Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (160)

Search Parameters:
Keywords = nucleation centers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2832 KiB  
Article
Multiphase NiCoFe-Based LDH for Electrocatalytic Sulfion Oxidation Reaction Assisting Efficient Hydrogen Production
by Zengren Liang, Yong Nian, Hao Du, Peng Li, Mei Wang and Guanshui Ma
Materials 2025, 18(14), 3377; https://doi.org/10.3390/ma18143377 - 18 Jul 2025
Viewed by 285
Abstract
Sulfion oxidation reaction (SOR) has great potential in replacing oxygen evolution reaction (OER) and boosting highly efficient hydrogen evolution. The development of highly active and stable SOR electrocatalysts is crucial for assisting hydrogen production with low energy consumption. In this work, multiphase NiCoFe-based [...] Read more.
Sulfion oxidation reaction (SOR) has great potential in replacing oxygen evolution reaction (OER) and boosting highly efficient hydrogen evolution. The development of highly active and stable SOR electrocatalysts is crucial for assisting hydrogen production with low energy consumption. In this work, multiphase NiCoFe-based layered double hydroxide (namely NiCoFe-LDH) has been synthesized via a facile seed-assisted heterogeneous nucleation method. Benefiting from its unique microsized hydrangea-like structure and synergistic active phases, the catalyst delivers substantial catalytic interfaces and reactive centers for SOR. Consequently, NiCoFe-LDH electrode achieves a remarkably low potential of 0.381 V at 10 mA cm−2 in 1 M KOH + 0.1 M Na2S, representing a significant reduction of 0.98 V compared to conventional OER. Notably, under harsh industrial conditions (6 M KOH + 0.1 M Na2S, 80 °C), the electrolysis system based on NiCoFe-LDH||NF pair exhibits a cell potential of only 0.71 V at 100 mA cm−2, which shows a greater decreasing amplitude of 1.05 V compared with that of traditional OER/HER systems. Meanwhile, the NiCoFe-LDH||NF couple could maintain operational stability for 100 h without obvious potential fluctuation, as well as possessing a lower energy consumption of 1.42 kWh m−3 H2. Multiphase eletrocatalysis for SOR could indeed produce hydrogen with low-energy consumption. Full article
(This article belongs to the Special Issue High-Performance Materials for Energy Conversion)
Show Figures

Graphical abstract

25 pages, 14812 KiB  
Article
The Effect of Yttrium Addition on the Solidification Microstructure and Sigma Phase Precipitation Behavior of S32654 Super Austenitic Stainless Steel
by Jun Xiao, Geng Tian, Di Wang, Shaoguang Yang, Kuo Cao, Jianhua Wei and Aimin Zhao
Metals 2025, 15(7), 798; https://doi.org/10.3390/met15070798 - 15 Jul 2025
Viewed by 256
Abstract
This study focuses on S32654 super austenitic stainless steel (SASS) and systematically characterizes the morphology of the sigma (σ) phase and the segregation behavior of alloying elements in its as-cast microstructure. High-temperature confocal scanning laser microscopy (HT-CSLM) was employed to investigate the effect [...] Read more.
This study focuses on S32654 super austenitic stainless steel (SASS) and systematically characterizes the morphology of the sigma (σ) phase and the segregation behavior of alloying elements in its as-cast microstructure. High-temperature confocal scanning laser microscopy (HT-CSLM) was employed to investigate the effect of the rare earth element yttrium (Y) on the solidification microstructure and σ phase precipitation behavior of SASS. The results show that the microstructure of SASS consists of austenite dendrites and interdendritic eutectoid structures. The eutectoid structures mainly comprise the σ phase and the γ2 phase, exhibiting lamellar or honeycomb-like morphologies. Regarding elemental distribution, molybdenum displays a “concave” distribution pattern within the dendrites, with lower concentrations at the center and higher concentrations at the sides; when Mo locally exceeds beyond a certain threshold, it easily induces the formation of eutectoid structures. Mo is the most significant segregating element, with a segregation ratio as high as 1.69. The formation mechanism of the σ phase is attributed to the solid-state phase transformation of austenite (γ → γ2 + σ). In the late stages of solidification, the concentration of chromium and Mo in the residual liquid phase increases, and due to insufficient diffusion, there are significant compositional differences between the interdendritic regions and the matrix. The enriched Cr and Mo cause the interdendritic austenite to become supersaturated, leading to solid-state phase transformation during subsequent cooling, thereby promoting σ phase precipitation. The overall phase transformation process can be summarized as L → L + γ → γ → γ + γ2 + σ. Y microalloying has a significant influence on the solidification process. The addition of Y increases the nucleation temperature of austenite, raises nucleation density, and refines the solidification microstructure. However, Y addition also leads to an increased amount of eutectoid structures. This is primarily because Y broadens the solidification temperature range of the alloy and prolongs grain growth perio, which aggravates the microsegregation of elements such as Cr and Mo. Moreover, Y raises the initial precipitation temperature of the σ phase and enhances atomic diffusion during solidification, further promoting σ phase precipitation during the subsequent eutectoid transformation. Full article
(This article belongs to the Special Issue Synthesis, Processing and Applications of New Forms of Metals)
Show Figures

