Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = oblique aerial photogrammetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 46330 KB  
Article
Bridging the Sim2Real Gap in UAV Remote Sensing: A High-Fidelity Synthetic Data Framework for Vehicle Detection
by Fuping Liao, Yan Liu, Wei Xu, Xingqi Wang, Gang Liu, Kun Yang and Jiahao Li
Remote Sens. 2026, 18(2), 361; https://doi.org/10.3390/rs18020361 - 21 Jan 2026
Viewed by 157
Abstract
Unmanned Aerial Vehicle (UAV) imagery has emerged as a critical data source in remote sensing, playing an important role in vehicle detection for intelligent traffic management and urban monitoring. Deep learning–based detectors rely heavily on large-scale, high-quality annotated datasets, however, collecting and labeling [...] Read more.
Unmanned Aerial Vehicle (UAV) imagery has emerged as a critical data source in remote sensing, playing an important role in vehicle detection for intelligent traffic management and urban monitoring. Deep learning–based detectors rely heavily on large-scale, high-quality annotated datasets, however, collecting and labeling real-world UAV data are both costly and time-consuming. Owing to its controllability and scalability, synthetic data has become an effective supplement to address the scarcity of real data. Nevertheless, the significant domain gap between synthetic data and real data often leads to substantial performance degradation during real-world deployment. To address this challenge, this paper proposes a high-fidelity synthetic data generation framework designed to reduce the Sim2Real gap. First, UAV oblique photogrammetry is utilized to reconstruct real-world 3D model, ensuring geometric and textural authenticity; second, diversified rendering strategies that simulate real-world illumination and weather variations are adopted to cover a wide range of environmental conditions; finally, an automated ground-truth generation algorithm based on semantic masks is developed to achieve pixel-level precision and cost-efficient annotation. Based on this framework, we construct a synthetic dataset named UAV-SynthScene. Experimental results show that multiple mainstream detectors trained on UAV-SynthScene achieve competitive performance when evaluated on real data, while significantly enhancing robustness in long-tail distributions and improving generalization on real datasets. Full article
(This article belongs to the Special Issue Advances in Deep Learning Approaches: UAV Data Analysis)
Show Figures

Graphical abstract

23 pages, 5292 KB  
Article
Research on Rapid 3D Model Reconstruction Based on 3D Gaussian Splatting for Power Scenarios
by Huanruo Qi, Yi Zhou, Chen Chen, Lu Zhang, Peipei He, Xiangyang Yan and Mengqi Zhai
Sustainability 2026, 18(2), 726; https://doi.org/10.3390/su18020726 - 10 Jan 2026
Viewed by 366
Abstract
As core infrastructure of power transmission networks, power towers require high-precision 3D models, which are critical for intelligent inspection and digital twin applications of power transmission lines. Traditional reconstruction methods, such as LiDAR scanning and oblique photogrammetry, suffer from issues including high operational [...] Read more.
As core infrastructure of power transmission networks, power towers require high-precision 3D models, which are critical for intelligent inspection and digital twin applications of power transmission lines. Traditional reconstruction methods, such as LiDAR scanning and oblique photogrammetry, suffer from issues including high operational risks, low modeling efficiency, and loss of fine details. To address these limitations, this paper proposes a 3D Gaussian Splatting (3DGS)-based method for power tower 3D reconstruction to enhance reconstruction efficiency and detail preservation capability. First, a multi-view data acquisition scheme combining “unmanned aerial vehicle + oblique photogrammetry” was designed to capture RGB images acquired by Unmanned Aerial Vehicle (UAV) platforms, which are used as the primary input for 3D reconstruction. Second, a sparse point cloud was generated via Structure from Motion. Finally, based on 3DGS, Gaussian model initialization, differentiable rendering, and adaptive density control were performed to produce high-precision 3D models of power towers. Taking two typical power tower types as experimental subjects, comparisons were made with the oblique photogrammetry + ContextCapture method. Experimental results demonstrate that 3DGS not only achieves high model completeness (with the reconstructed model nearly indistinguishable from the original images) but also excels in preserving fine details such as angle steels and cables. Additionally, the final modeling time is reduced by over 70% compared to traditional oblique photogrammetry. 3DGS enables efficient and high-precision reconstruction of power tower 3D models, providing a reliable technical foundation for digital twin applications in power transmission lines. By significantly improving reconstruction efficiency and reducing operational costs, the proposed method supports sustainable power infrastructure inspection, asset lifecycle management, and energy-efficient digital twin applications. Full article
Show Figures

