; Shu, D.; Leggas, M.; Evers, B.M.; Guo, P. Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv. Drug Deliv. Rev. 2014, 66, 74–89. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Li, S.K.; Charoenputtakun, P.; Liu, C.Y.; Jasinski, D.; Guo, P. RNA nanoparticle distribution and clearance in the eye after subconjunctival injection with and without thermosensitive hydrogels. J. Control. Release 2018, 270, 14–22. [Google Scholar] [CrossRef]
- Hu, B.; Zhong, L.; Weng, Y.; Peng, L.; Huang, Y.; Zhao, Y.; Liang, X.J. Therapeutic siRNA: State of the art. Signal Transduct. Target. Ther. 2020, 5, 101. [Google Scholar] [CrossRef]
- Chen, X.L.; Bai, Y.J.; Hu, Q.R.; Li, S.S.; Huang, L.Z.; Li, X.X. Small interfering RNA targeted to ASPP2 promotes progression of experimental proliferative vitreoretinopathy. Mediat. Inflamm. 2016, 2016, 7920631. [Google Scholar] [CrossRef]
- Manavski, Y.; Carmona, G.; Bennewitz, K.; Tang, Z.; Zhang, F.; Sakurai, A.; Zeiher, A.M.; Gutkind, J.S.; Li, X.; Kroll, J.; et al. Brag2 differentially regulates β1- and β3-integrin-dependent adhesion in endothelial cells and is involved in developmental and pathological angiogenesis. Basic Res. Cardiol. 2014, 109, 404. [Google Scholar] [CrossRef]
- Zhang, B.; Hu, Y.; Ma, J.X. Anti-inflammatory and antioxidant effects of SERPINA3K in the retina. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3943–3952. [Google Scholar] [CrossRef]
- Zhu, W.; Gui, X.; Zhou, Y.; Gao, X.; Zhang, R.; Li, Q.; Zhang, H.; Zhao, J.; Cui, X.; Gao, G.; et al. Aurora kinase B disruption suppresses pathological retinal angiogenesis by affecting cell cycle progression. Exp. Eye Res. 2024, 239, 109753. [Google Scholar] [CrossRef] [PubMed]
- Song, H.B.; Jun, H.O.; Kim, J.H.; Fruttiger, M.; Kim, J.H. Suppression of transient receptor potential canonical channel 4 inhibits vascular endothelial growth factor-induced retinal neovascularization. Cell Calcium 2015, 57, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.C.; Sun, B.; Zhao, K.X.; Han, M.; Wang, Y.C. Small interference RNA targeting vascular endothelial growth factor gene effectively attenuates retinal neovascularization in mice model. Chin. Med. J. 2013, 126, 1440–1444. [Google Scholar] [CrossRef]
- Dong, X.; Wang, Y.S.; Dou, G.R.; Hou, H.Y.; Shi, Y.Y.; Zhang, R.; Ma, K.; Wu, L.; Yao, L.B.; Cai, Y.; et al. Influence of Dll4 via HIF-1α-VEGF signaling on the angiogenesis of choroidal neovascularization under hypoxic conditions. PLoS ONE 2011, 6, e18481. [Google Scholar] [CrossRef] [PubMed]
- Hirano, Y.; Sakurai, E.; Matsubara, A.; Ogura, Y. Suppression of ICAM-1 in retinal and choroidal endothelial cells by plasmid small-interfering RNAs in vivo. Investig. Ophthalmol. Vis. Sci. 2010, 51, 508–515. [Google Scholar] [CrossRef]
- Wu, L.; Guo, F.; Wu, Y.; Wang, Q.; Ma, X.; Zhao, Y.; Qin, G. The role of FoxO1 in interleukin-1beta-induced autostimulation in retina endothelial cells and retinas of diabetic rats. Microvasc. Res. 2017, 112, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.F.; Xia, X.B.; Xu, H.Z.; Xiong, S.Q.; Jiang, J. Caveolin-1 expression regulates blood-retinal barrier permeability and retinal neovascularization in oxygen-induced retinopathy. Clin. Exp. Ophthalmol. 2012, 40, e58–e66. [Google Scholar] [CrossRef]
- Shang, R.; Lee, S.; Senavirathne, G.; Lai, E.C. microRNAs in action: Biogenesis, function and regulation. Nat. Rev. Genet. 2023, 24, 816–833. [Google Scholar] [CrossRef] [PubMed]
- Knott, S.R.V.; Maceli, A.; Erard, N.; Chang, K.; Marran, K.; Zhou, X.; Gordon, A.; Demerdash, O.E.; Wagenblast, E.; Kim, S.; et al. A computational algorithm to predict shRNA potency. Mol. Cell 2014, 56, 796–807. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, J.; Yuan, Y.; Zhang, X.; Shen, M.; Yuan, F. miR-539-5p inhibits experimental choroidal neovascularization by targeting CXCR7. FASEB J. 2018, 32, 1626–1639. [Google Scholar] [CrossRef]
