Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,457)

Search Parameters:
Keywords = office buildings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1803 KiB  
Article
A Hybrid Machine Learning Approach for High-Accuracy Energy Consumption Prediction Using Indoor Environmental Quality Sensors
by Bibars Amangeldy, Nurdaulet Tasmurzayev, Timur Imankulov, Baglan Imanbek, Waldemar Wójcik and Yedil Nurakhov
Energies 2025, 18(15), 4164; https://doi.org/10.3390/en18154164 - 6 Aug 2025
Abstract
Accurate forecasting of energy consumption in buildings is essential for achieving energy efficiency and reducing carbon emissions. However, many existing models rely on limited input variables and overlook the complex influence of indoor environmental quality (IEQ). In this study, we assess the performance [...] Read more.
Accurate forecasting of energy consumption in buildings is essential for achieving energy efficiency and reducing carbon emissions. However, many existing models rely on limited input variables and overlook the complex influence of indoor environmental quality (IEQ). In this study, we assess the performance of hybrid machine learning ensembles for predicting hourly energy demand in a smart office environment using high-frequency IEQ sensor data. Environmental variables including carbon dioxide concentration (CO2), particulate matter (PM2.5), total volatile organic compounds (TVOCs), noise levels, humidity, and temperature were recorded over a four-month period. We evaluated two ensemble configurations combining support vector regression (SVR) with either Random Forest or LightGBM as base learners and Ridge regression as a meta-learner, alongside single-model baselines such as SVR and artificial neural networks (ANN). The SVR combined with Random Forest and Ridge regression demonstrated the highest predictive performance, achieving a mean absolute error (MAE) of 1.20, a mean absolute percentage error (MAPE) of 8.92%, and a coefficient of determination (R2) of 0.82. Feature importance analysis using SHAP values, together with non-parametric statistical testing, identified TVOCs, humidity, and PM2.5 as the most influential predictors of energy use. These findings highlight the value of integrating high-resolution IEQ data into predictive frameworks and demonstrate that such data can significantly improve forecasting accuracy. This effect is attributed to the direct link between these IEQ variables and the activation of energy-intensive systems; fluctuations in humidity drive HVAC energy use for dehumidification, while elevated pollutant levels (TVOCs, PM2.5) trigger increased ventilation to maintain indoor air quality, thus raising the total energy load. Full article
Show Figures

Figure 1

20 pages, 2385 KiB  
Article
Assessing Thermal Comfort in Green and Conventional Office Buildings in Hot Climates
by Abdulrahman Haruna Muhammad, Ahmad Taki and Sanober Hassan Khattak
Sustainability 2025, 17(15), 7078; https://doi.org/10.3390/su17157078 - 5 Aug 2025
Viewed by 69
Abstract
Green buildings are recognised for their potential to reduce energy consumption, minimise environmental impact, and improve occupants’ well-being, benefits that are especially critical in rapidly urbanising regions. However, questions remain about whether these buildings fully meet occupant comfort expectations while delivering energy efficiency. [...] Read more.
Green buildings are recognised for their potential to reduce energy consumption, minimise environmental impact, and improve occupants’ well-being, benefits that are especially critical in rapidly urbanising regions. However, questions remain about whether these buildings fully meet occupant comfort expectations while delivering energy efficiency. This is particularly relevant in Africa, where climate conditions and energy infrastructure challenges make sustainable building operation essential. Although interest in sustainable construction has increased, limited research has examined the real-world performance of green buildings in Africa. This study helps address that gap by evaluating indoor thermal comfort in a green-certified office building and two conventional office buildings in Abuja, Nigeria, through post-occupancy evaluation (POE). The Predicted Mean Vote (PMV) and Thermal Sensation Vote (TSV) were used to assess comfort, revealing discrepancies between predicted and actual occupant responses. In the green building, PMV indicated near-neutral conditions (0.28), yet occupants reported a slightly cool sensation (TSV: −1.1). Neutral temperature analysis showed that the TSV-based neutral temperature (26.5 °C) was 2.2 °C higher than the operative temperature (24.3 °C), suggesting overcooling. These findings highlight the importance of incorporating occupant feedback into HVAC control. Aligning cooling setpoints with comfort preferences could improve satisfaction and reduce unnecessary cooling, promoting energy-efficient building operation. Full article
Show Figures