Figure 1

22 pages, 31354 KB  
Article
Heritage Conservation and Management of Traditional Anhui Dwellings Using 3D Digitization: A Case Study of the Architectural Heritage Clusters in Huangshan City
by Jianfu Chen, Jie Zhong, Qingqian Ning, Zhengjia Xu and Hiroatsu Fukuda
Buildings 2026, 16(1), 211; https://doi.org/10.3390/buildings16010211 - 2 Jan 2026
Viewed by 598
Abstract
Traditional villages stand as irreplaceable treasures of global cultural heritage, embodying profound historical, cultural, and esthetic values. However, the accelerating pace of urbanization has exposed them to unprecedented threats, including structural degradation, loss of intangible cultural practices, and the homogenization of rural landscapes. [...] Read more.
Traditional villages stand as irreplaceable treasures of global cultural heritage, embodying profound historical, cultural, and esthetic values. However, the accelerating pace of urbanization has exposed them to unprecedented threats, including structural degradation, loss of intangible cultural practices, and the homogenization of rural landscapes. In recent years, three-dimensional (3D) laser scanning, unmanned aerial vehicles (UAVs), and other advanced geospatial technologies have been increasingly applied in the conservation and restoration of architectural heritage. The digital documentation of traditional dwellings not only ensures the accuracy and efficiency of conservation efforts but also minimizes physical intervention, thereby safeguarding the authenticity and integrity of heritage sites. This study examines the architectural characteristics and conservation challenges of traditional Huizhou dwellings in Huangshan City, Anhui Province, by integrating oblique photogrammetry, terrestrial laser scanning (TLS), and 3D modeling. Close-range photogrammetry, combined with image matching algorithms and computer vision techniques, was used to produce highly detailed 3D models of historical structures. UAV-based data acquisition was further employed to generate Heritage Building Information Modeling (HBIM) from point cloud datasets, which were subsequently pre-processed and denoised for restoration simulations. In addition, HBIM was utilized to conduct quantitative analyses of architectural components, providing critical support for heritage management and decision-making in conservation planning. The findings demonstrate that 3D digitization offers a sustainable and replicable model for the protection, revitalization, and adaptive reuse of traditional villages, contributing to the long-term preservation of their cultural and architectural legacy. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