- Hou, H.; Gao, F.; Liang, H.; Lv, Y.; Li, M.; Yao, L.; Zhang, J.; Dou, G.; Wang, Y. MicroRNA-188-5p regulates contribution of bone marrow-derived cells to choroidal neovascularization development by targeting MMP-2/13. Exp. Eye Res. 2018, 175, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Mortuza, R.; Feng, B.; Chakrabarti, S. miR-195 regulates SIRT1-mediated changes in diabetic retinopathy. Diabetologia 2014, 57, 1037–1046. [Google Scholar] [CrossRef]
- Zhao, S.; Li, T.; Li, J.; Lu, Q.; Han, C.; Wang, N.; Qiu, Q.; Cao, H.; Xu, X.; Chen, H.; et al. miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway. Diabetologia 2016, 59, 644–654. [Google Scholar] [CrossRef]
- Feng, B.; Chen, S.; McArthur, K.; Wu, Y.; Sen, S.; Ding, Q.; Feldman, R.D.; Chakrabarti, S. miR-146a-mediated extracellular matrix protein production in chronic diabetes complications. Diabetes 2011, 60, 2975–2984. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Wang, X.; Ma, Y.; Li, Z.; Di, Y. LncRNA TUG1 promotes apoptosis, invasion, and angiogenesis of retinal endothelial cells in retinopathy of prematurity via MiR-145-5p. Front. Med. 2022, 9, 803214. [Google Scholar] [CrossRef]
- Gutsaeva, D.R.; Thounaojam, M.; Rajpurohit, S.; Powell, F.L.; Martin, P.M.; Goei, S.; Duncan, M.; Bartoli, M. STAT3-mediated activation of miR-21 is involved in down-regulation of TIMP3 and neovascularization in the ischemic retina. Oncotarget 2017, 8, 103568–103580. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.; Sun, J.H.; Xiang, F.F.; Liu, L.; Li, W.J. Aquaporin 4 knockdown exacerbates streptozotocin-induced diabetic retinopathy through aggravating inflammatory response. Exp. Eye Res. 2012, 98, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Z.; Huang, X.; Qiao, J.H.; Zhang, J.J.; Zhang, M.X. Inhibition of hypoxia-induced retinal neovascularization in mice with short hairpin RNA targeting Rac1, possibly via blockading redox signaling. Exp. Eye Res. 2011, 92, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Rezazadeh-Gavgani, E.; Oladghaffari, M.; Bahramian, S.; Majidazar, R.; Dolati, S. MicroRNA-21: A critical underestimated molecule in diabetic retinopathy. Gene 2023, 859, 147212. [Google Scholar] [CrossRef]
- Garba, A.O.; Mousa, S.A. Bevasiranib for the treatment of wet, age-related macular degeneration. Ophthalmol. Eye Dis. 2010, 2, 75–83. [Google Scholar] [CrossRef]
- Kaiser, P.K.; Symons, R.C.; Shah, S.M.; Quinlan, E.J.; Tabandeh, H.; Do, D.V.; Reisen, G.; Lockridge, J.A.; Short, B.; Guerciolini, R.; et al. RNAi-based treatment for neovascular age-related macular degeneration by Sirna-027. Am. J. Ophthalmol. 2010, 150, 33–39.E2. [Google Scholar] [CrossRef]
- Shen, J.; Samul, R.; Silva, R.L.; Akiyama, H.; Liu, H.; Saishin, Y.; Hackett, S.F.; Zinnen, S.; Kossen, K.; Fosnaugh, K.; et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther. 2006, 13, 225–234. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Schachar, R.A.; Nduaka, C.I.; Sperling, M.; Basile, A.S.; Klamerus, K.J.; Chi-Burris, K.; Yan, E.; Paggiarino, D.A.; Rosenblatt, I.; et al. Dose-ranging evaluation of intravitreal siRNA PF-04523655 for diabetic macular edema (the DEGAS study). Investig. Ophthalmol. Vis. Sci. 2012, 53, 7666–7674. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Schachar, R.A.; Nduaka, C.I.; Sperling, M.; Klamerus, K.J.; Chi-Burris, K.; Yan, E.; Paggiarino, D.A.; Rosenblatt, I.; Aitchison, R.; et al. Evaluation of the siRNA PF-04523655 versus ranibizumab for the treatment of neovascular age-related macular degeneration (MONET Study). Ophthalmology 2012, 119, 1867–1873. [Google Scholar] [CrossRef]
- Pfeiffer, N.; Voykov, B.; Renieri, G.; Bell, K.; Richter, P.; Weigel, M.; Thieme, H.; Wilhelm, B.; Lorenz, K.; Feindor, M.; et al. First-in-human phase I study of ISTH0036, an antisense oligonucleotide selectively targeting transforming growth factor beta 2 (TGF-β2), in subjects with open-angle glaucoma undergoing glaucoma filtration surgery. PLoS ONE 2017, 12, e0188899. [Google Scholar] [CrossRef]
- Xia, X.B.; Xiong, S.Q.; Song, W.T.; Luo, J.; Wang, Y.K.; Zhou, R.R. Inhibition of retinal neovascularization by siRNA targeting VEGF(165). Mol. Vis. 2008, 14, 1965–1973. [Google Scholar]
