Modelling and Stability Assessment of the Rock Cliffs and Xrobb l-Ġħaġin Neolithic Structure in Malta
Abstract
1. Introduction
2. Object of Study
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mania, K.; Psalti, A.; Lala, D.M.; Tsakoumaki, M.; Polychronakis, A.; Rempoulaki, A.; Xinogakis, M.; Maravelakis, E. Combining 3D Surveying with Archaeological Uncertainty: The Metopes of the Athenian Treasury at Delphi. In Proceedings of the 2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA), Chania Crete, Greece, 12–14 July 2021; pp. 1–4. [Google Scholar] [CrossRef]
- García Sánchez, F.; García Sánchez, H.; Ribalaygua, C. Cultural heritage and sea level rise threat: Risk assessment of coastal fortifications in the Canary Islands. J. Cult. Herit. 2020, 44, 211–217. [Google Scholar] [CrossRef]
- Borg, R.P.; Grima, R. Xrobb l-Għaġin revisited: Recovery and discovery. Malta Archaeol. Rev. 2010, 10, 40–45. [Google Scholar]
- Psalti, A.; Tsakoumaki, M.; Mamaloukaki, C.; Xinogalos, M.; Bolanakis, N.; Kavallaris, C.; Polychronakis, A.; Mania, K.; Maravelakis, E. Advanced Digitization Methods for the 3D Visualization and Interpretation of Cultural Heritage: The Sphinx of the Naxians at Delphi. In Communications in Computer and Information Science; Springer: Cham, Switzerland, 2023; Volume 1889, pp. 55–64. [Google Scholar] [CrossRef]
- Pantò, B.; Macorini, L.; Izzuddin, B.A. A Two-Level Macroscale Continuum Description with Embedded Discontinuities for Nonlinear Analysis of Brick/Block Masonry. Available online: https://www.researchgate.net/publication/356186760 (accessed on 3 May 2024).
- Ataei, S.; Jahangiri Alikamar, M.; Kazemiashtiani, V. Evaluation of axle load increasing on a monumental masonry arch bridge based on field load testing. Constr. Build. Mater. 2016, 116, 413–421. [Google Scholar] [CrossRef]
- Drosopoulos, G.A.; Stavroulakis, G.E.; Massalas, C.V. Influence of the geometry and the abutments movement on the collapse of stone arch bridges. Constr. Build. Mater. 2008, 22, 200–210. [Google Scholar] [CrossRef]
- Loverdos, D.; Sarhosis, V. Geometrical digital twins of masonry structures for documentation and structural assessment using machine learning. Eng. Struct. 2023, 275, 115256. [Google Scholar] [CrossRef]
- Bamonte, P.; Cardani, G.; Condoleo, P.; Taliercio, A. Crack patterns in double-wall industrial masonry chimneys: Possible causes and numerical modelling. J. Cult. Herit. 2021, 47, 133–142. [Google Scholar] [CrossRef]
- Ursini, A.; Grazzini, A.; Matrone, F.; Zerbinatti, M. From scan-to-BIM to a structural finite elements model of built heritage for dynamic simulation. Autom. Constr. 2022, 142, 104518. [Google Scholar] [CrossRef]
- D’Altri, A.M.; Miranda, S.; Castellazzi, G.; Glisic, B. Numerical modelling-based damage diagnostics in cultural heritage structures. J. Cult. Herit. 2023, 61, 1–12. [Google Scholar] [CrossRef]
- Fazio, N.L.; Perrotti, M.; Andriani, G.F.; Mancini, F.; Rossi, P.; Castagnetti, C.; Lollino, P. A new methodological approach to assess the stability of discontinuous rocky cliffs using in-situ surveys supported by UAV-based techniques and 3-D finite element model. Eng. Geol. 2019, 260, 105205. [Google Scholar] [CrossRef]
- Pappalardo, G.; Imposa, S.; Mineo, S.; Grassi, S. Evaluation of the stability of a rock cliff by means of geophysical and geomechanical surveys in a cultural heritage site (south-eastern Sicily). Ital. J. Geosci. 2016, 135, 308–323. [Google Scholar] [CrossRef]
- Wang, S.; Ahmed, Z.; Hashmi, M.Z. Cliff face rock slope stability analysis based on unmanned arial vehicle (UAV) photogrammetry. Geomech. Geophys. Geo-Energ. Geo-Resour. 2019, 5, 333–344. [Google Scholar] [CrossRef]