33 pages, 28392 KB  
Article
Research on the Integration and Application of Industrial Architectural Heritage Information Under the Concept of Sustainability: A Case Study of the Architecture Building at Inner Mongolia University of Technology
by Long He, Di Cui, Min Gao, Minjia Wu and Yongjiang Wu
Sustainability 2025, 17(22), 10022; https://doi.org/10.3390/su172210022 - 10 Nov 2025
Viewed by 936
Abstract
In the context of digital transformation for industrial heritage conservation propelled by China’s National Industrial Heritage Management Measures, evidence regarding the trade-offs among accuracy, completeness, and efficiency within the acquisition–registration–integration pipeline, as well as transferable methodologies, remains inadequate. Addressing key challenges in information [...] Read more.
In the context of digital transformation for industrial heritage conservation propelled by China’s National Industrial Heritage Management Measures, evidence regarding the trade-offs among accuracy, completeness, and efficiency within the acquisition–registration–integration pipeline, as well as transferable methodologies, remains inadequate. Addressing key challenges in information integration for industrial architectural heritage in Inner Mongolia—such as fragile media, weak sustainability, and severe information silos—demands a systematic solution. This paper proposes a BIM-based three-dimensional digital preservation framework centered on “Space-Time-Value” and empirically validates its workflow effectiveness and database interoperability. Focusing on the Inner Mongolia University of Technology Architecture Building, a prime exemplar of adaptive reuse in the region, we employed terrestrial 3D laser scanning and Unmanned Aerial Vehicle (UAV) oblique photogrammetry to acquire a 13.8-billion-point cloud. Using Autodesk Revit, we developed an LOD400 model (comprising 12 component types and 349 parametric families), achieving systematic integration of structural data, spatial evolution information, and non-geometric attributes. Comparative evaluation shows that this workflow outperforms baselines in geometric accuracy, facade completeness, and processing efficiency, while significantly enhancing the integration and retrieval capabilities for heterogeneous data. The research establishes a “Multi-source Data Integration + Sustainable Utilization” digital paradigm for industrial architectural heritage, providing a replicable methodology for whole-life-cycle management and adaptive reuse. Full article
Show Figures

Figure 1

28 pages, 9030 KB  
Article
UAV Path Planning via Semantic Segmentation of 3D Reality Mesh Models
by Xiaoxinxi Zhang, Zheng Ji, Lingfeng Chen and Yang Lyu
Drones 2025, 9(8), 578; https://doi.org/10.3390/drones9080578 - 14 Aug 2025
Cited by 2 | Viewed by 2778
Abstract
Traditional unmanned aerial vehicle (UAV) path planning methods for image-based 3D reconstruction often rely solely on geometric information from initial models, resulting in redundant data acquisition in non-architectural areas. This paper proposes a UAV path planning method via semantic segmentation of 3D reality [...] Read more.
Traditional unmanned aerial vehicle (UAV) path planning methods for image-based 3D reconstruction often rely solely on geometric information from initial models, resulting in redundant data acquisition in non-architectural areas. This paper proposes a UAV path planning method via semantic segmentation of 3D reality mesh models to enhance efficiency and accuracy in complex scenarios. The scene is segmented into buildings, vegetation, ground, and water bodies. Lightweight polygonal surfaces are extracted for buildings, while planar segments in non-building regions are fitted and projected into simplified polygonal patches. These photography targets are further decomposed into point, line, and surface primitives. A multi-resolution image acquisition strategy is adopted, featuring high-resolution coverage for buildings and rapid scanning for non-building areas. To ensure flight safety, a Digital Surface Model (DSM)-based shell model is utilized for obstacle avoidance, and sky-view-based Real-Time Kinematic (RTK) signal evaluation is applied to guide viewpoint optimization. Finally, a complete weighted graph is constructed, and ant colony optimization is employed to generate a low-energy-cost flight path. Experimental results demonstrate that, compared with traditional oblique photogrammetry, the proposed method achieves higher reconstruction quality. Compared with the commercial software Metashape, it reduces the number of images by 30.5% and energy consumption by 37.7%, while significantly improving reconstruction results in both architectural and non-architectural areas. Full article
Show Figures