Figure 1

15 pages, 5932 KiB  
Article
Numerical Simulation of Fluid Flow, Heat Transfer, and Solidification in AISI 304 Stainless Steel Twin-Roll Strip Casting
by Jingzhou Lu, Wanlin Wang and Kun Dou
Metals 2025, 15(7), 749; https://doi.org/10.3390/met15070749 - 2 Jul 2025
Viewed by 306
Abstract
The production of AISI 304 stainless steel (a corrosion-resistant alloy prone to solidification defects from high alloy content) particularly benefits from twin-roll strip casting—a short-process green technology enabling sub-rapid solidification (the maximum cooling rate exceeds 1000 °C/s) control for high-performance steels. However, the [...] Read more.
The production of AISI 304 stainless steel (a corrosion-resistant alloy prone to solidification defects from high alloy content) particularly benefits from twin-roll strip casting—a short-process green technology enabling sub-rapid solidification (the maximum cooling rate exceeds 1000 °C/s) control for high-performance steels. However, the internal phenomena within its molten pool remain exceptionally challenging to monitor. This study developed a multiscale numerical model to simulate coupled fluid flow, heat transfer, and solidification in AISI 304 stainless steel twin-roll strip casting. A quarter-symmetry 3D model captured macroscopic transport phenomena, while a slice model resolved mesoscopic solidification structure. Laboratory experiments had verified that the deviation between the predicted temperature field and the measured average value (1384.3 °C) was less than 5%, and the error between the solidification structure simulation and the electron backscatter diffraction (EBSD) data was within 5%. The flow field and flow trajectory showed obvious recirculation zones: the center area was mainly composed of large recirculation zones, and many small recirculation zones appeared at the edges. Parameter studies showed that, compared with the high superheat (110 °C), the low superheat (30 °C) increased the total solid fraction by 63% (from 8.3% to 13.6%) and increased the distance between the kiss point and the bottom of the molten pool by 154% (from 6.2 to 15.8 mm). The location of the kiss point is a key industrial indicator for assessing solidification integrity and the risk of strip fracture. In terms of mesoscopic solidification structure, low superheat promoted the formation of coarse columnar crystals (equiaxed crystals accounted for 8.9%), while high superheat promoted the formation of equiaxed nucleation (26.5%). The model can be used to assist in the setting of process parameters and process optimization for twin-roll strip casting. Full article
(This article belongs to the Special Issue Advances in Metal Rolling Processes)
Show Figures