Figure 1

39 pages, 9517 KiB  
Article
Multidimensional Evaluation Framework and Classification Strategy for Low-Carbon Technologies in Office Buildings
by Hongjiang Liu, Yuan Song, Yawei Du, Tao Feng and Zhihou Yang
Buildings 2025, 15(15), 2689; https://doi.org/10.3390/buildings15152689 - 30 Jul 2025
Viewed by 179
Abstract
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% [...] Read more.
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% of building energy consumption. However, a systematic and regionally adaptive low-carbon technology evaluation framework is lacking. To address this gap, this study develops a multidimensional decision-making system to quantify and rank low-carbon technologies for office buildings in Beijing. The method includes four core components: (1) establishing three archetypal models—low-rise (H ≤ 24 m), mid-rise (24 m < H ≤ 50 m), and high-rise (50 m < H ≤ 100 m) office buildings—based on 99 office buildings in Beijing; (2) classifying 19 key technologies into three clusters—Envelope Structure Optimization, Equipment Efficiency Enhancement, and Renewable Energy Utilization—using bibliometric analysis and policy norm screening; (3) developing a four-dimensional evaluation framework encompassing Carbon Reduction Degree (CRD), Economic Viability Degree (EVD), Technical Applicability Degree (TAD), and Carbon Intensity Degree (CID); and (4) conducting a comprehensive quantitative evaluation using the AHP-entropy-TOPSIS algorithm. The results indicate distinct priority patterns across the building types: low-rise buildings prioritize roof-mounted photovoltaic (PV) systems, LED lighting, and thermal-break aluminum frames with low-E double-glazed laminated glass. Mid- and high-rise buildings emphasize integrated PV-LED-T8 lighting solutions and optimized building envelope structures. Ranking analysis further highlights LED lighting, T8 high-efficiency fluorescent lamps, and rooftop PV systems as the top-recommended technologies for Beijing. Additionally, four policy recommendations are proposed to facilitate the large-scale implementation of the program. This study presents a holistic technical integration strategy that simultaneously enhances the technological performance, economic viability, and carbon reduction outcomes of architectural design and renovation. It also establishes a replicable decision-support framework for decarbonizing office and public buildings in cities, thereby supporting China’s “dual carbon” goals and contributing to global carbon mitigation efforts in the building sector. Full article
Show Figures

Figure 1

14 pages, 2183 KiB  
Article
A Research Paper on the Influence of Blast Weakening on the Vibrations of Ground Buildings in a Shallow-Buried Extra-Thick Coal Seam
by Gang Liu, Zijian Liu, Yingcheng Luan, Guohao Nie and Wangping Qian
Appl. Sci. 2025, 15(15), 8364; https://doi.org/10.3390/app15158364 - 28 Jul 2025
Viewed by 211
Abstract
To learn more about the problem of blast weakening in shallow-buried and extra-thick coal seams, Panjin coal mine was used to provide the engineering background for this study. The influence of blast weakening technology on the vibration of ground buildings was investigated. Based [...] Read more.
To learn more about the problem of blast weakening in shallow-buried and extra-thick coal seams, Panjin coal mine was used to provide the engineering background for this study. The influence of blast weakening technology on the vibration of ground buildings was investigated. Based on monitoring the vibration data from the final 400 m of the working face, we established the Sadovsky formula for this coal mine through regression. The maximum safe charge of one blast at different distances was obtained. A numerical model was established and compared with field monitoring data to verify its accuracy. This numerical model was used to analyze the influence of blast weakening vibrations on ground buildings during the final mining stage. Finally, the maximum safe charge for one blast at advancing distances from the working face was derived based on numerical calculation results. It was compared with the maximum safe charge obtained from field measurements. The results show that both exhibit significant consistency, and the maximum safe charge of one blast decreases as the working face advances. In addition, the peak vibration velocity at each monitoring point does not exceed 0.2 cm/s for the remaining 400 m of the measured working face, which is lower than the allowable safety value for blasting vibrations. In the numerical simulation of the final mining stage at 200 m, the ground vibration velocity is largest for the district office, second-largest for the chimney, and smallest for the science and technology building. The maximum vibration velocity and effective stress in the three directions of the three buildings are within the allowable range, indicating that the buildings remained in a safe state. Full article
Show Figures