- Tapkın, S.; Emre, T.; Motsa, S.M.; Drosopoulos, G.A.; Stavroulaki, M.; Maravelakis, E.; Stavroulakis, G. Structural Investigation of Masonry Arch Bridges Using Various Nonlinear Finite-Element Models. Am. Soc. Civ. Eng. 2022, 27, 04022053. [Google Scholar] [CrossRef]
- Motsa, S.M.; Drosopoulos, G.A.; Stavroulaki, M.E.; Maravelakis, E.; Borg, R.P.; Galea, P.; d’Amico, S.; Stavroulakis, G.E. Structural investigation of Mnajdra megalithic monument in Malta. J. Cult. Herit. 2020, 41, 96–105. [Google Scholar] [CrossRef]
- Torelli, G.; D’Ayala, D.; Betti, M.; Bartoli, G. Analytical and numerical seismic assessment of heritage masonry towers. Bull. Earthq. Eng. 2020, 18, 969–1008. [Google Scholar] [CrossRef]
- Kita, A.; Cavalagli, N.; Venanzi, I.; Ubertini, F. A new method for earthquake-induced damage identification in historic masonry towers combining OMA and IDA. Bull. Earthq. Eng. 2021, 19, 5307–5337. [Google Scholar] [CrossRef]
- Wang, X.; Meng, J.; Zhu, T.; Zhang, J. Prediction of Wind Erosion over a Heritage Site: A Case Study of Yongling Mausoleum, China. Built Herit. 2019, 3, 41–57. [Google Scholar] [CrossRef]
- Galanakis, D.; Pocobelli, D.P.; Konstantaras, A.; Mania, K.; Maravelakis, E. Introduction to BIM for Heritage. In Computer-Aided Design: Advances in Research and Applications; Tzetzis, D., Kyratsis, P., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2023; pp. 23–42. [Google Scholar] [CrossRef]
- Galanakis, D.; Pocobelli, D.P.; Konstantaras, A.; Bolanakis, N.; Maravelakis, E. Mesh segmentaion for HBIM applications. In Proceedings of the Chania 3rd International Conference in Electronic Engineering, Information Technology & Education (EEITE), Chania Crete, Greece, 28–30 September 2022. [Google Scholar]
- Maravelakis, E.; Giannioti, G.; Psalti, A.; Tsakoumaki, M.; Pocobelli, D.P.; Xinogalos, M.; Galanakis, D.; Bilalis, N.; Stavroulakis, G.E. 3D Modeling & Analysis Techniques for the Apollo Temple in Delphi. Buildings 2023, 13, 1730. [Google Scholar] [CrossRef]
- Williamson, J.; Nicu, I.C. Photogrammetric measurement of erosion at the sabbath point beothuk site in central Newfoundland, Canada. Sustainability 2020, 12, 7555. [Google Scholar] [CrossRef]
- Lombardo, L.; Tanyas, H.; Nicu, I.C. Spatial modeling of multi-hazard threat to cultural heritage sites. Eng. Geol. 2020, 277, 105776. [Google Scholar] [CrossRef]
- Daryono, L.R.; Nakashima, K.; Kawasaki, S.; Suzuki, K.; Suyanto, I.; Rahmadi, A. Investigation of Natural Beachrock and Physical-Mechanical Comparison with Artificial Beachrock Induced by MICP as a Protective Measure against Beach Erosion at Yogyakarta, Indonesia. Geosciences 2020, 10, 143. [Google Scholar] [CrossRef]
- Stavroulaki, M.E.; Riveiro, B.; Drosopoulos, G.A.; Solla, M.; Koutsianitis, P.; Stavroulakis, G.E. Modelling and strength evaluation of masonry bridges using terrestrial photogrammetry and finite elements. Adv. Eng. Softw. 2016, 101, 136–148. [Google Scholar] [CrossRef]
- Barazzetti, L.; Banfi, F.; Brumana, R.; Gusmeroli, G.; Previtali, M.; Schiantarelli, G. Cloud-to-BIM-to-FEM: Structural simulation with accurate historic BIM from laser scans. Simul. Model. Pract. Theory 2015, 57, 71–87. [Google Scholar] [CrossRef]
- Maravelakis, E.; Konstantaras, A.; Kritsotaki, A.; Angelakis, D.; Xinogalos, M. Analysing User Needs for a Unified 3D Metadata Recording and Exploitation of Cultural Heritage Monuments System. In Proceedings of the Advances in Visual Computing: 9th International Symposium, ISVC 2013, Rethymnon, Crete, Greece, 29–31 July 2013. [Google Scholar]
- Alfio, V.S.; Costantino, D.; Pepe, M.; Garofalo, A.R. A Geomatics Approach in Scan to FEM Process Applied to Cultural Heritage Structure: The Case Study of the ‘Colossus of Barletta’. Remote Sens. 2022, 14, 664. [Google Scholar] [CrossRef]
- Funari, M.F.; Hajjat, A.E.; Masciotta, M.G.; Oliveira, D.V.; Lourenço, P.B. A parametric scan-to-FEM framework for the digital twin generation of historic masonry structures. Sustainability 2021, 13, 11088. [Google Scholar] [CrossRef]
- Pepe, M.; Costantino, D.; Alfio, V.S.; Restuccia, A.G.; Papalino, N.M. Scan to BIM for the digital management and representation in 3D GIS environment of cultural heritage site. J. Cult. Herit. 2021, 50, 115–125. [Google Scholar] [CrossRef]
- Pepe, M.; Costantino, D. Uav photogrammetry and 3d modelling of complex architecture for maintenance purposes: The case study of the masonry bridge on the sele river, Italy. Period. Polytech. Civ. Eng. 2021, 65, 191–203. [Google Scholar] [CrossRef]
- Pocobelli, D.P.; Boehm, J.; Bryan, P.; Still, J.; Grau-Bové, J. BIM for heritage science: A review. Herit. Sci. 2018, 6, 30. [Google Scholar] [CrossRef]
- Pepe, M.; Costantino, D.; Garofalo, A.R. An efficient pipeline to obtain 3D model for HBIM and structural analysis purposes from 3D point clouds. Appl. Sci. 2020, 10, 1235. [Google Scholar] [CrossRef]
- Galanakis, D.; Maravelakis, E.; Pocobelli, D.P.; Vidakis, N.; Petousis, M.; Konstantaras, A.; Tsakoumaki, M. SVD-based point cloud 3D stone by stone segmentation for cultural heritage structural analysis—The case of the Apollo Temple at Delphi. J. Cult. Herit. 2023, 61, 177–187. [Google Scholar] [CrossRef]
- Tang, S.; Shelden, D.R.; Eastman, C.M.; Pishdad-Bozorgi, P.; Gao, X. A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. Autom. Constr. 2019, 101, 127–139. [Google Scholar] [CrossRef]
Layer A: Upper Globigerina | Layer B: Upper Globigerina | Layer C: Middle Globigerina | |
---|---|---|---|
Density | 1750 kg/m3 | 2150 kg/m3 | 2300 kg/m3 |
Young modulus | 50 Mpa | 3784.5 Mpa | 19,350 Mpa |
Poisson’s ratio | 0.4 | 0.3 | 0.2 |
Shear modulus | 277 Mpa | 144.7 Mpa | 8062.5 Mpa |
Compressive ultimate strength | 10 Mpa | 13.8 Mpa | 16.71 Mpa |
Tensile ultimate strength | 5 Mpa | 5 MPa | 5 MPa |
Weakened Material Properties (Layer A) 1 | |
---|---|
Density | 1750 kg/m3 |
Young modulus | 15 Mpa |
Poisson’s ratio | 0.3 |
Shear modulus | 277 Mpa |
Compressive ultimate strength | 10 Mpa |
Tensile ultimate strength | 5 Mpa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volanis, G.; Galanakis, D.; Bolanakis, N.; Maravelakis, E.; Borg, R.P.; Stavroulakis, G.E. Modelling and Stability Assessment of the Rock Cliffs and Xrobb l-Ġħaġin Neolithic Structure in Malta. Heritage 2024, 7, 2944-2958. https://doi.org/10.3390/heritage7060138
Volanis G, Galanakis D, Bolanakis N, Maravelakis E, Borg RP, Stavroulakis GE. Modelling and Stability Assessment of the Rock Cliffs and Xrobb l-Ġħaġin Neolithic Structure in Malta. Heritage. 2024; 7(6):2944-2958. https://doi.org/10.3390/heritage7060138
Chicago/Turabian StyleVolanis, George, Demitrios Galanakis, Nikolaos Bolanakis, Emmanuel Maravelakis, Ruben Paul Borg, and Georgios E. Stavroulakis. 2024. "Modelling and Stability Assessment of the Rock Cliffs and Xrobb l-Ġħaġin Neolithic Structure in Malta" Heritage 7, no. 6: 2944-2958. https://doi.org/10.3390/heritage7060138
APA StyleVolanis, G., Galanakis, D., Bolanakis, N., Maravelakis, E., Borg, R. P., & Stavroulakis, G. E. (2024). Modelling and Stability Assessment of the Rock Cliffs and Xrobb l-Ġħaġin Neolithic Structure in Malta. Heritage, 7(6), 2944-2958. https://doi.org/10.3390/heritage7060138