Figure 1

24 pages, 9329 KiB  
Article
Formation Kinetics and Morphology Characteristics of Natural Gas Hydrates in Sandstone Fractures
by Chaozheng Ma, Xiaoxu Hu, Hongxiang Si, Jiyao Wang, Juntao Pan, Tingting Luo, Tao Han and Aowang Wang
Appl. Sci. 2025, 15(13), 7399; https://doi.org/10.3390/app15137399 - 1 Jul 2025
Viewed by 302
Abstract
Fractures in marine sediments are critical zones for hydrate formation. The kinetics and morphological characteristics of hydrates within sandstone fractures are comprehensively investigated in this study by employing a high-pressure visualization reaction vessel to examine their formation, dissociation, and reformation processes. The results [...] Read more.
Fractures in marine sediments are critical zones for hydrate formation. The kinetics and morphological characteristics of hydrates within sandstone fractures are comprehensively investigated in this study by employing a high-pressure visualization reaction vessel to examine their formation, dissociation, and reformation processes. The results are presented below: (1) In 3 mm Type I fractures, the induction time is longer than that observed in the other two fracture widths. Hydrates predominantly form on the fracture walls and gradually expand toward both sides of the fracture. (2) Gas enters the fracture from multiple directions, causing the hydrate in Type X fractures to expand toward the center from all sides, which shortens the induction time and increases the quantity of hydrate formation. (3) An increase in fracture roughness promotes nucleation of the hydrate at surface protrusions but inhibits the total quantity of hydrate formation. (4) Hydrate dissociation typically propagates from the fracture wall into the interior, exhibiting a wavy surface morphology. Gas production is influenced by the fracture width, with the highest gas production observed in a 3 mm fracture. (5) Due to the memory effect, the hydrate induction time for reformation is significantly shorter, though the quantity of hydrate formed is lower than that of the first formation. This study aims to provide micro-level insights into the distribution of hydrates in sandstone fractures, thereby facilitating more efficient and safe extraction of hydrates from fractures. Full article
Show Figures

Figure 1

23 pages, 5026 KiB  
Review
Ductile–Brittle Transition Mechanism and Dilute Solution Softening Effect of Body-Centered Cubic Metals
by Jie Zhang, Tianliang Zhao, Tingping Hou, Yan Li and Kaiming Wu
Metals 2025, 15(7), 743; https://doi.org/10.3390/met15070743 - 30 Jun 2025
Viewed by 334
Abstract
Body-centered cubic (BCC) metals, extensively utilized in low-alloy high-strength steels and heat-resistant alloys, exhibit a pronounced ductile–brittle transition (DBT) at cryogenic temperatures, marked by a well-defined yet narrow ductile–brittle transition temperature (DBTT) window. This paper overviews the research progress regarding the DBT mechanism [...] Read more.
Body-centered cubic (BCC) metals, extensively utilized in low-alloy high-strength steels and heat-resistant alloys, exhibit a pronounced ductile–brittle transition (DBT) at cryogenic temperatures, marked by a well-defined yet narrow ductile–brittle transition temperature (DBTT) window. This paper overviews the research progress regarding the DBT mechanism of BCC metals. This mechanism was recently found to be related to the mobility of screw dislocation relative to edge dislocation, a decrease in which can induce a critical drop in the proliferation efficiency of dislocation sources. Furthermore, this paper summarizes the current research on the dilute solution softening effect of BCC metals, which has been frequently observed and studied in refractory alloys. The mechanism of this effect involves the low-temperature mobility of screw dislocations that could be promoted by specific solute atoms through kink pair nucleation. This offers a potential strategy for reducing the DBTT of low-alloy steels using a dilute solution, namely microalloying in metallurgy. However, the current understanding of the relationship between the macroscopic ductility of BCC alloys and the dilute solution softening effect is limited. This review aimed to draw attention to this relationship and strengthen related research. Full article
(This article belongs to the Special Issue Recent Insights into Mechanical Properties of Metallic Alloys)
Show Figures

