Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = oblique incidence of seismic waves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4763 KiB  
Article
Parametric Investigation of Oblique Incidence Angle Effects in Near-Fault P Waves on Dynamic Response of Concrete Dam
by Shutong Xu, Jiawang Liu and Qiang Xu
Appl. Sci. 2025, 15(12), 6853; https://doi.org/10.3390/app15126853 - 18 Jun 2025
Viewed by 237
Abstract
Using numerical simulations, this study investigated the seismic response of concrete dams when subjected to near-fault obliquely incident P waves. For comparison, several near-fault pulse-like movements with different motion parameters were selected and decomposed into non-pulse residual components. A seismic input procedure for [...] Read more.
Using numerical simulations, this study investigated the seismic response of concrete dams when subjected to near-fault obliquely incident P waves. For comparison, several near-fault pulse-like movements with different motion parameters were selected and decomposed into non-pulse residual components. A seismic input procedure for P wave oblique incidence was developed and verified based on the viscous-spring artificial boundary theory. A finite element model of a concrete dam system was used for nonlinear time history analyses. The damage and displacement responses were analyzed under pulse-like and non-pulse motions with incident angles varying from −90° to 90°. The response differences induced by the pulse characteristics incident direction were examined. The relationship between the seismic parameters and response indices was also determined to obtain the optimal seismic parameter describing the variation under different incident conditions. Moreover, the coupled effect of the pulse feature and oblique incidence on the dynamic response and seismic behavior was examined. Finally, a nonlinear three-dimensional predictive model was proposed based on the optimal seismic parameter Sa(T1) and incident angle, exhibiting high correlation and accuracy. The results demonstrated that incident angles between 60° and 75° (with higher spectral acceleration values) intensified the dam damage and vibration when subjected to the oblique near-fault P waves, a crucial discovery for improving the seismic design and safety measure of concrete dams located in regions prone to near-fault seismic hazards. Full article
Show Figures

Figure 1

22 pages, 8293 KiB  
Article
Influence of SV Wave Oblique Incidence on the Dynamic Response of Arch Dams Under Canyon Contraction
by Fei Wang, Zhen Yang, Zhiqiang Song, Yunhe Liu, Yuxian Tan and Xiaoqing Liu
Water 2024, 16(24), 3630; https://doi.org/10.3390/w16243630 - 17 Dec 2024
Cited by 1 | Viewed by 664
Abstract
Current dynamic response analyses of arch dams under an oblique incidence of seismic waves have overlooked the effects of canyon contraction deformation. This study investigated the influence of the incident direction and incident angle of seismic waves on the comprehensive displacements, as well [...] Read more.
Current dynamic response analyses of arch dams under an oblique incidence of seismic waves have overlooked the effects of canyon contraction deformation. This study investigated the influence of the incident direction and incident angle of seismic waves on the comprehensive displacements, as well as the damage, of arch dams under canyon contraction conditions. When SV waves are incident obliquely along the river direction, the peak displacements of the dam crest and arch crown beam increase with increasing canyon contraction. The displacement of the dam reaches its maximum when the incident angle is 0°, indicating that the SV wave vertical incidence is the most unfavourable incidence mode affecting the displacement. Dam damage cracking is most severe in the case of a canyon contraction of 60 mm and an incidence angle of 0°. The dam damage cracking index in this case increases only by 7.6% compared to a canyon contraction of 0 mm and an angle of incidence of 0°. However, the change in canyon contraction when a seismic wave is incident obliquely can cause serious damage cracking to the dam. When the SV wave is incident obliquely along the cross-river direction, the dam damage cracking index in this case increases by 110% compared to the case where the canyon contraction is 0 mm, and the incidence angle is 0°. Therefore, it is necessary to comprehensively consider the influences of canyon contraction and the oblique incidence of seismic waves in the seismic design and safety review of arch dams. Full article
Show Figures