Figure 1

24 pages, 3226 KiB  
Article
The Environmental Impacts of Façade Renovation: A Case Study of an Office Building
by Patrik Štompf, Rozália Vaňová and Stanislav Jochim
Sustainability 2025, 17(15), 6766; https://doi.org/10.3390/su17156766 - 25 Jul 2025
Viewed by 442
Abstract
Renovating existing buildings is a key strategy for achieving the EU’s climate targets, as over 75% of the current building stock is energy inefficient. This study evaluates the environmental impacts of three façade renovation scenarios for an office building at the Technical University [...] Read more.
Renovating existing buildings is a key strategy for achieving the EU’s climate targets, as over 75% of the current building stock is energy inefficient. This study evaluates the environmental impacts of three façade renovation scenarios for an office building at the Technical University in Zvolen (Slovakia) using a life cycle assessment (LCA) approach. The aim is to quantify and compare these impacts based on material selection and its influence on sustainable construction. The analysis focuses on key environmental indicators, including global warming potential (GWP), abiotic depletion (ADE, ADF), ozone depletion (ODP), toxicity, acidification (AP), eutrophication potential (EP), and primary energy use (PERT, PENRT). The scenarios vary in the use of insulation materials (glass wool, wood fibre, mineral wool), façade finishes (cladding vs. render), and window types (aluminium vs. wood–aluminium). Uncertainty analysis identified GWP, AP, and ODP as robust decision-making categories, while toxicity-related results showed lower reliability. To support integrated and transparent comparison, a composite environmental index (CEI) was developed, aggregating characterisation, normalisation, and mass-based results into a single score. Scenario C–2, featuring an ETICS system with mineral wool insulation and wood–aluminium windows, achieved the lowest environmental impact across all categories. In contrast, scenarios with traditional cladding and aluminium windows showed significantly higher impacts, particularly in fossil fuel use and ecotoxicity. The findings underscore the decisive role of material selection in sustainable renovation and the need for a multi-criteria, context-sensitive approach aligned with architectural, functional, and regional priorities. Full article
Show Figures

Figure 1

17 pages, 1377 KiB  
Article
Technology Adoption Framework for Supreme Audit Institutions Within the Hybrid TAM and TOE Model
by Babalwa Ceki and Tankiso Moloi
J. Risk Financial Manag. 2025, 18(8), 409; https://doi.org/10.3390/jrfm18080409 - 23 Jul 2025
Viewed by 397
Abstract
Advanced technologies, such as robotic process automation, blockchain, and machine learning, increase audit efficiency. Nonetheless, some Supreme Audit Institutions (SAIs) have not undergone digital transformation. This research aimed to develop a comprehensive framework for supreme audit institutions to adopt and integrate emerging technologies [...] Read more.
Advanced technologies, such as robotic process automation, blockchain, and machine learning, increase audit efficiency. Nonetheless, some Supreme Audit Institutions (SAIs) have not undergone digital transformation. This research aimed to develop a comprehensive framework for supreme audit institutions to adopt and integrate emerging technologies into their auditing processes using a hybrid theoretical approach based on the TAM (Technology Acceptance Model) and TOE (Technology–Organisation–Environment) models. The framework was informed by insights from nineteen highly experienced experts in the field from eight countries. Through a two-round Delphi questionnaire, the experts provided valuable input on the key factors, challenges, and strategies for successful technology adoption by public sector audit organisations. The findings of this research reveal that technology adoption in SAIs starts with solid management support led by the chief technology officer. They must evaluate the IT infrastructure and readiness for advanced technologies, considering the budget and funding. Integrating solutions like the SAI of Ghana’s Audit Management Information System can significantly enhance audit efficiency. Continuous staff training is essential to build a positive attitude toward new technologies, covering areas like data algorithm auditing and big data analysis. Assessing the complexity and compatibility of new technologies ensures ease of use and cost-effectiveness. Continuous support from technology providers and monitoring advancements will keep SAIs aligned with technological developments, enhancing their auditing capabilities. Full article
(This article belongs to the Special Issue Financial Management)
Show Figures