Figure 1

20 pages, 5267 KiB  
Article
Effect of Hot Isostatic Pressure on the Microstructure Evolution of Ti-22Al-25Nb Alloy Formed by Selective Laser Melting
by Jingjun He, Haiou Yang, Linhao Huang, Jingyu Man, Yuhan Wu and Xin Lin
Materials 2025, 18(12), 2806; https://doi.org/10.3390/ma18122806 - 14 Jun 2025
Viewed by 413
Abstract
The density of SLMed (Selective Laser Melting) Ti-22Al-25Nb alloy was improved through hot isostatic pressing (HIP) treatment, and the influence of HIP and solution aging on the microstructure of Ti-22Al-25Nb alloy in the as-deposited state was examined. The results indicate that following (1100 [...] Read more.
The density of SLMed (Selective Laser Melting) Ti-22Al-25Nb alloy was improved through hot isostatic pressing (HIP) treatment, and the influence of HIP and solution aging on the microstructure of Ti-22Al-25Nb alloy in the as-deposited state was examined. The results indicate that following (1100 °C + 300 MPa)/3 h-HIP, the specimen densities have risen to 99.71%, porosity has markedly decreased, and internal flaws have been eradicated. Microstructural analysis reveals a significant presence of GBα2 (GB, Grain Boundary) along grain boundaries, with GBLO + α2 (GBL, Grain Boundary Lath; O, Orthorhombic) laths extending parallel from the grain boundaries into the intragranular region. Additionally, a limited number of cross or snowflake O + α2 lath clusters and acicular O phases are precipitated within the B2 (B, Body-centered cubic) phase in the HIPed state, characterized by isotropic and linear grain boundaries. The GBLα2 and GBLO exhibit two growth modes: sympathetic nucleation and interfacially unstable nucleation. During the solid solution treatment following HIP, as the solid solution temperature rises, the acicular O phase, GBLO, lath O phase, lath α2, and GBα2 sequentially dissolve, increasing the volume fraction of the B2 phase. After HIP, the aging microstructure is primarily characterized by the proliferation of the acicular O phase precipitated from the B2 phase and retaining the lath O phase in a solid solution. The precipitation of GBLO in the original solid solution is suppressed, and the GBLα2 in the original solid solution partially decomposes into rimO, resulting in coarse grain size and significant internal decomposition of α2. Following solution treatment and aging at 920 °C, the proliferation of the acicular O phase enhances ductility, resulting in ideal overall characteristics with a yield strength (YS) of 760.81 MPa, ultimate tensile strength (UTS) of 869.32 MPa, and elongation (EL) of 2.683%. This study demonstrates that the HIP treatment and the modification of solution aging parameters can substantially increase the density and refine the microstructure of Ti-22Al-25Nb alloy, hence enhancing its mechanical properties. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

11 pages, 328 KiB  
Article
Unveiling the Power of Platelet-to-Lymphocyte Ratio as a Game-Changer in Late-Onset Neonatal Sepsis Diagnosis
by Dilek Kahvecioğlu and Melda Taş
Children 2025, 12(6), 687; https://doi.org/10.3390/children12060687 - 26 May 2025
Viewed by 511
Abstract
Background/Objectives: The present study evaluated the diagnostic utility of underutilized parameters derived from complete blood count (CBC) analysis in identifying late-onset neonatal sepsis (LOS). The parameters evaluated included the nucleated red blood cell count (NRBC), neutrophil-to-lymphocyte ratio (NLR), red cell distribution width [...] Read more.
Background/Objectives: The present study evaluated the diagnostic utility of underutilized parameters derived from complete blood count (CBC) analysis in identifying late-onset neonatal sepsis (LOS). The parameters evaluated included the nucleated red blood cell count (NRBC), neutrophil-to-lymphocyte ratio (NLR), red cell distribution width (RDW), plateletcrit (PCT), and platelet-to-lymphocyte ratio (PLR). Methods: This was a retrospective, single-center, case-control study in a tertiary neonatal intensive care unit. The study included 38 neonates diagnosed with LOS, and 22 healthy control subjects. The data collected encompassed demographic characteristics, clinical findings, and laboratory values, including complete blood count (CBC)-derived parameters, C-reactive protein (CRP) levels, and blood cultures. Statistical analyses were performed to assess differences between groups and the diagnostic performance of key parameters via receiver operating characteristic (ROC) curves. Results: The results of the study are as follows: A set of notable discrepancies were identified in a number of parameters when comparing the LOS and control groups. Elevated levels of C-reactive protein (CRP), platelet count, platelet-to-lymphocyte ratio (PLR), lymphocyte percentage, and neutrophil-to-lymphocyte ratio (NLR) were found to be associated with LOS. Concurrently, decreased hemoglobin, hematocrit, neutrophil percentage, NRBC percentage, and NLR were also associated with LOS. PLR exhibited the most robust diagnostic efficacy, with a cutoff value of 45.24 attaining 81.6% sensitivity, 61.9% specificity, and an area under the curve (AUC) of 0.787 (95% CI: 0.671–0.903). The application of a logistic regression analysis indicated that the PLR emerged as the most salient independent predictor of LOS (odds ratio [OR]: 1.071; 95% confidence interval [CI]: 1.009–1.135; p = 0.023). Conclusions: CBC-derived parameters, particularly the PLR, have been shown to offer promising diagnostic value for LOS. These findings support the incorporation of these accessible and cost-effective biomarkers into clinical practice for the early diagnosis and management of LOS, warranting further validation in larger, multicenter studies. Full article
(This article belongs to the Section Pediatric Neonatology)
Show Figures