Figure 1

22 pages, 32941 KB  
Article
Assessment of Building Vulnerability to Tsunami in Ancon Bay, Peru, Using High-Resolution Unmanned Aerial Vehicle Imagery and Numerical Simulation
by Carlos Davila, Angel Quesquen, Fernando Garcia, Brigitte Puchoc, Oscar Solis, Julian Palacios, Jorge Morales and Miguel Estrada
Drones 2025, 9(6), 402; https://doi.org/10.3390/drones9060402 - 29 May 2025
Cited by 3 | Viewed by 4670
Abstract
Traditional tsunami vulnerability assessments often rely on empirical models and field surveys, which can be time-consuming and have limited accuracy. In this study, we propose a novel approach that integrates high-resolution Unmanned Aerial Vehicle (UAV) photogrammetry with numerical simulation to improve vulnerability assessment [...] Read more.
Traditional tsunami vulnerability assessments often rely on empirical models and field surveys, which can be time-consuming and have limited accuracy. In this study, we propose a novel approach that integrates high-resolution Unmanned Aerial Vehicle (UAV) photogrammetry with numerical simulation to improve vulnerability assessment efficacy in Ancon Bay, Lima, Peru, by using the Papathoma Tsunami Vulnerability Assessment (PTVA-4) model. For this purpose, a detailed 3D representation of the study area was generated using UAV-based oblique photogrammetry, enabling the extraction of building attributes. Additionally, a high-resolution numerical tsunami simulation was conducted using the TUNAMI-N2 model for a potential worst-case scenario that may affect the Central Peru subduction zone, incorporating topographic and land-use data obtained with UAV-based nadir photogrammetry. The results indicate that the northern region of Ancon Bay exhibits higher relative vulnerability levels due to greater inundation depths and more tsunami-prone building attributes. UAV-based assessments provide a rapid and detailed method for evaluating building vulnerability. These findings indicate that the proposed methodology is a valuable tool for supporting coastal risk planning and disaster preparedness in tsunami-prone areas. Full article
(This article belongs to the Special Issue Drones for Natural Hazards)
Show Figures

Figure 1

25 pages, 4496 KB  
Article
Assessment of Photogrammetric Performance Test on Large Areas by Using a Rolling Shutter Camera Equipped in a Multi-Rotor UAV
by Alba Nely Arévalo-Verjel, José Luis Lerma, Juan Pedro Carbonell-Rivera, Juan F. Prieto and José Fernández
Appl. Sci. 2025, 15(9), 5035; https://doi.org/10.3390/app15095035 - 1 May 2025
Viewed by 2737
Abstract
The generation of digital aerial photogrammetry products using unmanned aerial vehicle-digital aerial photogrammetry (UAV-DAP) has become an essential task due to the increasing use of UAVs in the world of geomatics, thanks to their low cost and spatial resolution. Therefore, it is relevant [...] Read more.
The generation of digital aerial photogrammetry products using unmanned aerial vehicle-digital aerial photogrammetry (UAV-DAP) has become an essential task due to the increasing use of UAVs in the world of geomatics, thanks to their low cost and spatial resolution. Therefore, it is relevant to explore the performance of new digital cameras equipped in UAVs using electronic rolling shutters instead of ideal mechanical or global shutter cameras to achieve accurate and reliable photogrammetric products, if possible, while minimizing workload, especially for their application in projects that require a high level of detail. In this paper, we analyse performance using oblique images along the perimeter (3D perimeter) on a flat area, i.e., with slopes of less than 3%. The area was photogrammetrically surveyed with a DJI (Dà-Jiāng Innovations) Inspire 2 multirotor UAV equipped with a Zenmuse X5S rolling shutter camera. The photogrammetric survey was accompanied by a Global Navigation Satellite System (GNSS) survey, in which dual frequency receivers were used to determine the ground control points (GCPs) and checkpoints (CPs). The study analysed different scenarios, including the combination of forward and transversal strips and oblique images. After examining the ideal scenario with the least root mean square error (RMSE), six different combinations were analysed to find the best location for the GCPs. The most significant results indicate that the optimal calibration of the camera is obtained in scenarios including oblique images, which outperform the rest of the scenarios for achieving the lowest RMSE (2.5x the GSD in Z and 3.0x the GSD in XYZ) with optimum GCPs layout; with non-ideal GCPs layout, unacceptable errors can be achieved (11.4x the GSD in XYZ), even with ideal block geometry. The UAV-DAP rolling shutter effect can only be minimised in the scenario that uses oblique images and GCPs at the edges of the overlapping zones and the perimeter. Full article
(This article belongs to the Special Issue Technical Advances in UAV Photogrammetry and Remote Sensing)
Show Figures