Figure 1

28 pages, 1140 KiB  
Article
Hybrid Metaheuristic Optimization of HVAC Energy Consumption and Thermal Comfort in an Office Building Using EnergyPlus
by Reza Akraminejad, Tianyi Zhao, Yacine Rezgui, Ali Ghoroghi and Yousef Shahbazi Razlighi
Buildings 2025, 15(14), 2568; https://doi.org/10.3390/buildings15142568 - 21 Jul 2025
Viewed by 266
Abstract
Energy is a critical resource, and its optimization is central to sustainable building design. Occupant comfort, significantly influenced by factors, including mean radiant temperature (MRT), alongside air temperature, velocity, and humidity, is another key consideration. This paper introduces a hybrid crow search optimization [...] Read more.
Energy is a critical resource, and its optimization is central to sustainable building design. Occupant comfort, significantly influenced by factors, including mean radiant temperature (MRT), alongside air temperature, velocity, and humidity, is another key consideration. This paper introduces a hybrid crow search optimization (CSA) and penguin search optimization algorithm (PeSOA), termed (HCRPN), designed to simultaneously optimize building energy consumption and achieve MRT levels conducive to thermal comfort by adjusting HVAC system parameters. We first validate HCRPN using ZDT-1 and Shaffer N1 multi-objective benchmarks. Subsequently, we employ EnergyPlus simulations, utilizing a single-objective Particle Swarm Optimization (PSO) for initial parameter analysis to generate a dataset. Following correlation analyses to understand parameter relationships, we implement our hybrid multi-objective approach. Comparative evaluations against state-of-the-art algorithms, including MoPso, NSGA-II, hybrid Nsga2/MOEAD, and Mo-CSA, validated the effectiveness of HCRPN. Our findings demonstrate an average 7% reduction in energy consumption and a 3% improvement in MRT-based comfort relative to existing methods. While seemingly small, even minor enhancements in MRT can have a noticeable positive impact on well-being, particularly in large, high-occupancy buildings. Full article
Show Figures

Figure 1

26 pages, 2162 KiB  
Article
Developing Performance Measurement Framework for Sustainable Facility Management (SFM) in Office Buildings Using Bayesian Best Worst Method
by Ayşe Pınar Özyılmaz, Fehmi Samet Demirci, Ozan Okudan and Zeynep Işık
Sustainability 2025, 17(14), 6639; https://doi.org/10.3390/su17146639 - 21 Jul 2025
Viewed by 521
Abstract
The confluence of financial constraints, climate change mitigation efforts, and evolving user expectations has significantly transformed the concept of facility management (FM). Traditional FM has now evolved to enhance sustainability in the built environment. Sustainable facility management (SFM) can add value to companies, [...] Read more.
The confluence of financial constraints, climate change mitigation efforts, and evolving user expectations has significantly transformed the concept of facility management (FM). Traditional FM has now evolved to enhance sustainability in the built environment. Sustainable facility management (SFM) can add value to companies, organizations, and governments by balancing the financial, environmental, and social outcomes of the FM processes. The systematic literature review revealed a limited number of studies developing a performance measurement framework for SFM in office buildings and/or other building types in the literature. Given that the lack of this theoretical basis inhibits the effective deployment of SFM practices, this study aims to fill this gap by developing a performance measurement framework for SFM in office buildings. Accordingly, an in-depth literature review was initially conducted to synthesize sustainable performance measurement factors. Next, a series of focus group discussion (FGD) sessions were organized to refine and verify the factors and develop a novel performance measurement framework for SFM. Lastly, consistency analysis, the Bayesian best worst method (BBWM), and sensitivity analysis were implemented to determine the priorities of the factors. What the proposed framework introduces is the combined use of two performance measurement mechanisms, such as continuous performance measurement and comprehensive performance measurement. The continuous performance measurement is conducted using high-priority factors. On the other hand, the comprehensive performance measurement is conducted with all the factors proposed in this study. Also, the BBWM results showed that “Energy-efficient material usage”, “Percentage of energy generated from renewable energy resources to total energy consumption”, and “Promoting hybrid or remote work conditions” are the top three factors, with scores of 0.0741, 0.0598, and 0.0555, respectively. Moreover, experts should also pay the utmost attention to factors related to waste management, indoor air quality, thermal comfort, and H&S measures. In addition to its theoretical contributions, the paper makes practical contributions by enabling decision makers to measure the SFM performance of office buildings and test the outcomes of their managerial processes in terms of performance. Full article
Show Figures