- Gao, Q.; Wang, W.; Lan, Y.; Chen, X.; Yang, W.; Yuan, Y.; Tan, J.; Zong, Y.; Jiang, Z. The inhibitory effect of small interference RNA protein kinase C-alpha on the experimental proliferative vitreoretinopathy induced by dispase in mice. Int. J. Nanomed. 2013, 8, 1563–1572. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Xing, L.; Fu, S.; Zhang, X.; Liu, J.; Liu, H.; Lv, B.; Cui, H. Down-regulation of inducible co-stimulator (ICOS) by intravitreal injection of small interfering RNA (siRNA) plasmid suppresses ongoing experimental autoimmune uveoretinitis in rats. Graefes Arch. Clin. Exp. Ophthalmol. 2009, 247, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Morgan-Warren, P.J.; O’Neill, J.; de Cogan, F.; Spivak, I.; Ashush, H.; Kalinski, H.; Ahmed, Z.; Berry, M.; Feinstein, E.; Scott, R.A.; et al. siRNA-mediated knockdown of the mTOR inhibitor RTP801 promotes retinal ganglion cell survival and axon elongation by direct and indirect mechanisms. Investig. Ophthalmol. Vis. Sci. 2016, 57, 429–443. [Google Scholar] [CrossRef] [PubMed]
- Antoszyk, A.; Katz, B.; Singh, R.; Gurses-Ozden, R.; Erlich, S.; Rothenstein, D.; Sharon, N.; Hodge, J.; Levin, L.; Miller, N.; et al. A Phase I open label, dose escalation trial of QPI-1007 delivered by a single intravitreal (IVT) injection to subjects with low visual acuity and acute non-arteritic anterior ischemic optic neuropathy (NAION). Investig. Ophthalmol. Vis. Sci. 2013, 54, 4575. [Google Scholar]
- AdisInsight. QPI 1007. Available online: https://adisinsight.springer.com/drugs/800028983 (accessed on 19 September 2025).
- Moreno-Montanes, J.; Sadaba, B.; Ruz, V.; Gomez-Guiu, A.; Zarranz, J.; Gonzalez, M.V.; Paneda, C.; Jimenez, A.I. Phase I clinical trial of SYL040012, a small interfering RNA targeting β-adrenergic receptor 2, for lowering intraocular pressure. Mol. Ther. 2014, 22, 226–232. [Google Scholar] [CrossRef]
- Benitez-Del-Castillo, J.M.; Moreno-Montanes, J.; Jimenez-Alfaro, I.; Munoz-Negrete, F.J.; Turman, K.; Palumaa, K.; Sadaba, B.; Gonzalez, M.V.; Ruz, V.; Vargas, B.; et al. Safety and efficacy clinical trials for SYL1001, a novel short interfering RNA for the treatment of dry eye disease. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6447–6454. [Google Scholar] [CrossRef]
- GER-GROUP. AGN-745 (Sirna-027)—Wet AMD Development Was Halted. Available online: https://amdbook.org/content/agn-745-sirna-027-wet-amd-development-was-halted (accessed on 19 September 2025).
- ScienceDirect. Sirna 027. Available online: https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/sirna-027 (accessed on 19 September 2025).
- AdisInsight. PF4523655. Available online: https://adisinsight.springer.com/drugs/800025090 (accessed on 19 September 2025).
- Isarna-Therapeutics. Looking Beyond the Standard of Care for Eye Diseases. Available online: https://www.nature.com/articles/d43747-021-00054-6 (accessed on 19 September 2025).
- Isarna-Therapeutics. Phase I Dose Escalation Study to Investigate the Safety of ISTH0036 in Subjects with Glaucoma Undergoing Trabeculectomy. Available online: https://clinicaltrials.gov/study/NCT02406833 (accessed on 19 September 2025).
- Ruckert, R.; Munk, M.R.; Wosikowski, K.; Janicot, M. Long-term safety and efficacy of ISTH0036—A selective TGF-β2 blocking antisense oligonucleotide in preclinical and Phase 1 clinical studies. Investig. Ophthalmol. Vis. Sci. 2021, 62, 321. [Google Scholar]
- Quark-Pharmaceuticals. Phase 2/3, Randomized, Double-Masked, Sham-Controlled Trial of QPI-1007 in Subjects with Acute Nonarteritic Anterior Ischemic Optic Neuropathy (NAION). Available online: https://clinicaltrials.gov/study/NCT02341560 (accessed on 19 September 2025).
- Sylentis. SYL040012, Treatment for Open Angle Glaucoma (SYLTAG). Available online: https://clinicaltrials.gov/study/NCT02250612 (accessed on 19 September 2025).
- Sylentis. Tivanisiran. Available online: https://sylentis.com/products-tivanisiran/ (accessed on 19 September 2025).
- Sylentis. Safety Study of Tivanisiran to Treat Dry Eye (FYDES). Available online: https://clinicaltrials.gov/study/NCT05310422 (accessed on 19 September 2025).