Figure 1

23 pages, 20311 KB  
Article
Bridge Geometric Shape Measurement Using LiDAR–Camera Fusion Mapping and Learning-Based Segmentation Method
by Shang Jiang, Yifan Yang, Siyang Gu, Jiahui Li and Yingyan Hou
Buildings 2025, 15(9), 1458; https://doi.org/10.3390/buildings15091458 - 25 Apr 2025
Cited by 6 | Viewed by 2238
Abstract
The rapid measurement of three-dimensional bridge geometric shapes is crucial for assessing construction quality and in-service structural conditions. Existing geometric shape measurement methods predominantly rely on traditional surveying instruments, which suffer from low efficiency and are limited to sparse point sampling. This study [...] Read more.
The rapid measurement of three-dimensional bridge geometric shapes is crucial for assessing construction quality and in-service structural conditions. Existing geometric shape measurement methods predominantly rely on traditional surveying instruments, which suffer from low efficiency and are limited to sparse point sampling. This study proposes a novel framework that utilizes an airborne LiDAR–camera fusion system for data acquisition, reconstructs high-precision 3D bridge models through real-time mapping, and automatically extracts structural geometric shapes using deep learning. The main contributions include the following: (1) A synchronized LiDAR–camera fusion system integrated with an unmanned aerial vehicle (UAV) and a microprocessor was developed, enabling the flexible and large-scale acquisition of bridge images and point clouds; (2) A multi-sensor fusion mapping method coupling visual-inertial odometry (VIO) and Li-DAR-inertial odometry (LIO) was implemented to construct 3D bridge point clouds in real time robustly; and (3) An instance segmentation network-based approach was proposed to detect key structural components in images, with detected geometric shapes projected from image coordinates to 3D space using LiDAR–camera calibration parameters, addressing challenges in automated large-scale point cloud analysis. The proposed method was validated through geometric shape measurements on a concrete arch bridge. The results demonstrate that compared to the oblique photogrammetry method, the proposed approach reduces errors by 77.13%, while its detection time accounts for 4.18% of that required by a stationary laser scanner and 0.29% of that needed for oblique photogrammetry. Full article
(This article belongs to the Special Issue Urban Infrastructure and Resilient, Sustainable Buildings)
Show Figures

Figure 1

16 pages, 21810 KB  
Article
Enhancing Direct Georeferencing Using Real-Time Kinematic UAVs and Structure from Motion-Based Photogrammetry for Large-Scale Infrastructure
by Soohee Han and Dongyeob Han
Drones 2024, 8(12), 736; https://doi.org/10.3390/drones8120736 - 5 Dec 2024
Cited by 4 | Viewed by 2694
Abstract
The growing demand for high-accuracy mapping and 3D modeling using unmanned aerial vehicles (UAVs) has accelerated advancements in flight dynamics, positioning accuracy, and imaging technology. Structure from motion (SfM), a computer vision-based approach, is increasingly replacing traditional photogrammetry through facilitating the automation of [...] Read more.
The growing demand for high-accuracy mapping and 3D modeling using unmanned aerial vehicles (UAVs) has accelerated advancements in flight dynamics, positioning accuracy, and imaging technology. Structure from motion (SfM), a computer vision-based approach, is increasingly replacing traditional photogrammetry through facilitating the automation of processes such as aerial triangulation (AT), terrain modeling, and orthomosaic generation. This study examines methods to enhance the accuracy of SfM-based AT through real-time kinematic (RTK) UAV imagery, focusing on large-scale infrastructure applications, including a dam and its entire basin. The target area, primarily consisting of homogeneous water surfaces, poses considerable challenges for feature point extraction and image matching, which are crucial for effective SfM. To overcome these challenges and improve the AT accuracy, a constraint equation was applied, incorporating weighted 3D coordinates derived from RTK UAV data. Furthermore, oblique images were combined with nadir images to stabilize AT, and confidence-based filtering was applied to point clouds to enhance geometric quality. The results indicate that assigning appropriate weights to 3D coordinates and incorporating oblique imagery significantly improve the AT accuracy. This approach presents promising advancements for RTK UAV-based AT in SfM-challenging, large-scale environments, thus supporting more efficient and precise mapping applications. Full article
Show Figures