Graphical abstract

19 pages, 7583 KiB  
Article
Design and Processing of Hard and Self-Lubricating NiCr/hBN-cBN Composite Coatings by Laser Cladding: Investigation of Microstructure, Hardness, and Wear
by Morteza Taheri and Kourosh Shirvani
Photonics 2025, 12(3), 265; https://doi.org/10.3390/photonics12030265 - 13 Mar 2025
Cited by 4 | Viewed by 932
Abstract
Hardness and wear resistance are the requirements of nickel-based superalloys used in gas turbine blades. This study uses laser cladding technology to develop three types of wear-resistant coatings—NiCr-2%hBN, NiCr-12%cBN, and NiCr-2%hBN-12%cBN—on GTD-111 superalloy. The above coatings’ microstructure, microhardness, and tribological behavior were systematically [...] Read more.
Hardness and wear resistance are the requirements of nickel-based superalloys used in gas turbine blades. This study uses laser cladding technology to develop three types of wear-resistant coatings—NiCr-2%hBN, NiCr-12%cBN, and NiCr-2%hBN-12%cBN—on GTD-111 superalloy. The above coatings’ microstructure, microhardness, and tribological behavior were systematically characterized by scanning electron microscope, hardness tester, pin-on-disc wear device, and three-dimensional profiles. The hardness test results showed that the hBN coating has the lowest hardness (692 HV) due to its layered structure, and the hBN-cBN coating has the highest hardness (992 HV) due to its complex structure and the creation of inhomogeneous nucleation centers in the coating. The wear test results showed that the hBN coating has a lower coefficient of friction (COF) (0.49) than the hard cBN coating (0.53) due to its lubricating properties. Meanwhile, the wear rate of the hBN coating is lower than the wear rate of the hard cBN due to the weak forces of one in the B-N bond. However, the wear test results of hBN-cBN coating showed that the effects of hBN and the high hardness of cBN cause the formation of a coating with the lowest wear rate (0.22 × 10−6 mm3/N·m), COF (0.41), fluctuation, wear depth (17.2 µm), and wear volume loss (0.32 × 105 µ3) compared to the other two coatings. In addition, in the hBN-cBN coating, due to the greater driving force for the inhomogeneous nucleation of the melt, a larger area of equiaxed grains was formed, which in turn had a significant effect on increasing the wear resistance. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

13 pages, 5542 KiB  
Article
Microstructure and Texture Evolution of High Permeability Grain-Oriented Silicon Steel
by Yujie Fu and Lifeng Fan
Metals 2025, 15(3), 268; https://doi.org/10.3390/met15030268 - 28 Feb 2025
Cited by 1 | Viewed by 625
Abstract
Industrialization trial production of high permeability (Hi-B) steel was carried out by “one cold rolled + decarburization and nitridation technologies”. The finished product reached the level of 23Q100 with an average grain size of 5.47 cm, magnetic flux density B8 of 1.902T, [...] Read more.
Industrialization trial production of high permeability (Hi-B) steel was carried out by “one cold rolled + decarburization and nitridation technologies”. The finished product reached the level of 23Q100 with an average grain size of 5.47 cm, magnetic flux density B8 of 1.902T, and the iron loss P1.7/50 of 0.975 W/Kg. The evolution law of the microstructure and texture under different processes was analyzed with the help of OM, EBSD, and XRD. The results showed that the microstructure of the hot rolled plate was equiaxed crystals in the surface layer, a mixture of recrystallization grains and banded fiber in the quarter of the thickness layer, and banded fiber in the center layer. The texture gradient of the hot rolled plate from the surface layer to the center layer was {112}<111> + {110}<114> → {441}<014> → {001}~{111}<110>. The texture of the normalized plate was in major {110}<113> in the surface layer, diffuse α-fiber texture and {441}<014> in the quarter of the thickness layer, and sharp α texture {001}~{111}<110> in the center layer. The texture of the cold-rolled sheet was concentrated in {001}~{332}<110>. The average grain size of the decarburizing and nitriding sheet was 26.4 μm, and the texture of the first recrystallization is sharp α*-fiber and weak {111}<112>. The finished product has a sharp single Goss texture. For Hi-B steel, the Goss secondary nucleus originated from the surface layer to 1/4 layer of the hot rolled plate and reached the highest content of 11.5% in the quarter of the thickness. The content of the Goss texture decreased with the subsequent normalization and cold rolling, then the Goss grains nucleated again during the decarburization annealing and high temperature annealing processes. Full article
Show Figures