Figure 1

27 pages, 18936 KiB  
Article
Seismic Vulnerability Assessment of the Cliff-Attached Buildings Equipped with Energy Dissipation Devices Under Obliquely Incident Seismic Waves
by Zhuoxin Yang, Dewen Liu, Jiayu Zhou, Li Zhang and Wenyuan Liao
Buildings 2024, 14(11), 3488; https://doi.org/10.3390/buildings14113488 - 31 Oct 2024
Cited by 1 | Viewed by 1051
Abstract
Cliff-attached structures are structures attached to slopes and connected tightly, which is particularly complex to analyze due to the foundations’ unequal grounding and the lateral stiffness’ irregularity. In rare earthquakes, seismic waves are usually obliquely incident on the foundation at a certain angle. [...] Read more.
Cliff-attached structures are structures attached to slopes and connected tightly, which is particularly complex to analyze due to the foundations’ unequal grounding and the lateral stiffness’ irregularity. In rare earthquakes, seismic waves are usually obliquely incident on the foundation at a certain angle. Therefore, it is not appropriate to consider only seismic waves’ vertical incidence, and it is necessary to consider multi-angle oblique incidence. In this paper, based on the theory of viscous-spring artificial boundary and the principle of equivalent nodes at the interface of oblique incidence of ground shaking P-waves, and combined with the dynamic properties related to Buckling-Restrained Brace, the numerical models of slopes and two kinds of cliff-attached structures considering the slope amplification effect and soil-structure interaction are established. The dynamic response of the obliquely incident seismic waves under the action of the cliff-attached vibration reduction structure is studied in depth, and the additional effective damping ratios of the nonlinear energy-dissipated units based on the deformation energy are compared and analyzed. It is shown that under the four oblique incidence angles of incidence (compression waves in the vertical plane) studied in this paper, the seismic dynamic response and damage degree peaked at an angle of incidence of 60°, with a tendency to increase and then decrease with increasing angles of incidence. The ability of an energy-dissipating vibration reduction device to change structural vibration characteristics decreases with an increase in incidence angle. The difference between the total strain energy of the structure in the X-direction (Transverse slope direction) and Y-direction (Down-slope direction) and the total energy dissipation of the dissipative components is obvious, with the X-direction being about 10 times that of the Y-direction. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

28 pages, 9760 KiB  
Article
Nonlinear Seismic Response of Tunnel Structures under Traveling Wave Excitation
by Xiaoqing Suo, Lilong Liu, Dan Qiao, Zhengsong Xiang and Yuanfu Zhou
Buildings 2024, 14(9), 2940; https://doi.org/10.3390/buildings14092940 - 17 Sep 2024
Viewed by 1475
Abstract
Tunnels traditionally regarded as resilient to seismic events have recently garnered significant attention from engineers owing to a rise in incidents of seismic damage. In this paper, the reflection characteristics of the elastic plane wave incident on the free surface are analyzed, and [...] Read more.
Tunnels traditionally regarded as resilient to seismic events have recently garnered significant attention from engineers owing to a rise in incidents of seismic damage. In this paper, the reflection characteristics of the elastic plane wave incident on the free surface are analyzed, and the matrix analysis method SWIM (Seismic Wave Input Method) for the calculation of equivalent nodal loads with artificial truncated boundary conditions for seismic wave oblique incidence is established by using coordinate transformation technology, according to the displacement velocity and stress characteristics of a plane wave. The results show that the oblique incidence method is more effective in reflecting the traveling wave effect, and the “rotational effect” induced by oblique incidence must be considered for P wave and SV wave incidence, including the associated stress and deformation. This effect exhibits markedly distinct rotational phenomenon. In particular, the P wave incidence should be focused on the vault and the inverted arch due to the expansion wave. With the increase of the oblique incidence angle, the structural stress and deformation are rotated to a certain extent, and the values are significantly increased. Simultaneously, the shear action of the SV wave may result in “ovaling” of the tunnel structure, thereby facilitating damage to the arch shoulder and the sidewall components. As the oblique incidence angle, the potentially damaging effects of the “rotational effect” to the vault and the inverted arch, but the numerical value does not change significantly. In addition, in comparison to a circular cross-section, the low-frequency amplification of seismic waves in the surrounding rock and the difference of frequency response function in different parts of the lining are more pronounced. In particular, the dominant frequency characteristics are significant at P wave incidence and the seismic wave signal attenuation tends to be obvious with increasing incidence angle. In contrast, SV waves exhibit more uniform characteristics. Full article
Show Figures