Figure 1

25 pages, 12807 KB  
Article
Improving Real-Scene 3D Model Quality of Unmanned Aerial Vehicle Oblique-Photogrammetry with a Ground Camera
by Jinghai Xu, Suya Zhang, Haoran Jing, Craig Hancock, Peng Qiao, Nan Shen and Karen B. Blay
Remote Sens. 2024, 16(21), 3933; https://doi.org/10.3390/rs16213933 - 22 Oct 2024
Cited by 7 | Viewed by 3932
Abstract
In UAV (unmanned aerial vehicle) oblique photogrammetry, the occlusion of ground objects, particularly at their base, often results in low-quality real-scene 3D models. To address this issue, we propose a method to enhance model quality by integrating ground-based camera images. This innovative image [...] Read more.
In UAV (unmanned aerial vehicle) oblique photogrammetry, the occlusion of ground objects, particularly at their base, often results in low-quality real-scene 3D models. To address this issue, we propose a method to enhance model quality by integrating ground-based camera images. This innovative image acquisition method allows the rephotographing of areas in the 3D model that exhibit poor quality. Three critical parameters for reshooting are the reshooting distance and the front- and side-overlap ratios of reshooting images. The proposed method for improving 3D model quality focuses on point accuracy, dimensional accuracy, texture details, and the triangular mesh structure. Validated by a case study involving a complex building, this method demonstrates that integrating ground camera photos significantly improves the overall quality of the 3D model. The findings show that optimal settings for reshooting include a distance (in meter units) of 1.5–1.6 times the camera’s focal length (in millimeter units), a front overlap ratio of 30%, and a side overlap ratio of 20%. Furthermore, we conclude that an overlap rate of 20–30% in reshooting is a usable value. Full article
Show Figures

Figure 1

23 pages, 14119 KB  
Article
Construction of High-Precision and Complete Images of a Subsidence Basin in Sand Dune Mining Areas by InSAR-UAV-LiDAR Heterogeneous Data Integration
by Rui Wang, Shiqiao Huang, Yibo He, Kan Wu, Yuanyuan Gu, Qimin He, Huineng Yan and Jing Yang
Remote Sens. 2024, 16(15), 2752; https://doi.org/10.3390/rs16152752 - 27 Jul 2024
Cited by 8 | Viewed by 2406
Abstract
Affected by geological factors, the scale of surface deformation in a hilly semi-desertification mining area varies. Meanwhile, there is certain dense vegetation on the ground, so it is difficult to construct a high-precision and complete image of a subsidence basin by using a [...] Read more.
Affected by geological factors, the scale of surface deformation in a hilly semi-desertification mining area varies. Meanwhile, there is certain dense vegetation on the ground, so it is difficult to construct a high-precision and complete image of a subsidence basin by using a single monitoring method, and hence the laws of the deformation and inversion of mining parameters cannot be known. Therefore, we firstly propose conducting collaborative monitoring by using InSAR (Interferometric Synthetic Aperture Radar), UAV (unmanned aerial vehicle), and 3DTLS (three-dimensional terrestrial laser scanning). The time-series complete surface subsidence basin is constructed by fusing heterogeneous data. In this paper, SBAS-InSAR (Small Baseline Subset) technology, which has the characteristics of reducing the time and space discorrelation, is used to obtain the small-scale deformation of the subsidence basin, oblique photogrammetry and 3D-TLS with strong penetrating power are used to obtain the anomaly and large-scale deformation, and the local polynomial interpolation based on the weight of heterogeneous data is used to construct a complete and high-precision subsidence basin. Compared with GNSS (Global Navigation Satellite System) monitoring data, the mean square errors of 1.442 m, 0.090 m, 0.072 m are obtained. The root mean square error of the high-precision image of the subsidence basin data is 0.040 m, accounting for 1.4% of the maximum subsidence value. The high-precision image of complete subsidence basin data can provide reliable support for the study of surface subsidence law and mining parameter inversion. Full article
(This article belongs to the Special Issue Synthetic Aperture Radar Interferometry Symposium 2024)
Show Figures