- Mitra, R.N.; Nichols, C.A.; Guo, J.; Makkia, R.; Cooper, M.J.; Naash, M.I.; Han, Z. Nanoparticle-mediated miR200-b delivery for the treatment of diabetic retinopathy. J. Control. Release 2016, 236, 31–37. [Google Scholar] [CrossRef]
- Du, J.; Zhao, W.; Wang, Y.; Cai, Y. Lentivirus vector-mediated knockdown of erythropoietin-producing hepatocellular carcinoma receptors B4 inhibits laser-induced choroidal neovascularization. J. Ocul. Pharmacol. Ther. 2013, 29, 14–22. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Zhang, M.; Hu, Z. Silencing of Rac1 expression via RNA interference inhibits retinal neovascularization in rats. Mol. Vis. 2012, 18, 1354–1360. [Google Scholar]
- Hu, B.; Zhang, Y.; Zeng, Q.; Han, Q.; Zhang, L.; Liu, M.; Li, X. Intravitreal injection of ranibizumab and CTGF shRNA improves retinal gene expression and microvessel ultrastructure in a rodent model of diabetes. Int. J. Mol. Sci. 2014, 15, 1606–1624. [Google Scholar] [CrossRef]
- Gold, L.; Ayers, D.; Bertino, J.; Bock, C.; Bock, A.; Brody, E.N.; Carter, J.; Dalby, A.B.; Eaton, B.E.; Fitzwater, T.; et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 2010, 5, e15004. [Google Scholar] [CrossRef] [PubMed]
- Rohloff, J.C.; Gelinas, A.D.; Jarvis, T.C.; Ochsner, U.A.; Schneider, D.J.; Gold, L.; Janjic, N. Nucleic acid ligands with protein-like side chains: Modified aptamers and their use as diagnostic and therapeutic agents. Mol. Ther. Nucleic Acids 2014, 3, e201. [Google Scholar] [CrossRef] [PubMed]
- Gragoudas, E.S.; Adamis, A.P.; Cunningham, E.T., Jr.; Feinsod, M.; Guyer, D.R.; the VEGF Inhibition Study in Ocular Neovascularization Clinical Trial Group. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 2004, 351, 2805–2816. [Google Scholar] [CrossRef] [PubMed]
- Tzoumas, N.; Riding, G.; Williams, M.A.; Steel, D.H. Complement inhibitors for age-related macular degeneration. Cochrane Database Syst. Rev. 2023, 6, CD009300. [Google Scholar] [CrossRef]
- Nakamura, Y. Multiple therapeutic applications of RBM-007, an anti-FGF2 aptamer. Cells 2021, 10, 1617. [Google Scholar] [CrossRef]
- Iturriaga-Goyon, E.; Vivanco-Rojas, O.; Magana-Guerrero, F.S.; Buentello-Volante, B.; Castro-Salas, I.; Aguayo-Flores, J.E.; Gracia-Mora, I.; Rivera-Huerta, M.; Sanchez-Bartes, F.; Garfias, Y. AS1411 nucleolin-specific binding aptamers reduce pathological angiogenesis through inhibition of nucleolin phosphorylation. Int. J. Mol. Sci. 2021, 22, 13150. [Google Scholar] [CrossRef]
- Leaderer, D.; Cashman, S.M.; Kumar-Singh, R. Topical application of a G-Quartet aptamer targeting nucleolin attenuates choroidal neovascularization in a model of age-related macular degeneration. Exp. Eye Res. 2015, 140, 171–178. [Google Scholar] [CrossRef]
- Russell, S.R.; Drack, A.V.; Cideciyan, A.V.; Jacobson, S.G.; Leroy, B.P.; Van Cauwenbergh, C.; Ho, A.C.; Dumitrescu, A.V.; Han, I.C.; Martin, M.; et al. Intravitreal antisense oligonucleotide sepofarsen in Leber congenital amaurosis type 10: A phase 1b/2 trial. Nat. Med. 2022, 28, 1014–1021. [Google Scholar] [CrossRef]
- Adachi, H.; Hengesbach, M.; Yu, Y.T.; Morais, P. From antisense RNA to RNA modification: Therapeutic potential of RNA-based technologies. Biomedicines 2021, 9, 550. [Google Scholar] [CrossRef]
- Dulla, K.; Slijkerman, R.; van Diepen, H.C.; Albert, S.; Dona, M.; Beumer, W.; Turunen, J.J.; Chan, H.L.; Schulkens, I.A.; Vorthoren, L.; et al. Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations. Mol. Ther. 2021, 29, 2441–2455. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, X.; Zhao, M.; He, P.; Yu, W.; Dong, J.; Liu, G.; Li, C.; Shi, X. Antisense oligonucleotide targeting c-fos mRNA limits retinal pigment epithelial cell proliferation: A key step in the progression of proliferative vitreoretinopathy. Exp. Eye Res. 2006, 83, 1405–1411. [Google Scholar] [CrossRef]
- IVERIC-Bio. Zimura in Participants with Geographic Atrophy Secondary to Dry Age-Related Macular Degeneration. Available online: https://clinicaltrials.gov/study/NCT02686658 (accessed on 19 September 2025).
- Jaffe, G.J.; Westby, K.; Csaky, K.G.; Mones, J.; Pearlman, J.A.; Patel, S.S.; Joondeph, B.C.; Randolph, J.; Masonson, H.; Rezaei, K.A. C5 Inhibitor avacincaptad pegol for geographic atrophy due to age-related macular degeneration: A randomized pivotal Phase 2/3 trial. Ophthalmology 2021, 128, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Ribomic. A Phase II Study of RBM-007 Alone and RBM-007 with Eylea® in Subjects with Wet Age-Related Macular Degeneration (TOFU). Available online: https://clinicaltrials.gov/study/NCT04200248 (accessed on 19 September 2025).