Figure 1

25 pages, 6814 KiB  
Article
Study on the Seismic Response of a Water-Conveyance Tunnel Considering Non-Uniform Longitudinal Subsurface Geometry and Obliquely Incident SV-Waves
by Erlei Yao, Yu Rao, Meishan Liu, Zhifang Liu and Ang Cao
Appl. Sci. 2024, 14(11), 4398; https://doi.org/10.3390/app14114398 - 22 May 2024
Cited by 1 | Viewed by 1031
Abstract
The longitudinal seismic response characteristics of a shallow-buried water-conveyance tunnel under non-uniform longitudinal subsurface geometry and obliquely incident SV-waves was studied using the numerical method, where the effect of the non-uniform longitudinal subsurface geometry due to the existence of a local one-sided rock [...] Read more.
The longitudinal seismic response characteristics of a shallow-buried water-conveyance tunnel under non-uniform longitudinal subsurface geometry and obliquely incident SV-waves was studied using the numerical method, where the effect of the non-uniform longitudinal subsurface geometry due to the existence of a local one-sided rock mountain on the seismic response of the tunnel was focused on. Correspondingly, a large-scale three-dimensional (3D) finite-element model was established, where different incidence angles and incidence directions of the SV-wave were taken into consideration. Also, the non-linearity of soil and rock and the damage plastic of the concrete lining were incorporated. In addition, the wave field of the site and the acceleration response as well as damage of the tunnel were observed. The results revealed the following: (i) a local inclined subsurface geometry may focus an obliquely incident wave due to refraction or total reflection; (ii) a tunnel in a site adjacent to a rock mountain may exhibit a higher acceleration response than a tunnel in a homogeneous plain site; and (iii) damage in the tunnel in the site adjacent to a rock mountain may appear in multiple positions, and the effect of the incidence angle on the mode of compressive deformation and damage of the lining is of significance. Full article
(This article belongs to the Special Issue Earthquake Engineering and Seismic Risk)
Show Figures

Figure 1

16 pages, 4279 KiB  
Article
Dynamic Response Analysis of Intake Tower-Hydrodynamic Coupling Boundary Based on SV Wave Spatial Incidence
by Xiaodong Zheng, Yiming Shen, Xingguang Zong, Hui Su and Xun Zhao
Buildings 2023, 13(7), 1704; https://doi.org/10.3390/buildings13071704 - 4 Jul 2023
Cited by 3 | Viewed by 1591
Abstract
In view of the insufficient analysis of the coupled joint seismic response of the intake tower–reservoir water–foundation boundary under the oblique incidence of SV wave space, a three-dimensional dynamic equation of the oblique incidence of SV wave space is established in this paper. [...] Read more.
In view of the insufficient analysis of the coupled joint seismic response of the intake tower–reservoir water–foundation boundary under the oblique incidence of SV wave space, a three-dimensional dynamic equation of the oblique incidence of SV wave space is established in this paper. The external wave input method of viscoelastic artificial boundary combined with equivalent load and the acoustic medium theory are used to simulate the action of reservoir water, and the angle change in the SV wave incidence is realized by controlling the incident vector. The dynamic response of the structure is analyzed and the dynamic response characteristics of the structure at different incidence angles are discussed. The results show that the dynamic response and damage degree of the intake tower decreases first and then increases with the change in angle. When the vertical incidence is 0°, the maximum displacement drop is 82.05%, and the displacement response of the intake tower is more sensitive to the change in SV wave incidence angle. When SV wave is vertically incident at 0° and 35° (near the maximum critical angle of incident), the dynamic response, dynamic water pressure, damage diffusion velocity, damage area, and damage degree of the intake tower are relatively large, which seriously affects the safety and stability of the intake tower. Therefore, the influence of the oblique incidence should be considered comprehensively in the aseismic stability design of the water intake tower to provide a new idea for the safety evaluation of the same type of engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 9463 KiB  
Article
A 2.5D Finite Element Method Combined with Zigzag-Paraxial Boundary for Long Tunnel under Obliquely Incident Seismic Wave
by Qi Zhang, Mi Zhao, Jingqi Huang, Xiuli Du and Guoliang Zhang
Appl. Sci. 2023, 13(9), 5743; https://doi.org/10.3390/app13095743 - 6 May 2023
Cited by 4 | Viewed by 2320
Abstract
Seismic waves propagation with an oblique angle to the tunnel axis will cause asynchronous tunnel motions and have a significant effect on the axial response. A high-precision 2.5D finite element method is established in the frequency domain to simulate the 3D seismic response [...] Read more.
Seismic waves propagation with an oblique angle to the tunnel axis will cause asynchronous tunnel motions and have a significant effect on the axial response. A high-precision 2.5D finite element method is established in the frequency domain to simulate the 3D seismic response of the tunnel. This method avoids the disturbance caused by the truncation of the tunnel in the longitudinal direction. Meanwhile, a 2.5D zigzag-paraxial boundary is derived to further improve the calculation efficiency of the 2.5D finite element model. Moreover, by combining the 2.5D finite element method, 2.5D zigzag boundary condition and seismic motion input methods, an obliquely incident substructure method for plane seismic waves is built by converting the plane seismic wave into equivalent nodal forces. The proposed 2.5D finite element method is verified by comparing with a reference solution. Finally, the 2.5D finite element method is applied to study the seismic response of the long lined tunnel. Parameter analyses illustrate that the wave propagation effect to the tunnel axis has a non-negligible influence on the axil deformation of long tunnels. Full article
(This article belongs to the Special Issue Geotechnical Earthquake Engineering: Current Progress and Road Ahead)
Show Figures