Figure 1

21 pages, 7548 KB  
Article
Photogrammetric Measurement of Grassland Fire Spread: Techniques and Challenges with Low-Cost Unmanned Aerial Vehicles
by Marián Marčiš, Marek Fraštia, Tibor Lieskovský, Martin Ambroz and Karol Mikula
Drones 2024, 8(7), 282; https://doi.org/10.3390/drones8070282 - 22 Jun 2024
Cited by 2 | Viewed by 2105
Abstract
The spread of natural fires is a complex issue, as its mathematical modeling needs to consider many parameters. Therefore, the results of such modeling always need to be validated by comparison with experimental measurements under real-world conditions. Remote sensing with the support of [...] Read more.
The spread of natural fires is a complex issue, as its mathematical modeling needs to consider many parameters. Therefore, the results of such modeling always need to be validated by comparison with experimental measurements under real-world conditions. Remote sensing with the support of satellite or aerial sensors has long been used for this purpose. In this article, we focused on data collection with an unmanned aerial vehicle (UAV), which was used both for creating a digital surface model and for dynamic monitoring of the spread of controlled grassland fires in the visible spectrum. We subsequently tested the impact of various processing settings on the accuracy of the digital elevation model (DEM) and orthophotos, which are commonly used as a basis for analyzing fire spread. For the DEM generated from images taken during the final flight after the fire, deviations did not exceed 0.1 m compared to the reference model from LiDAR. Scale errors in the model with only approximal WGS84 exterior orientation parameters did not exceed a relative accuracy of 1:500, and possible deformations of the DEM up to 0.5 m in height had a minimal impact on determining the rate of fire spread, even with oblique images taken at an angle of 45°. The results of the experiments highlight the advantages of using low-cost SfM photogrammetry and provide an overview of potential issues encountered in measuring and performing photogrammetric processing of fire spread. Full article
(This article belongs to the Special Issue Unconventional Drone-Based Surveying 2nd Edition)
Show Figures

Figure 1

15 pages, 26352 KB  
Article
Modelling and Stability Assessment of the Rock Cliffs and Xrobb l-Ġħaġin Neolithic Structure in Malta
by George Volanis, Demitrios Galanakis, Nikolaos Bolanakis, Emmanuel Maravelakis, Ruben Paul Borg and Georgios E. Stavroulakis
Heritage 2024, 7(6), 2944-2958; https://doi.org/10.3390/heritage7060138 - 3 Jun 2024
Cited by 6 | Viewed by 2121
Abstract
The stability of rock cliffs is a longstanding issue and is of practical significance. This case study demonstrates the application and use of advanced 3D modeling techniques, concentrating on the geological formations of the Xrobb l-Ġħaġin peninsula on the south-east coast of Malta, [...] Read more.
The stability of rock cliffs is a longstanding issue and is of practical significance. This case study demonstrates the application and use of advanced 3D modeling techniques, concentrating on the geological formations of the Xrobb l-Ġħaġin peninsula on the south-east coast of Malta, where the Xrobb l-Ġħaġin Neolithic site is located. In order to utilize a static and dynamic analysis of the investigated scenario, a 3D finite element model (FEM) of the geological formation in which the monument is set had to be created. To this end, 3D scanning, unmanned aerial vehicles (UAVs), and oblique photogrammetry were first used with state-of-the-art commercial packages for mesh reconstruction. As a result, a geometric and finite element model (FEM) was created, suitable for both static and dynamic analysis. In the second stage, a parametric investigation of the material properties of the structural system of the geological substrate was sought. The structural response of the system was evaluated for different loading scenarios assuming nonlinear finite element analysis. Collapse case scenarios were investigated for standard and weakened materials, predicting which components would collapse first and under which case of weakened materials the collapse occurs. Among other aspects, the main novelty of this paper lies in the integrated approach and multidisciplinary paradigm that supplement the available historical knowledge for this specific cultural heritage Neolithic site towards its conservation. Full article
Show Figures