Figure 1

17 pages, 2728 KiB  
Article
The Impact of Personalized Office Spaces on Faculty Productivity, Performance, and Satisfaction in Universities’ Educational Facilities: Case Study of Al Yamamah University, Riyadh, KSA
by Dalia Abdelfattah
Buildings 2025, 15(14), 2559; https://doi.org/10.3390/buildings15142559 - 20 Jul 2025
Viewed by 440
Abstract
Educational facilities are the physical environment that supports the academic process for a better education. The quality of offices as workspaces is crucial in creating a supportive environment to enhance the staff and students’ experience. This paper aims to study the concept of [...] Read more.
Educational facilities are the physical environment that supports the academic process for a better education. The quality of offices as workspaces is crucial in creating a supportive environment to enhance the staff and students’ experience. This paper aims to study the concept of space personalization and its impact on faculty members’ productivity, performance, and satisfaction in universities’ educational facilities. To achieve this aim, the research applied the qualitative research method of semi-structured interviews to gather comprehensive data about user experience. Approaching 39 faculty members within Al Yamamah University across three departments within the College of Engineering (Architecture, Industrial, and Computer). Data were analyzed using thematic analysis for qualitative insights, focusing on environmental aspects (such as: natural lighting, ventilation, noise control, etc.), psychological factors (such as: privacy, aesthetic appeal, etc.), and architectural settings (such as: area, space layout, materials, etc.). The research proposes a methodological framework for design considerations for office spaces in universities, fostering more flexible and personalized designs for enhancing sense of ownership and well-being. Findings indicate that personalized office spaces significantly enhance faculty satisfaction and productivity. Qualitative data highlighted that a lack of privacy in standardized offices adds stress and an overwhelming environment. These findings suggest that universities should consider flexible office designs to optimize academic work environments. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

19 pages, 3080 KiB  
Article
A Case Study-Based Framework Integrating Simulation, Policy, and Technology for nZEB Retrofits in Taiwan’s Office Buildings
by Ruey-Lung Hwang and Hung-Chi Chiu
Energies 2025, 18(14), 3854; https://doi.org/10.3390/en18143854 - 20 Jul 2025
Viewed by 334
Abstract
Nearly zero-energy buildings (nZEBs) are central to global carbon reduction strategies, and Taiwan is actively promoting their adoption through building energy performance labeling, particularly in the retrofit of existing buildings. Under Taiwan’s nZEB framework, qualification requires both an A+ energy performance label [...] Read more.
Nearly zero-energy buildings (nZEBs) are central to global carbon reduction strategies, and Taiwan is actively promoting their adoption through building energy performance labeling, particularly in the retrofit of existing buildings. Under Taiwan’s nZEB framework, qualification requires both an A+ energy performance label and over 50% energy savings from retrofit technologies. This study proposes an integrated assessment framework for retrofitting small- to medium-sized office buildings into nZEBs, incorporating diagnostics, technical evaluation, policy alignment, and resource integration. A case study of a bank branch in Kaohsiung involved on-site energy monitoring and EnergyPlus V22.2 simulations to calibrate and assess the retrofit impacts. Lighting improvements and two HVAC scenarios—upgrading the existing fan coil unit (FCU) system and adopting a completely new variable refrigerant flow (VRF) system—were evaluated. The FCU and VRF scenarios reduced the energy use intensity from 141.3 to 82.9 and 72.9 kWh/m2·yr, respectively. Combined with rooftop photovoltaics and green power procurement, both scenarios met Taiwan’s nZEB criteria. The proposed framework demonstrates practical and scalable strategies for decarbonizing existing office buildings, supporting Taiwan’s 2050 net-zero target. Full article
Show Figures