- Ribomic. Wet Age-Related Macular Degeneration (Wet AMD). Available online: https://www.ribomic.com/eng/pipeline/rbm007.php (accessed on 19 September 2025).
- Jaffe, G.J.; Ciulla, T.A.; Ciardella, A.P.; Devin, F.; Dugel, P.U.; Eandi, C.M.; Masonson, H.; Mones, J.; Pearlman, J.A.; Quaranta-El Maftouhi, M.; et al. Dual antagonism of PDGF and VEGF in neovascular age-related macular degeneration: A Phase IIb, multicenter, randomized controlled trial. Ophthalmology 2017, 124, 224–234. [Google Scholar] [CrossRef]
- Ophthotech_Corporation. A Phase 3 Safety and Efficacy Study of Fovista® (E10030) Intravitreous Administration in Combination with Lucentis® Compared to Lucentis® Monotherapy. Available online: https://clinicaltrials.gov/study/NCT01944839 (accessed on 19 September 2025).
- Bennett, C.F. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med. 2019, 70, 307–321. [Google Scholar] [CrossRef]
- Cideciyan, A.V.; Jacobson, S.G.; Drack, A.V.; Ho, A.C.; Charng, J.; Garafalo, A.V.; Roman, A.J.; Sumaroka, A.; Han, I.C.; Hochstedler, M.D.; et al. Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect. Nat. Med. 2019, 25, 225–228. [Google Scholar] [CrossRef]
- ProQR-Therapeutics. A Study to Evaluate Efficacy, Safety, Tolerability and Exposure After a Repeat-Dose of Sepofarsen (QR-110) in LCA10 (ILLUMINATE). Available online: https://clinicaltrials.gov/study/NCT03913143 (accessed on 19 September 2025).
- Murray, S.F.; Jazayeri, A.; Matthes, M.T.; Yasumura, D.; Yang, H.; Peralta, R.; Watt, A.; Freier, S.; Hung, G.; Adamson, P.S.; et al. Allele-specific inhibition of rhodopsin with an antisense oligonucleotide slows photoreceptor cell degeneration. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6362–6375. [Google Scholar] [CrossRef] [PubMed]
- ProQR-Therapeutics. A Study to Evaluate the Safety and Tolerability of QR-1123 in Subjects with Autosomal Dominant Retinitis Pigmentosa due to the P23H Mutation in the RHO Gene (AURORA). Available online: https://clinicaltrials.gov/study/NCT04123626 (accessed on 19 September 2025).
- Diepen, H.v.; Dulla, K.; Chan, H.L.; Schulkens, I.; Beumer, W.; Vorthoren, L.; Besten, C.d.; Buil, L.; Turunen, J.; Miao, J.; et al. QR-421a, an antisense oligonucleotide, for the treatment of retinitis pigmentosa due to USH2A exon 13 mutations. Investig. Ophthalmol. Vis. Sci. 2019, 60, 3250. [Google Scholar]
- Laboratoires-Thea. An Open-Label Extension Study to Evaluate Safety & Tolerability of QR-421a in Subjects with Retinitis Pigmentosa (HELIA). Available online: https://clinicaltrials.gov/study/NCT05085964 (accessed on 19 September 2025).
- ProQR-Therapeutics. Study to Evaluate Safety and Tolerability of QR-421a in Subjects with RP due to Mutations in Exon 13 of the USH2A Gene (Stellar). Available online: https://clinicaltrials.gov/study/NCT03780257 (accessed on 19 September 2025).
- Khanani, A.M.; Boyer, D.S.; Wykoff, C.C.; Regillo, C.D.; Busbee, B.G.; Pieramici, D.; Danzig, C.J.; Joondeph, B.C.; Major, J.C., Jr.; Turpcu, A.; et al. Safety and efficacy of ixoberogene soroparvovec in neovascular age-related macular degeneration in the United States (OPTIC): A prospective, two-year, multicentre phase 1 study. EClinicalMedicine 2024, 67, 102394. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Avery, R.; Brown, D.M.; Heier, J.S.; Ho, A.C.; Huddleston, S.M.; Jaffe, G.J.; Khanani, A.M.; Pakola, S.; Pieramici, D.J.; et al. Gene therapy for neovascular age-related macular degeneration by subretinal delivery of RGX-314: A phase 1/2a dose-escalation study. Lancet 2024, 403, 1563–1573. [Google Scholar] [CrossRef] [PubMed]
- MacLaren, R.E.; Groppe, M.; Barnard, A.R.; Cottriall, C.L.; Tolmachova, T.; Seymour, L.; Clark, K.R.; During, M.J.; Cremers, F.P.; Black, G.C.; et al. Retinal gene therapy in patients with choroideremia: Initial findings from a phase 1/2 clinical trial. Lancet 2014, 383, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- OPKO-Health. Safety and Efficacy Study of Small Interfering RNA Molecule (Cand5) to Treat Diabetic Macular Edema. Available online: https://clinicaltrials.gov/study/NCT00306904 (accessed on 19 September 2025).
- OPKO-Health. Safety and Efficacy Study of Small Interfering Ribonucleic Acid (RNA) Molecule (Cand5) to Treat Wet Age-Related Macular Degeneration. Available online: https://clinicaltrials.gov/study/NCT00259753 (accessed on 19 September 2025).