Figure 1

17 pages, 7281 KiB  
Article
Parameter Analysis on Seismic Response of Long Lined Tunnel by 2.5D Substructure Method
by Qi Zhang, Mi Zhao, Jingqi Huang and Xiuli Du
Appl. Sci. 2023, 13(7), 4593; https://doi.org/10.3390/app13074593 - 5 Apr 2023
Viewed by 2025
Abstract
When the numerical analysis of a long lined tunnel is carried out, the calculation amount of the finite element model becomes restricted large-scale parameter analysis. In this paper, an efficient and high-precision 2.5-dimensional (2.5D) frequency-domain finite element method is used to simulate the [...] Read more.
When the numerical analysis of a long lined tunnel is carried out, the calculation amount of the finite element model becomes restricted large-scale parameter analysis. In this paper, an efficient and high-precision 2.5-dimensional (2.5D) frequency-domain finite element method is used to simulate the three-dimensional response of tunnels under the action of oblique incident plane seismic waves. This method can save calculations and avoid the boundary effect caused by the longitudinal truncation of the tunnel. The 2.5D zigzag-paraxial boundary is developed. The artificial boundary is attached to the structure’s surface. The substructure method for oblique plane seismic waves is established. Comparing the substructure method with the analytical solution, the correctness of the site response is verified first. The accuracy of the 2.5D finite element substructure method is further verified. The parameter analysis of different incident angles and conversion angles shows that the underground tunnel does not reach the maximum of structural seismic response when the seismic wave is vertically incident. The location of the soil–rock interface on the tunnel is further discussed. The results show that when the underground tunnel crosses the location of the soil–rock interface, the seismic response of the tunnel will be amplified. Full article
(This article belongs to the Special Issue Urban Underground Engineering: Excavation, Monitoring, and Control)
Show Figures

Figure 1

19 pages, 3713 KiB  
Article
Dynamic Stress Path under Obliquely Incident P- and SV-Waves
by Mingyuan Wang, Linfeng Song, Xinglei Cheng, Jianxin Zhang, Liqiang Lu and Wenqian Li
Buildings 2022, 12(12), 2210; https://doi.org/10.3390/buildings12122210 - 13 Dec 2022
Viewed by 2029
Abstract
This study derives the expression of dynamic stress components of the soil element in the semi-infinite elastic space under obliquely incident P- and SV-waves, and obtained the corresponding dynamic stress path. The effects of some factors including the incidence angle, Poisson’s ratio, frequency, [...] Read more.
This study derives the expression of dynamic stress components of the soil element in the semi-infinite elastic space under obliquely incident P- and SV-waves, and obtained the corresponding dynamic stress path. The effects of some factors including the incidence angle, Poisson’s ratio, frequency, wave velocity, phase difference, and soil depth on the dynamic stress path are analyzed. It is found that the dynamic stress path in the (σyσx)/2 − τxy plane is an oblique ellipse, and the above factors have significant effects on that. The maximum dynamic stress level for Poisson’s ratio of 0.3 is about twice that for 0.48. The maximum dynamic stress level for 2.5 Hz is about six times that for 1 Hz. In general, the maximum dynamic stress level is about 40 kPa, no matter how the wave velocity changes. Compared with other phase difference, the dynamic stress level for the phase difference of 60° is largest with a value of 43 kPa. The dynamic stress level becomes greater as the soil depth increases, and the maximum value at 30 m depth is about 40 kPa. The variation trend of the three characteristic parameters with the incident angle exhibits the double-peak or triple-peak curves for different influencing factors. The research findings can provide some guidance for the site seismic dynamic response analysis and structural seismic design. Full article
(This article belongs to the Special Issue Advances in Soils and Foundations)
Show Figures

Figure 1

12 pages, 6393 KiB  
Article
Seismic Response Analysis of Uplift Terrain under Oblique Incidence of SV Waves
by Mingxing Cao, Erfeng Ou, Songhong Yan and Jiaxuan Du
Symmetry 2022, 14(11), 2244; https://doi.org/10.3390/sym14112244 - 26 Oct 2022
Cited by 3 | Viewed by 1533
Abstract
In order to analyze the impact of seismic waves on the venue earthquake, based on the display finite element method, the viscoelastic artificial boundary is used to analyze the variation of the ground motion amplification coefficient and the Fourier spectrum of the raised [...] Read more.
In order to analyze the impact of seismic waves on the venue earthquake, based on the display finite element method, the viscoelastic artificial boundary is used to analyze the variation of the ground motion amplification coefficient and the Fourier spectrum of the raised terrain under different incident angles with SV wave oblique incidence on different slopes. This verification model analysis solution and numerical solution are better. The numerical simulation results show that as the degree of the slope increases, the seismic amplification coefficient increases, and its slope amplification coefficient changes significantly. The X direction coefficient is greater than Y’s magnification coefficient. The Fourier curve with a frequency of 0.2~1 Hz increases with the slope of the raised terrain; when the El Centro is incorporated at 30°, the Fourier spectrum amplitude decreases as the incident angle increases in the low-frequency band. The amplitude of the Fourier spectrum at the high-frequency band monitoring point changes with the incident angle. In the high-frequency band from 1 to 10 Hz, the rate of amplitude change is the largest. When the incident angle is at 0°, the amplification coefficient in the Y direction is basically symmetric. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

22 pages, 8833 KiB  
Article
Seismic Response of Immersed Tunnel Subject to Oblique Incidence of SV Wave
by Cong He, Guoyuan Xu, Zhigang Zhang and Wei Li
Appl. Sci. 2022, 12(20), 10440; https://doi.org/10.3390/app122010440 - 16 Oct 2022
Cited by 4 | Viewed by 2070
Abstract
In view of the near-field seismic action, considering that oblique incidence of seismic waves is more realistic than vertical incidence, the seismic response of the Hong Kong–Zhuhai–Macao immersed tunnel subjected to an obliquely incident SV wave is investigated. Using the finite element method [...] Read more.
In view of the near-field seismic action, considering that oblique incidence of seismic waves is more realistic than vertical incidence, the seismic response of the Hong Kong–Zhuhai–Macao immersed tunnel subjected to an obliquely incident SV wave is investigated. Using the finite element method and time-domain wave method, the seismic input is transformed into an equivalent node load with a viscous–spring artificial boundary, and a three-dimensional simulation technology for SV waves of oblique incidence is presented. A half-space numerical example is given to demonstrate the accuracy of the proposed simulation technology. Taking the stress field formed by the self-weight stress and hydrostatic pressure as the initial state of the dynamic response analysis, the static–dynamic coupling numerical simulation of the seismic response of a soil-immersed tunnel system is realized. The results show that the amplification in the vertical and longitudinal response of the tunnel, due to the oblique incidence, reaches maximum when the incident angle is close to the critical angle. Furthermore, the horizontal response and incident angle show the inverse relation and tend to be stable. In addition, the oblique incidence also causes asymmetric shearing in symmetric parts of the tunnel. The root of the shear key easily produces tensile cracks, while the end angle of the shear key is prone to stress concentration and local damage. Thus, the impact of oblique incidence should be considered in the seismic design, and attention should be paid to the optimization of the end angle of the shear key and the configuration of anti-crack reinforcement at the root of shear key to meet the seismic requirements. Full article
Show Figures

Figure 1

27 pages, 28700 KiB  
Article
Evaluation of Ground Motion Amplification Effects in Slope Topography Induced by the Arbitrary Directions of Seismic Waves
by Chao Yin, Wei-Hua Li and Wei Wang
Energies 2021, 14(20), 6744; https://doi.org/10.3390/en14206744 - 16 Oct 2021
Cited by 15 | Viewed by 3158
Abstract
The incident directions of seismic waves can change the ground motions of slope topography. To elaborate on the influences of the directions of seismic waves, a dynamic analysis of the slope topography was performed. Seismic waves were input using an equivalent nodal force [...] Read more.
The incident directions of seismic waves can change the ground motions of slope topography. To elaborate on the influences of the directions of seismic waves, a dynamic analysis of the slope topography was performed. Seismic waves were input using an equivalent nodal force method combined with a viscous-spring artificial boundary. The amplification of ground motions in double-faced slope topographies was discussed by varying the angles of incidence. Meanwhile, the components of seismic waves (P waves and SV waves), slope materials and slope geometries were all investigated with various incident earthquake waves. The results indicated that the pattern of the amplification of SV waves was stronger than that of P waves in the slope topography, especially in the greater incident angels of the incident waves. Soft materials intensely aggravate the acceleration amplification, and more scattered waves are produced under oblique incident earthquake waves. The variations in the acceleration amplification ratios on the slope crest were much more complicated at oblique incident waves, and the ground motions were underestimated by considering only the vertical incident waves. Therefore, in the evaluation of ground motion amplification of the slope topography, it is extremely important to consider the direction of incident waves. Full article
Show Figures

Figure 1

17 pages, 1185 KiB  
Article
Fragility Analysis of RC Frame Structures Subjected to Obliquely Incident Seismic Waves
by Bo Huang, Jiachen Guo, Kailong Liao and Yu Zhao
Sustainability 2021, 13(3), 1108; https://doi.org/10.3390/su13031108 - 21 Jan 2021
Cited by 5 | Viewed by 2229
Abstract
Obliquely incident seismic waves have been habitually overlooked in fragility analysis. In this paper, a new approach to solving the equivalent loads on the infinite element boundary due to obliquely incident seismic waves is proposed. Based on the site conditions and structural characteristics [...] Read more.
Obliquely incident seismic waves have been habitually overlooked in fragility analysis. In this paper, a new approach to solving the equivalent loads on the infinite element boundary due to obliquely incident seismic waves is proposed. Based on the site conditions and structural characteristics in the Jiaxing area, the seismic response of a multi-story reinforced concrete (RC) frame structure has been fully investigated through the finite element method. Under obliquely incident SV waves (shear wave in the vertical x-z plane), the distribution of internal forces on the structure in the case of homogeneous foundation soil is significantly asymmetrical. Among the 3 obliquely incident angles investigated in this paper, the maximum inter-story displacement is smallest when the incident angle is 20° and largest when the angle equals 30°. For the structural fragility, the exceedance probability at each structural damage level is smallest when the incident reflection angle is 20° and largest when the angle equals 30°. When the structure is located in the silty valley, the influence of oblique incidence is attenuated and there is no obvious stress asymmetry on the structure due to the refraction of seismic waves on the interface. Full article
(This article belongs to the Special Issue Sustainable Assessment and Modelling in Seismic Risk Mitigation)
Show Figures

Figure 1

18 pages, 17684 KiB  
Article
Nonlinear Dynamic Response of a CC-RCC Combined Dam Structure under Oblique Incidence of Near-Fault Ground Motions
by Jiawen Zhang, Mengxi Zhang, Mingchao Li, Qiaoling Min, Bowen Shi and Lingguang Song
Appl. Sci. 2020, 10(3), 885; https://doi.org/10.3390/app10030885 - 29 Jan 2020
Cited by 18 | Viewed by 3362
Abstract
The velocity pulse contained in near-fault ground motions have a tremendous impact on dam safety. Previous studies have mainly focused on the response of dams under near-fault seismic records without considering the obliquely incident seismic waves. In this study, the structure–soil interaction (SSI) [...] Read more.
The velocity pulse contained in near-fault ground motions have a tremendous impact on dam safety. Previous studies have mainly focused on the response of dams under near-fault seismic records without considering the obliquely incident seismic waves. In this study, the structure–soil interaction (SSI) is taken into consideration, and the nonlinear behavior of a conventional concrete roller-compacted concrete (CC-RCC) gravity dam under near-fault pulse records and non-pulse records is investigated with consideration of the obliquely incident P waves. On the basis of the dam site conditions, three groups of near-fault pulse records are chosen, and three corresponding non-pulse records are fitted by their acceleration response spectra. Combining with the viscous-spring artificial boundary, the wave input method is proposed to transform the near-fault seismic records into the equivalent nodal forces at the boundary of the foundation. The concrete damaged plasticity model is used for the nonlinear analysis. The results show that the pulse ground motions are more destructive than the non-pulse motions. The nonlinear behavior of the dam varies with the incidence angle of P waves and generally reaches a maximum at 60° and 75°, the worst damage occurs at the interface between different materials of the dam, and the spatial variation of its damage is very obvious under near-fault seismic records with various incidence angles. Therefore, the effect of the angle of obliquely incident seismic waves and near-fault pulse effect should be considered comprehensively in the seismic analysis of dams. Full article
(This article belongs to the Special Issue Effects of Near-Fault Ground Motions on Civil Infrastructure)
Show Figures

Figure 1

Back to TopTop