Figure 1

29 pages, 6641 KiB  
Article
Climate-Adaptive Passive Design Strategies for Near-Zero-Energy Office Buildings in Central and Southern Anhui, China
by Jun Xu, Yu Gao and Lizhong Yang
Sustainability 2025, 17(14), 6535; https://doi.org/10.3390/su17146535 - 17 Jul 2025
Viewed by 399
Abstract
Driven by the global energy transition and China’s dual-carbon targets, Passive ultra-low-energy buildings are a key route for carbon reduction in the construction sector. This study addresses the high energy demand of office buildings and the limited suitability of current efficiency codes in [...] Read more.
Driven by the global energy transition and China’s dual-carbon targets, Passive ultra-low-energy buildings are a key route for carbon reduction in the construction sector. This study addresses the high energy demand of office buildings and the limited suitability of current efficiency codes in the hot-summer/cold-winter, high-humidity zone of central and southern Anhui. Using multi-year climate records and energy-use surveys from five cities and one scenic area (2013–2024), we systematically investigate climate-adaptive passive-design strategies. Climate-Consultant simulations identify composite envelopes, external shading, and natural ventilation as the three most effective measures. Empirical evidence confirms that optimized envelope thermal properties significantly curb heating and cooling loads; a Huangshan office-building case validates the performance of the proposed passive measures, while analysis of a near-zero-energy demonstration project in Chuzhou yields a coordinated insulation-and-heat-rejection scheme. The results demonstrate that region-specific passive design can provide a comprehensive technical framework for ultra-low-energy buildings in transitional climates and thereby supporting China’s carbon-neutrality targets. Full article
(This article belongs to the Special Issue Building Sustainability within a Smart Built Environment)
Show Figures

Figure 1

20 pages, 2422 KiB  
Article
Design and Performance of a Large-Diameter Earth–Air Heat Exchanger Used for Standalone Office-Room Cooling
by Rogério Duarte, António Moret Rodrigues, Fernando Pimentel and Maria da Glória Gomes
Appl. Sci. 2025, 15(14), 7938; https://doi.org/10.3390/app15147938 - 16 Jul 2025
Viewed by 233
Abstract
Earth–air heat exchangers (EAHXs) use the soil’s thermal capacity to dampen the amplitude of outdoor air temperature oscillations. This effect can be used in hot and dry climates for room cooling with no or very little need for resources other than those used [...] Read more.
Earth–air heat exchangers (EAHXs) use the soil’s thermal capacity to dampen the amplitude of outdoor air temperature oscillations. This effect can be used in hot and dry climates for room cooling with no or very little need for resources other than those used during the EAHX construction, an obvious advantage compared to the significant operational costs of refrigeration machines. Contrary to the streamlined process applied in conventional HVAC design (using refrigeration machines), EAHX design lacks straightforward and well-established rules; moreover, EAHXs struggle to achieve office room design cooling demands determined with conventional indoor thermal environment standards, hindering designers’ confidence and the wider adoption of EAHXs for standalone room cooling. This paper presents a graph-based method to assist in the design of a large-diameter EAHX. One year of post-occupancy monitoring data are used to evaluate this method and to investigate the performance of a large-diameter EAHX with up to 16,000 m3/h design airflow rate. Considering an adaptive standard for thermal comfort, peak EAHX cooling capacity of 28 kW (330 kWh/day, with just 50 kWh/day of fan electricity consumption) and office room load extraction of up to 22 kW (49 W/m2) provided evidence in support of standalone use of EAHX for room cooling. A fair fit between actual EAHX thermal performance and results obtained with the graph-based design method support the use of this method for large-diameter EAHX design. Full article
(This article belongs to the Special Issue Thermal Comfort and Energy Consumption in Buildings)
Show Figures