- Allergan. A Study Using Intravitreal Injections of a Small Interfering RNA in Patients with Age-Related Macular Degeneration. Available online: https://clinicaltrials.gov/study/NCT00395057 (accessed on 19 September 2025).
- Quark-Pharmaceuticals. PF-04523655 Dose Escalation Study, and Evaluation of PF-04523655 With/Without Ranibizumab in Diabetic Macular Edema (DME) (MATISSE). Available online: https://clinicaltrials.gov/study/NCT01445899 (accessed on 19 September 2025).
- Sylentis. Safety, Tolerability and Pharmacokinetic Profile of SYL1801 Eye Drops. Available online: https://clinicaltrials.gov/study/NCT04782271 (accessed on 19 September 2025).
- HuidaGene-Therapeutics. CRISPR/cas13-mediated RNA Targeting Therapy for the Treatment of Neovascular Age-Related Macular Degeneration Investigator-Initiated Trial (SIGHT-I). Available online: https://clinicaltrials.gov/study/NCT06031727 (accessed on 19 September 2025).
- HuidaGene-Therapeutics. Open-Label Dose-Escalation Study for CRISPR/cas13- RNA Targeting Therapy for the Treatment of Neovascular Age-Related Macular Degeneration in Phase I Trial (BRIGHT). Available online: https://clinicaltrials.gov/study/NCT06623279 (accessed on 19 September 2025).
- Olix-Pharmaceuticals. Evaluation of OLX10212 in Patients with Neovascular Age-Related Macular Degeneration. Available online: https://clinicaltrials.gov/study/NCT05643118 (accessed on 19 September 2025).
Type of Diseases | Disease |
---|---|
Neovascularization-Related Diseases
| Diabetic Retinopathy (DR)
Age-Related Macular Degeneration (AMD)
Retinal Neovascularization (RN) Retinopathy of Prematurity (ROP) |
Inflammatory Diseases
| Uveitis
|
Degenerative and Genetic Diseases
| Retinitis Pigmentosa (RP) |
Ischemic and Optic Nerve Diseases
| Non-Arteritic Anterior Ischemic Optic Neuropathy (NAION) Glaucoma |
Structural and Proliferative Disorders
| Proliferative Vitreoretinopathy (PVR) |
Mode | Characteristic | Advantage | Disadvantage |
---|---|---|---|
Topical |
|
|
|
Systemic |
|
|
|
Periocular |
|
|
|
Intravitreal |
|
|
|
Subretinal |
|
|
|
Suprachoroidal |
|
|
|
siRNA | Target; Disease | Delivery Method a | Reference |
---|---|---|---|
ASPP2-siRNA | ARPE-19 cell transfection, ASPP2 knockdown that worsens PVR via inflammatory and fibrosis cytokines; PVR | In vitro: HiPerFect Transfection Reagent; In vivo: Intravitreal, transfected cells | [73] |
Brag2-siRNA | Brag2-siRNA transfection, Brag2-silencing, angiogenesis in endothelial cells; RN and CNV | In vitro: Transfection reagent Lipofectamine RNAiMAX; In vivo: Intravitreal, in vivo-jetPEI™ reagent | [74] |
siRNA SERPINA3K | Knockdown of SERPINA3K, overexpression of VEGF and TNF-alpha; DR | In vitro: Transfection reagent siPORT | [75] |
AURKB siRNA | Inhibiting aurora kinase B (AURKB) expression, transfecting vascular endothelial cells, inhibiting endothelial cell proliferation; RN and CNV | In vitro: Transfection reagent Lipofectamine® 2000 | [76] |
mTRPC4 siRNA | TRPC4 suppression, inhibiting VEGF-induced pathways; RN | In vitro: Transfection reagent Lipofectamine RNAiMAX; In vivo: Intravitreal | [77] |
VEGF-siRNA (psi-HITM/EGFP/VEGF siRNA) | Targeting VEGF gene, reducing VEGF mRNA and protein expression, and regulating VEGF to pigment epithelium-deprived factor (PEDF) ratio; RN | In vitro: Transfection reagent Lipofectamine™ 2000; In vivo: Intravitreal, Lipofectamine™ 2000 | [78] |
Dll4 siRNA | Dll4 silencing, opposite effects of enhancing Dll4 expression, and regulating angiogenesis; CNV | In vitro: Transfection reagent Lipofectamine™ 2000 | [79] |
ICAM-1-specific plasmid siRNA | Suppressing intercellular adhesion molecule (ICAM)-1 expression, inhibiting leukocyte infiltration; RN | In vivo: (1) Systemic injection/ Hydrodynamics-based transfection (HT); (2) Intravitreal | [80] |
FoxO1 siRNA | Increasing expressions of FoxO1 and IL-1β; DR | In vitro: Transfection by lentiviral vector In vivo: Intravitreal, transfection by lentiviral vector | [81] |
Caveolin-1 siRNA | Reducing caveolin-1 mRNA and protein; RN | In vivo: Intravitreal, Lipofectamine™ 2000 | [82] |
Target; Disease | Delivery Method a | Reference | |
---|---|---|---|
MicroRNA: | |||
miR-539-5p | CXCR7 for stromal cell-derived factor-1 (SDF-1); CNV | In vitro: Transfection reagent Lipofectamine 2000 or iRGD-PLGA nanoparticle (miR-539-iRGD-PLGA); In vivo: Intravitreal | [52,85] |
miR-188-5p | Regulating the contribution of bone marrow-derived cells (BMCs) to CNV; CNV | In vitro: Transfection reagent Lipofectamine 2000; In vivo: Intravitreal | [86] |
miR-195 | Regulating sirtuin 1 (SIRT1); DR | In vitro: Transfection reagent Lipofectamine; In vivo: Intravitreal | [87] |
miR-23b-3p and SIRT1 siRNA | Transfection with miR-23b-3p inhibitor, SIRT1-dependent signaling pathway; DR | In vitro: Transfection reagent Lipofectamine; In vivo: Intravitreal | [88] |
miR-146a | FN 3′-untranslated region (UTR); diabetes related ocular diseases | In vitro: Transfection reagent Lipofectamine; In vivo: Intravitreal | [89] |
miR-145-5p | RNA taurine upregulated gene 1 (TUG1); ROP | In vitro: Transfection reagent Lipofectamine; In vivo: Intravitreal | [90] |
miR-21 | Downstream effector of signal transducer and activator of transcription 3 (STAT3) activity; RN | In vitro: Transfection reagent Lipofectamine; In vivo: Intraorbital injection | [91] |
shRNA: | |||
AQP4 shRNA | Transfection in rMC-1 cell; inflammation induced by high glucose | In vitro: transfection by lentiviral vector; In vivo: Intravitreal | [92] |
pSUPER-Rac1-shRNA | Retinal Rac1 gene expression; hypoxia-induced RN | In vitro: Transfection reagent Lipofectamine; In vivo: Intravitreal, Lipofectamine 2000 | [93] |
siRNA | Target; Disease | Delivery Method a | Reference |
---|---|---|---|
Bevasiranib (Cand5) | VEGF; wet AMD | In vitro: Naked RNA; In vivo: Intravitreal | [95] |
AGN211745 (Sirna-027) | VEGFR-1; wet AMD | In vitro: Transfection reagent Lipofectamine 2000; In vivo: Intravitreal/ periocular | [96,97] |
PF-04523655 | RTP801 (REDD1 gene); DME and AMD | In vitro: Naked RNA; In vivo: Intravitreal | [98,99] |
ISTH0036 | TGF-β mRNA; DME and AMD | In vitro: Naked LNA-modified 14-mer antisense; In vivo: Intravitreal In vivo: Intravitreal | [100] |
VEGFR-2 siRNA | VEGFR-2; CNV | In vitro: Transfection reagent Lipofectamine; In vivo: Intravitreal, nano-polyplexes of chitosan and hyaluronic acid | [51] |
pSilencersiVEGF | Inhibiting VEGF(165) expression; RN | In vitro: Transfection reagent Lipofectamine 2000; In vivo: Intravitreal, liposome–pSilencer siVEGF complex | [101] |
siRNA-PKCα (protein kinase C-alpha) | Markers for glia cells, fibroblast cells, RPE cells, and Müller cells in PVR; PVR | In vitro: Transfection reagent Lipofectamine 2000; In vivo: Intravitreal | [102] |
ICOS siRNA | ICOS gene; uveoretinitis | In vitro: Transfection reagent Lipofectamine 2000; In vivo: Intravitreal | [103] |
siRTP801 | mTOR negative regulator RTP801, enabling RGC survival; ONC neuroprotection | In vitro: Transfection reagent Lipofectamine 2000; In vivo: Intravitreal | [104] |
QPI-1007 | Caspase 2 (CASP2); NAION | In vitro: Naked RNA; In vivo: Intravitreal | [105,106] |
SYL040012 | β2-Adrenergic receptor gene; ocular hypertension | In vivo: Topical eye drops, naked siRNA targeting ADRB2 | [107] |
Tivanisiran (SYL1001) | TRPV1; dry eye disease | In vivo: Topical eye drops, naked siRNA duplex | [108] |
Target; Disease | Delivery Method a | Reference | |
---|---|---|---|
MicroRNA: | |||
miR200-b | VEGF receptor 2 (VEGFR-2) expression; DR | In vitro: Transfection reagent Lipofectamine 2000; In vivo: Intravitreal | [119] |
shRNA: | |||
lentiviral vectors (Lv) Lv-shRNA-EphB4 | Transfection of Lv-shRNA-EphB4, knockdown of EphB4, and downregulating EphB4 mRNA; CNV | In vitro: Lentiviral vector (expressing shRNA targeting EphB4); In vivo: Intravitreal | [120] |
Rac1-shRNA | Rac1 expression; RN | In vitro: Transfection reagent Lipofectamine 2000; In vivo: Intravitreal | [121] |
CTGF shRNA | Connective tissue growth factor (CTGF); diabetic retina | In vitro: Transfection reagent TransIT-TKO®; In vivo: Intravitreal | [122] |
Target; Disease | Delivery Method a | Reference | |
---|---|---|---|
Aptamer: | |||
Pegaptanib | VEGF165 isoform; wet AMD | In vivo: Intravitreal | [125] |
Zimura, ARC1905 | Complement component 5 (C5); AMD | In vivo: Intravitreal | [126] |
RBM-007 | Fibroblast growth factor 2 (FGF2); wet AMD | In vitro: Naked RNA; In vivo: Intravitreal | [127] |
AS1411 | Anti-angiogenic nucleolin-binding aptamer; RN and CNV | In vitro: Naked RNA; In vivo: (1) Topical eye drops; (2) Intravitreal | [128,129] |
ASO: | |||
QR-110 (Sepofarsen) | CEP290 gene; LCA | In vivo: Intravitreal | [130] |
IONIS-RHO-2.5Rx (QR-1123) | RHO gene; autosomal dominant RP | In vivo: Intravitreal, naked RNA and chemically modified ASO (gapmer design) | [131] |
QR-421a (Ultevursen) | USH2A gene; Usher syndrome, RP | In vitro: naked RNA; In vivo: Microinjection into the eye | [132] |
ODN17 | VEGF-R2, ROP | In vivo: Intravitreal, cationic nanoemulsion | [58] |
C-fos-AS-ON | C-Fos; PVR | In vitro: Transfection reagent Lipofectin; In vivo: Intravitreal | [133] |
Type | RNA/DNA/Others | Target; Disease | Delivery Method a | Reference |
---|---|---|---|---|
DNA Aptamer | E10030 | PDGF-B; wet AMD | In vivo: Intravitreal, PEGylation | [138,139] |
AAV gene therapy | Ixoberogene soroparvovec (ixo-vec) | Encodes for an anti-VEGF protein; wet AMD | In vivo: Intravitreal, AAV.7m8 (engineered adeno-associated virus) | [148] |
AAV gene therapy | RGX-314 (Regenxbio) | Encodes for an anti-VEGF protein; wet AMD | In vivo: Subretinal, AAV8 (adeno-associated virus serotype 8) | [149] |
AAV gene therapy | NSR-REP1 | Replenishing REP1 (Rab Escort Protein 1); CHM | In vivo: Subretinal, AAV2.REP1 (adeno-associated virus serotype 2 encoding Rab escort protein 1) | [66,150] |
Drug | Clinical Trials and Descriptions | Year Completed/Terminated | Reference b |
---|---|---|---|
Bevasiranib (Cand5) | Phases 2 and 3, siRNA silencing the mRNA encoding of VEGFA for DME and wet AMD | 2007 | [151,152] |
AGN211745 (siRNA-027) | Phase 2, targeting VEGFR1 for subfoveal CNV associated with AMD | 2009 | [97,153] |
PF-04523655 | Phase 2, targeting the RTP801 gene alone and in combination with ranibizumab, and ranibizumab alone in DME | 2013 | [98,99,154] |
SYL040012 | Phase 2, treating elevated IOP for glaucoma | 2016 | [116] |
ISTH0036 | Phase 1, targeting TGF-β2 in glaucoma undergoing trabeculectomy | 2017 | [113] |
QPI-1007 | Phase 2/3, protecting retinal ganglion cells from death in acute NAION | 2019 | [115] |
RBM-007 | Phase 2, RBM-007 alone and RBM-007 with Eylea with wet AMD (TOFU) | 2021 | [136] |
SYL1801 | Phase 1, eye drop for the prevention and/or control of wet AMD | 2021 | [155] |
OLX10212 | Phase 1, targeting inflammation pathways in the development of GA and AMD | 2024 | [158] |
HG202 | Phase 1, CRISPR/Cas13 RNA-editing, delivered through AAV vector, to partially knock down the expression of VEGFA for wet AMD | 2025, 2031 (estimated) | [156,157] |
Sepofarsen (QR-110) | Phase 2/3, intravitreal injection in patients of LCA due to mutation in the CEP290 gene, to evaluate the efficacy, safety, and systemic exposure of QR-110 | 2022 | [142] |
QR-1123 | Phase 1/2, targeting the mutant P23H mRNA to reduce the expression of the P23H protein selectively for adRP due to the mutation in the RHO gene | 2022 | [144] |
Ultevursen (QR-421a) | Phase 2/3, inducing exon skipping, for Usher syndrome and RP caused by mutations in the USH2A gene | 2022, 2021 | [132,146,147] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, M.S.A.-R.; Zhong, C.; Hassan, F.; Li, S.K. Targeting the Eye: RNA-Based Therapies, Interferences, and Delivery Strategies. Pharmaceutics 2025, 17, 1326. https://doi.org/10.3390/pharmaceutics17101326
Hassan MSA-R, Zhong C, Hassan F, Li SK. Targeting the Eye: RNA-Based Therapies, Interferences, and Delivery Strategies. Pharmaceutics. 2025; 17(10):1326. https://doi.org/10.3390/pharmaceutics17101326
Chicago/Turabian StyleHassan, Mohammed S. Abdel-Raziq, Cheng Zhong, Fatma Hassan, and S. Kevin Li. 2025. "Targeting the Eye: RNA-Based Therapies, Interferences, and Delivery Strategies" Pharmaceutics 17, no. 10: 1326. https://doi.org/10.3390/pharmaceutics17101326
APA StyleHassan, M. S. A.-R., Zhong, C., Hassan, F., & Li, S. K. (2025). Targeting the Eye: RNA-Based Therapies, Interferences, and Delivery Strategies. Pharmaceutics, 17(10), 1326. https://doi.org/10.3390/pharmaceutics17101326