Figure 1

17 pages, 3961 KB  
Article
Assessment of Unmanned Aerial System Flight Plans for Data Acquisition from Erosional Terrain
by Valentina Nikolova, Veselina Gospodinova and Asparuh Kamburov
Geosciences 2024, 14(3), 75; https://doi.org/10.3390/geosciences14030075 - 12 Mar 2024
Cited by 5 | Viewed by 2219
Abstract
Accurate data mapping and visualization are of crucial importance for the detection and monitoring of slope morphodynamics, including erosion processes and studying small erosional landforms (rills and gullies). The purpose of the current research is to examine how the flight geometry of unmanned [...] Read more.
Accurate data mapping and visualization are of crucial importance for the detection and monitoring of slope morphodynamics, including erosion processes and studying small erosional landforms (rills and gullies). The purpose of the current research is to examine how the flight geometry of unmanned aerial systems (UASs) could affect the accuracy of photogrammetric processing products, concerning small erosion landforms that are a result of slope wash and temporary small streams formed by rain. In October 2021, three UAS flights with a different geometry were carried out in a hilly to a low-mountain area with an average altitude of about 650 m where erosion processes are observed. UAS imagery processing was carried out using structure-from-motion (SfM) photogrammetry. High-resolution products such as photogrammetric-based point clouds, digital surface models (DSMs) and orthophotos were generated. The obtained data were compared and evaluated by the root mean square error (RMSE), length measurement, cloud-to-cloud comparison, and 3D spatial GIS analysis of DSMs. The results show small differences between the considered photogrammetric products generated by nadir-viewing and oblique-viewing (45°—single strip and 60°—cross strips) geometry. The complex analysis of the obtained photogrammetric products gives an advantage to the 60°—cross strips imagery, in studying erosional terrains with slow slope morphodynamics. Full article
(This article belongs to the Special Issue Earth Observation by GNSS and GIS Techniques)
Show Figures

Figure 1

22 pages, 2821 KB  
Entry
Oblique Aerial Images: Geometric Principles, Relationships and Definitions
by Styliani Verykokou and Charalabos Ioannidis
Encyclopedia 2024, 4(1), 234-255; https://doi.org/10.3390/encyclopedia4010019 - 2 Feb 2024
Cited by 5 | Viewed by 8801
Definition
Aerial images captured with the camera optical axis deliberately inclined with respect to the vertical are defined as oblique aerial images. Throughout the evolution of aerial photography, oblique aerial images have held a prominent place since its inception. While vertical airborne images dominated [...] Read more.
Aerial images captured with the camera optical axis deliberately inclined with respect to the vertical are defined as oblique aerial images. Throughout the evolution of aerial photography, oblique aerial images have held a prominent place since its inception. While vertical airborne images dominated in photogrammetric applications for over a century, the advancements in photogrammetry and computer vision algorithms, coupled with the growing accessibility of oblique images in the market, have propelled the rise of oblique images in recent times. Their emergence is attributed to inherent advantages they offer over vertical images. In this entry, basic definitions, geometric principles and relationships for oblique aerial images, necessary for understanding their underlying geometry, are presented. Full article
(This article belongs to the Section Engineering)
Show Figures

Graphical abstract

Back to TopTop