Figure 1

26 pages, 659 KiB  
Article
Predictors of Health-Workforce Job Satisfaction in Primary Care Settings: Insights from a Cross-Sectional Multi-Country Study in Eight African Countries
by Samuel Muhula, Yvonne Opanga, Saida Kassim, Lazarus Odeny, Richard Zule Mbewe, Beverlyne Akoth, Mable Jerop, Lizah Nyawira, Ibrahima Gueye, Richard Kiplimo, Thom Salamba, Jackline Kiarie and George Kimathi
Int. J. Environ. Res. Public Health 2025, 22(7), 1108; https://doi.org/10.3390/ijerph22071108 - 15 Jul 2025
Viewed by 1153
Abstract
Job satisfaction in sub-Saharan Africa is crucial as it directly impacts employee productivity, retention, and overall economic growth, fostering a motivated workforce that drives regional development. In sub–Saharan Africa, poor remuneration, limited professional development opportunities, and inadequate working conditions impact satisfaction. This study [...] Read more.
Job satisfaction in sub-Saharan Africa is crucial as it directly impacts employee productivity, retention, and overall economic growth, fostering a motivated workforce that drives regional development. In sub–Saharan Africa, poor remuneration, limited professional development opportunities, and inadequate working conditions impact satisfaction. This study examined job-satisfaction predictors among health workers in primary healthcare settings across eight countries: Ethiopia, Kenya, Malawi, Senegal, South Sudan, Tanzania, Uganda, and Zambia. A cross-sectional study surveyed 1711 health workers, assessing five dimensions: employer–2employee relationships, remuneration and recognition, professional development, physical work environment, and supportive supervision. The study was conducted from October 2023 to March 2024. The job-satisfaction assessment tool was adopted from a validated tool originally developed for use in low-income healthcare settings. The tool was reviewed by staff from all the country offices to ensure contextual relevance and organization alignment. The responses were measured on a five-point Likert scale: 0: Not applicable, 1: Very dissatisfied, 2: Dissatisfied, 3: Neutral, 4: Satisfied, and 5: Very satisfied. The analysis employed descriptive and multivariable regression methods. Job satisfaction varied significantly by country. Satisfaction with the employer–employee relationship was highest in Zambia (80%) and lowest in Tanzania (16%). Remuneration satisfaction was highest in Senegal (63%) and Zambia (49%), while it was very low in Malawi (9.8%) and Ethiopia (2.3%). Overall, 44% of respondents were satisfied with their professional development, with Uganda leading (62%) and Ethiopia having the lowest satisfaction level (29%). Satisfaction with the physical environment was at 27%, with Uganda at 40% and Kenya at 12%. Satisfaction with supervisory support stood at 62%, with Zambia at 73% and Ethiopia at 30%. Key predictors of job satisfaction included a strong employer–employee relationships (OR = 2.20, p < 0.001), fair remuneration (OR = 1.59, p = 0.002), conducive work environments (OR = 1.71, p < 0.001), and supervisory support (OR = 3.58, p < 0.001. Improving the job satisfaction, retention, and performance of health workers in sub-Saharan Africa requires targeted interventions in employer–employee relationships, fair compensation, supportive supervision, and working conditions. Strategies must be tailored to each country’s unique challenges, as one-size-fits-all solutions may not be effective. Policymakers should prioritize these factors to build a motivated, resilient workforce, with ongoing research and monitoring essential to ensure sustained progress and improved healthcare delivery. Full article
Show Figures