Figure 1

12 pages, 11017 KiB  
Article
Layered Growth of 3D Snowflake Subject to Membrane Effect and More than One Nucleation Center by Means of Cellular Automata
by César Renán Acosta, Irma Martín and Gabriela Rivadeneyra
Mathematics 2025, 13(3), 433; https://doi.org/10.3390/math13030433 - 28 Jan 2025
Cited by 1 | Viewed by 738
Abstract
In this work, it is taken into account that in nature, due to pressure and temperature, water drops in general are either spherical or ellipsoidal. Thus, starting from a more general structure, a 3D elliptical surface (oblate spheroid) is constructed, which, by means [...] Read more.
In this work, it is taken into account that in nature, due to pressure and temperature, water drops in general are either spherical or ellipsoidal. Thus, starting from a more general structure, a 3D elliptical surface (oblate spheroid) is constructed, which, by means of parameters, can be turned into a spherical shape. Hexagons are built on a rectangular horizontal plane, then this plane is passed through an elliptical surface at height h, which is determined by a parameter θ. As a result of the cutting of these surfaces, a curve and a plane are obtained, both horizontal ellipsoidal; if these hexagons are within the perimeter of the horizontal ellipse obtained as a function of θ, they are marked with an N, and if they are outside the perimeter, they are marked with an E. Several frozen nucleation centers are established, either in the same layer or in different planes, marking them with an F and their first eight neighbors with a B. The calculations based on a modified snowflake model are carried out tile by tile and layer by layer, governed by the thermodynamic factors α, β, and γ, leading to results that depend on the position of the nucleator, which can be symmetrical or asymmetrical for a snowflake with more than one nucleation center and an external surface formed by water vapor that functions as a membrane. Full article
(This article belongs to the Section E4: Mathematical Physics)
Show Figures

Figure 1

18 pages, 3702 KiB  
Article
Improved Biomineralization Using Cellulose Acetate/Magnetic Nanoparticles Composite Membranes
by Madalina Oprea, Andreea Madalina Pandele, Aurelia Cristina Nechifor, Adrian Ionut Nicoara, Iulian Vasile Antoniac, Augustin Semenescu, Stefan Ioan Voicu, Catalin Ionel Enachescu and Anca Maria Fratila
Polymers 2025, 17(2), 209; https://doi.org/10.3390/polym17020209 - 15 Jan 2025
Cited by 2 | Viewed by 1275
Abstract
Following implantation, infections, inflammatory reactions, corrosion, mismatches in the elastic modulus, stress shielding and excessive wear are the most frequent reasons for orthopedic implant failure. Natural polymer-based coatings showed especially good results in achieving better cell attachment, growth and tissue-implant integration, and it [...] Read more.
Following implantation, infections, inflammatory reactions, corrosion, mismatches in the elastic modulus, stress shielding and excessive wear are the most frequent reasons for orthopedic implant failure. Natural polymer-based coatings showed especially good results in achieving better cell attachment, growth and tissue-implant integration, and it was found that the inclusions of nanosized fillers in the coating structure improves biomineralization and consequently implant osseointegration, as the nanoparticles represent calcium phosphate nucleation centers and lead to the deposition of highly organized hydroxyapatite crystallites on the implant surface. In this study, magnetic nanoparticles synthesized by the co-precipitation method were used for the preparation of cellulose acetate composite coatings through the phase-inversion method. The biomineralization ability of the membranes was tested through the Taguchi method, and it was found that nanostructured hydroxyapatite was formed at the surface of the composite membrane (with a higher organization degree and purity, and a Ca/P percentage closer to the one seen with stoichiometric hydroxyapatite, compared to the one deposited on neat cellulose acetate). The results obtained indicate a potential new application for magnetic nanoparticles in the field of orthopedics. Full article
(This article belongs to the Special Issue Advanced Biodegradable Polymers for Biomedical Applications)
Show Figures

Figure 1

24 pages, 44850 KiB  
Article
Evolution of Surface Integrity Characteristics and Mechanical Behavior of Diamond Burnished and Turned AISI 304 Steel Specimens After Prolonged Exposure to Natural Seawater
by Yaroslav Argirov, Jordan Maximov, Galya Duncheva, Angel Anchev, Vladimir Dunchev and Tatyana Mechkarova
Coatings 2025, 15(1), 31; https://doi.org/10.3390/coatings15010031 - 1 Jan 2025
Cited by 2 | Viewed by 977
Abstract
This article presents results on the evolution of surface integrity, microstructure, mechanical characteristics, fatigue strength, and wear behavior of AISI 304 steel specimens after prolonged exposure (up to 746 days) to a natural seawater environment, specifically near the port of Varna, Bulgaria. The [...] Read more.
This article presents results on the evolution of surface integrity, microstructure, mechanical characteristics, fatigue strength, and wear behavior of AISI 304 steel specimens after prolonged exposure (up to 746 days) to a natural seawater environment, specifically near the port of Varna, Bulgaria. The samples, having different shapes and sizes according to the respective tests, were divided into two main groups based on the finishing process: fine turning (FT) and diamond burnishing (DB). Additionally, fatigue FT specimens were polished to meet the standard requirements. Some of the cylindrical samples from both groups were heat-treated to dissolve the car-bides. No significant improvement in the corrosion resistance of the heat-treated samples (FT and DB) was observed compared with untreated samples after 746 days of immersion in seawater. Overall, all types of DB specimens showed less mass loss (indicating a higher corrosion resistance), higher static and fatigue strength, greater plasticity, and greater wear resistance than the corresponding FT specimens. Notably, pitting corrosion was observed on all specimens, as well as trac-es of intergranular corrosion in some FT specimens. The hardening DB effects have a complex impact on corrosion activity. The increases in dislocation density and the surface and internal energy of the subsurface layers intensify the nucleation of corrosion centers in the surface layers; however, the refined fibrous structure and significant reduction in the roughness slow down the development of corrosion. Therefore, the implementation of DB as a smoothing process will re-duce the surface energy, and hence will lead to further increases in corrosion resistance. Full article
Show Figures

Figure 1

15 pages, 3921 KiB  
Article
The Effect of H+ Fluence Irradiation on the Optical, Structural, and Morphological Properties of ZnO Thin Films
by Alejandra López-Suárez, Yaser D. Cruz-Delgado, Dwight R. Acosta, Juan López-Patiño and Beatriz E. Fuentes
Materials 2024, 17(24), 6095; https://doi.org/10.3390/ma17246095 - 13 Dec 2024
Viewed by 817
Abstract
Polycrystalline zinc oxide (ZnO) thin films were deposited on soda-lime glass substrates using the chemical spray pyrolysis method at 450 °C. The samples were irradiated with 8 keV H+ ions at three different fluences using a Colutron ion gun. The effects of [...] Read more.
Polycrystalline zinc oxide (ZnO) thin films were deposited on soda-lime glass substrates using the chemical spray pyrolysis method at 450 °C. The samples were irradiated with 8 keV H+ ions at three different fluences using a Colutron ion gun. The effects of the irradiation on the structural, morphological, and optical properties were studied with different techniques, including Rutherford Backscattering Spectrometry (RBS), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Ultraviolet and Visible Spectroscopy (UV–Vis). The results show that ion irradiation enhances crystallinity, narrowing the optical band gap. The changes in transmittance are related to defect formation within the material, which acts as light absorption and re-emission centers. A shifting of the film’s preferred growth orientation to the c-axis and changing the grain morphology and size distribution was detected. We observed an increase in the lattice parameters observed after irradiation, suggesting an expansion of the crystalline structure due to ions incorporation and defects within the ZnO crystal lattice. The morphological study shows an increase in the average size of the large particles after irradiation. This change is attributed to the emergence of defects and nucleation centers during irradiation. The average size of small particles remained relatively constant after irradiation, suggesting that small particles are more stable and less susceptible to external influences, resulting in fewer changes due to irradiation. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

12 pages, 7202 KiB  
Article
Analysis of Short-Range Ordering Effect on Tensile Deformation Behavior of Equiatomic High-Entropy Alloys TiNbZrV, TiNbZrTa and TiNbZrHf Based on Atomistic Simulations
by Rita I. Babicheva, Aleksander S. Semenov, Artem A. Izosimov and Elena A. Korznikova
Modelling 2024, 5(4), 1853-1864; https://doi.org/10.3390/modelling5040096 - 1 Dec 2024
Viewed by 1177
Abstract
In the study, the combined molecular dynamics and Monte Carlo (MD/MC) simulation was used to investigate the short-range ordering effect on tensile deformation of bicrystals with grain boundaries (GBs) Σ3(11¯2)[110]. Three different equiatomic high-entropy alloys, namely, ZrTiNbV, ZrTiNbTa and ZrTiNbHf, [...] Read more.
In the study, the combined molecular dynamics and Monte Carlo (MD/MC) simulation was used to investigate the short-range ordering effect on tensile deformation of bicrystals with grain boundaries (GBs) Σ3(11¯2)[110]. Three different equiatomic high-entropy alloys, namely, ZrTiNbV, ZrTiNbTa and ZrTiNbHf, were considered. The tensile loading at 300K was applied in the direction perpendicular to the GBs’ planes. The stress–strain response as well as the structure evolution of the alloys with initial random distribution of atoms were compared with results obtained for the corresponding materials relaxed during the MD/MC procedure. It was revealed that the distribution of atoms in the alloys significantly affects the deformation process. Ordered clusters of Nb atoms are able to suppress the dislocation sliding and twin formation increasing the yield strength of ZrTiNbV. On the contrary, in ZrTiNbTa, the twinning mechanism is dominant in the case of the ordered structure due to the absence of Nb clusters and the presence of areas enriched with Zr atoms, which ease nucleation of dislocations and twins. Since Hf decreases the stability of the body-centered cubic lattice, the main deformation mechanism of ZrTiNbHf is the stress-induced phase transition; however, Nb clusters inside grains of the relaxed alloy slightly delay this process. Full article
Show Figures

Figure 1

39 pages, 6564 KiB  
Article
Thermal Conversion of Coal Bottom Ash and Its Recovery Potential for High-Value Products Generation: Kinetic and Thermodynamic Analysis with Adiabatic TD24 Predictions
by Bojan Janković, Marija Janković, Ana Mraković, Jelena Krneta Nikolić, Milica Rajačić, Ivana Vukanac, Nataša Sarap and Nebojša Manić
Materials 2024, 17(23), 5759; https://doi.org/10.3390/ma17235759 - 25 Nov 2024
Viewed by 866
Abstract
Thermal decomposition (pyrolysis) of coal bottom ash (collected after lignite combustion in coal-fired power plant TEKO-B, Republic of Serbia) was investigated, using the simultaneous TG-DTG techniques in an inert atmosphere, at various heating rates. By using the XRD technique, it was found that [...] Read more.
Thermal decomposition (pyrolysis) of coal bottom ash (collected after lignite combustion in coal-fired power plant TEKO-B, Republic of Serbia) was investigated, using the simultaneous TG-DTG techniques in an inert atmosphere, at various heating rates. By using the XRD technique, it was found that the sample (CBA-TB) contains a large amount of anorthite, muscovite, and silica, as well as periclase and hematite, but in a smaller amount. Using a model-free kinetic approach, the complex nature of the process was successfully resolved. Thermodynamic analysis showed that the sample is characterized by dissociation reactions, which are endothermic with positive activation entropy changes, where spontaneity is achieved at high reaction temperatures. The model-based method showed the existence of a complex reaction scheme that includes two consecutive reaction steps and one single-step reaction, described by a variety of reaction models as nucleation/growth phase boundary-controlled, the second/n-th order chemical, and autocatalytic mechanisms. It was established that an anorthite I1 phase breakdown reaction into the incongruent melting product (CaO·Al2O3·2SiO2) represents the rate-controlling step. Autocatalytic behavior is reflected through chromium-incorporated SiO2 catalyst reaction, which leads to the formation of chromium(II) oxo-species. These catalytic centers are important in ethylene polymerization for converting light olefin gases into hydrocarbons. Adiabatic TD24 prediction simulations of the process were also carried out. Based on safety analysis through validated kinetic parameters, it was concluded that the tested sample exhibits high thermal stability. Applied thermal treatment was successful in promoting positive changes in the physicochemical characteristics of starting material, enabling beneficial end-use of final products and reduction of potential environmental risks. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

Back to TopTop