Figure 1

28 pages, 5408 KiB  
Article
Optimization and Evaluation of the PEDF System Configuration Based on Planning and Operating Dual-Layer Model
by Tianhe Li, Pei Ye, Haiyang Wang, Weiyu Liu, Xinyue Huang and Ji Ke
Appl. Sci. 2025, 15(14), 7776; https://doi.org/10.3390/app15147776 - 11 Jul 2025
Viewed by 276
Abstract
The photovoltaic, energy storage, direct current, and flexibility (PEDF) system represents a crucial innovation for transforming buildings into low-carbon energy sources. Although it is still in the early stages of scalable demonstration, current research and practice related to PEDF lack comprehensive studies on [...] Read more.
The photovoltaic, energy storage, direct current, and flexibility (PEDF) system represents a crucial innovation for transforming buildings into low-carbon energy sources. Although it is still in the early stages of scalable demonstration, current research and practice related to PEDF lack comprehensive studies on optimizing and evaluating system capacity configuration across various scenarios. Capacity configuration and energy scheduling are crucial components that are often treated separately, leading to a missing opportunity to leverage the synergy among key interactive devices. To address this issue, this paper proposes an optimization and evaluation framework for the PEDF system that employs a dual-layer model for planning and operating. This framework precisely configures the PEDF topology, load, photovoltaic, energy storage, and critical interactive devices, while integrating economic, environmental, and reliability objectives. The effectiveness of the proposed model has been validated in optimizing capacity configurations for newly built office buildings and existing commercial settings. The results indicate that for new office buildings, schemes that prioritize low-carbon initiatives are more effective than those that focus on reliability and economy. In existing commercial buildings, reliability-focused schemes outperform those that prioritize economy and low carbon, and all three are significantly better than pre-configuration schemes. The proposed framework enhances the theoretical understanding of PEDF system planning and evaluation, thereby promoting broader adoption of sustainable energy technologies. Full article
Show Figures

Figure 1

16 pages, 1062 KiB  
Article
Effects of Thermostat Control on Energy Use and Thermal Comfort in Office Rooms Under Different Glazing Ratio
by Haiying Wang, Rongfu Hou, Bjarne W. Olesen, Ongun B. Kazanci and Huxiang Lin
Buildings 2025, 15(14), 2422; https://doi.org/10.3390/buildings15142422 - 10 Jul 2025
Viewed by 264
Abstract
Thermal comfort of occupants is characterized by operative temperature (Top), while thermal environment is usually controlled by air temperature (Ta). For perimeter areas in buildings, the use of Ta in the control may lead to uncomfortable conditions. In this paper, thermostat controls based [...] Read more.
Thermal comfort of occupants is characterized by operative temperature (Top), while thermal environment is usually controlled by air temperature (Ta). For perimeter areas in buildings, the use of Ta in the control may lead to uncomfortable conditions. In this paper, thermostat controls based on air (TC-Ta) and Top (TC-Top) were compared in an office module based on different glazing ratio (GR) and indoor units. The results showed that, for a fan–coil system, with TC-Top, thermal comfort can be better, while for a ceiling panel system thermal comfort was similar with both controls. For fan coils, with TC-Top, Ta in offices became higher in the winter and lower in the summer, which improved thermal comfort along with increased energy use. For both GR conditions, the radiant panel could compensate for the presence of cold/warm surfaces, and it decreased the differences between the two controls, especially during cooling, which made the radiant system more suitable in large GR condition. With TC-Top, for the ceiling panel system, the increment of energy use was quite small. According to the results, under large GR, TC-Top was better for the fan–coil system to assure thermal comfort, and both control methods could be used in ceiling panel system. This study presents a comprehensive comparison of the two control strategies for both convective and radiant systems, highlighting their performance under varying GR conditions. The results also provide guidance for the optimal control of different indoor units under different GR conditions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop