Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (658)

Search Parameters:
Keywords = nozzle temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6581 KiB  
Article
Simulation Study on Erosion of Gas–Solid Two-Phase Flow in the Wellbore near Downhole Chokes in Tight Gas Wells
by Cheng Du, Ruikang Ke, Xiangwei Bai, Rong Zheng, Yao Huang, Dan Ni, Guangliang Zhou and Dezhi Zeng
Processes 2025, 13(8), 2430; https://doi.org/10.3390/pr13082430 - 31 Jul 2025
Viewed by 186
Abstract
In order to study the problem of obvious wall thinning in the wellbore caused by proppant backflow and sand production under throttling conditions in tight gas wells. Based on the gas-phase control equation, particle motion equation, and erosion model, the wellbore erosion model [...] Read more.
In order to study the problem of obvious wall thinning in the wellbore caused by proppant backflow and sand production under throttling conditions in tight gas wells. Based on the gas-phase control equation, particle motion equation, and erosion model, the wellbore erosion model is established. The distribution law of pressure, temperature, and velocity trace fields under throttling conditions is analyzed, and the influences of different throttling pressures, particle diameters, and particle mass flows on wellbore erosion are analyzed. The flow field at the nozzle changes drastically, and there is an obvious pressure drop, temperature drop, and velocity rise. When the surrounding gas is completely mixed, the physical quantity gradually stabilizes. The erosion shape of the wellbore outlet wall has a point-like distribution. The closer to the throttle valve outlet, the more intense the erosion point distribution is. Increasing the inlet pressure and particle mass flow rate will increase the maximum erosion rate, and increasing the particle diameter will reduce the maximum erosion rate. The particle mass flow rate has the greatest impact on the maximum erosion rate, followed by the particle diameter. The erosion trend was predicted using multiple regression model fitting of the linear interaction term. The research results can provide a reference for the application of downhole throttling technology and wellbore integrity in tight gas exploitation. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Graphical abstract

22 pages, 3440 KiB  
Article
Probabilistic Damage Modeling and Thermal Shock Risk Assessment of UHTCMC Thruster Under Transient Green Propulsion Operation
by Prakhar Jindal, Tamim Doozandeh and Jyoti Botchu
Materials 2025, 18(15), 3600; https://doi.org/10.3390/ma18153600 - 31 Jul 2025
Viewed by 189
Abstract
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, [...] Read more.
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, and carbon fibers. Time-resolved thermal and structural simulations are conducted on a validated thruster geometry to characterize the severity of early-stage thermal shock, stress buildup, and potential degradation pathways. Unlike traditional fatigue studies that rely on empirical fatigue constants or Paris-law-based crack-growth models, this work introduces a simulation-derived stress-margin envelope methodology that incorporates ±20% variability in temperature-dependent material strength, offering a physically grounded yet conservative risk estimate. From this, a normalized risk index is derived to evaluate the likelihood of damage initiation in critical regions over the 0–10 s firing window. The results indicate that the convergent throat region experiences a peak thermal gradient rate of approximately 380 K/s, with the normalized thermal shock index exceeding 43. Stress margins in this region collapse by 2.3 s, while margin loss in the flange curvature appears near 8 s. These findings are mapped into green, yellow, and red risk bands to classify operational safety zones. All the results assume no active cooling, representing conservative operating limits. If regenerative or ablative cooling is implemented, these margins would improve significantly. The framework established here enables a transparent, reproducible methodology for evaluating lifetime safety in ceramic propulsion nozzles and serves as a foundational tool for fatigue-resilient component design in green space engines. Full article
Show Figures

Figure 1

32 pages, 7179 KiB  
Article
Effects of an Integrated Infrared Suppressor on the Infrared and Acoustic Characteristics of Helicopters
by Zongyao Yang, Xinqian Zheng and Jingzhou Zhang
Aerospace 2025, 12(8), 665; https://doi.org/10.3390/aerospace12080665 - 26 Jul 2025
Viewed by 199
Abstract
To enhance the survivability of armed helicopters in high-threat environments, integrated infrared (IR) suppressors are increasingly adopted to reduce thermal signatures. However, such integration significantly alters the exhaust flow field, which may in turn affect both the infrared and acoustic characteristics of the [...] Read more.
To enhance the survivability of armed helicopters in high-threat environments, integrated infrared (IR) suppressors are increasingly adopted to reduce thermal signatures. However, such integration significantly alters the exhaust flow field, which may in turn affect both the infrared and acoustic characteristics of the helicopter. This study investigates the aerodynamic, infrared, and acoustic impacts of an integrated IR suppressor through the comparative analysis of two helicopter configurations: a conventional design and a design equipped with an integrated IR suppressor. Full-scale models are used to analyze flow field and IR radiation characteristics, while scaled models are employed for aeroacoustic simulations. The results show that although the integrated IR suppressor increases flow resistance and reduces entrainment performance within the exhaust mixing duct, it significantly improves the thermal dissipation efficiency of the exhaust plume. The infrared radiation analysis reveals that the integrated suppressor effectively reduces radiation intensity in both the 3~5 μm and 8~14 μm bands, especially under cruise conditions where the exhaust is more efficiently cooled by ambient airflow. Equivalent radiation temperatures calculated along principal axes confirm lower IR signatures for the integrated configuration. Preliminary acoustic analyses suggest that the slit-type nozzle and integrated suppressor layout may also offer potential benefits in jet noise reduction. Overall, the integrated IR suppressor provides a clear advantage in lowering the infrared observability of armed helicopters, with acceptable aerodynamic and acoustic trade-offs. These findings offer valuable guidance for the future development of low-observable helicopter platforms. Full article
Show Figures

Figure 1

25 pages, 3515 KiB  
Article
Optimizing Sustainable Machining Conditions for Incoloy 800HT Using Twin-Nozzle MQL with Bio-Based Groundnut Oil Lubrication
by Ramai Ranjan Panigrahi, Ramanuj Kumar, Ashok Kumar Sahoo and Amlana Panda
Lubricants 2025, 13(8), 320; https://doi.org/10.3390/lubricants13080320 - 23 Jul 2025
Viewed by 826
Abstract
This study explores the machinability of Incoloy 800HT (high temperature) under a sustainable lubrication approach, employing a twin-nozzle minimum quantity lubrication (MQL) system with groundnut oil as a green cutting fluid. The evaluation focuses on key performance indicators, including surface roughness, tool flank [...] Read more.
This study explores the machinability of Incoloy 800HT (high temperature) under a sustainable lubrication approach, employing a twin-nozzle minimum quantity lubrication (MQL) system with groundnut oil as a green cutting fluid. The evaluation focuses on key performance indicators, including surface roughness, tool flank wear, power consumption, carbon emissions, and chip morphology. Groundnut oil, a biodegradable and nontoxic lubricant, was chosen to enhance environmental compatibility while maintaining effective cutting performance. The Taguchi L16 orthogonal array (three factors and four levels) was utilized to conduct experimental trials to analyze machining characteristics. The best surface quality (surface roughness, Ra = 0.514 µm) was obtained at the lowest depth of cut (0.2 mm), modest feed (0.1 mm/rev), and moderate cutting speed (160 m/min). The higher ranges of flank wear are found under higher cutting speed conditions (320 and 240 m/min), while lower wear values (<0.09 mm) were observed under lower speed conditions (80 and 160 m/min). An entropy-integrated multi-response optimization using the MOORA (multi-objective optimization based on ratio analysis) method was employed to identify optimal machining parameters, considering the trade-offs among multiple conflicting objectives. The entropy method was used to assign weights to each response. The obtained optimal conditions are as follows: cutting speed = 160 m/min, feed = 0.1 mm/rev, and depth of cut = 0.2 mm. Optimized outcomes suggest that this green machining strategy offers a viable alternative for sustainable manufacturing of difficult-to-machine alloys like Incoloy 800 HT. Full article
Show Figures

Figure 1

21 pages, 18567 KiB  
Article
Mitigation of Black Streak Defects in AISI 304 Stainless Steel via Numerical Simulation and Reverse Optimization Algorithm
by Xuexia Song, Xiaocan Zhong, Wanlin Wang and Kun Dou
Materials 2025, 18(14), 3414; https://doi.org/10.3390/ma18143414 - 21 Jul 2025
Viewed by 304
Abstract
The formation mechanism of black streak defects in hot-rolled steel sheets was investigated to address the influence of the process parameters on the surface quality during the production of 304 stainless steels. Macro-/microstructural characterization revealed that the defect regions contained necessary mold slag [...] Read more.
The formation mechanism of black streak defects in hot-rolled steel sheets was investigated to address the influence of the process parameters on the surface quality during the production of 304 stainless steels. Macro-/microstructural characterization revealed that the defect regions contained necessary mold slag components (Ca, Si, Al, Mg, Na, K) which originated from the initial stage of solidification in the mold region of the continuous casting process, indicating obvious slag entrapment during continuous casting. On this basis, a three-dimensional coupled finite-element model for the molten steel flow–thermal characteristics was established to evaluate the effects of typical casting parameters using the determination of the critical slag entrapment velocity as the criterion. Numerical simulations demonstrated that the maximum surface velocity improved from 0.29 m/s to 0.37 m/s with a casting speed increasing from 1.0 m/min to 1.2 m/min, which intensified the meniscus turbulence. However, the increase in the port angle and the depth of the submerged entry nozzle (SEN) effectively reduced the maximum surface velocity to 0.238 m/s and 0.243 m/s, respectively, with a simultaneous improvement in the slag–steel interface temperature. Through MATLAB (version 2023b)-based reverse optimization combined with critical velocity analysis, the optimal mold slag properties were determined to be 2800 kg/m3 for the density, 4.756 × 10−6 m2/s for the kinematic viscosity, and 0.01 N/m for the interfacial tension. This systematic approach provides theoretical guidance for process optimization and slag design enhancement in industrial production. Full article
Show Figures

Figure 1

19 pages, 3999 KiB  
Article
Optimised Twin Fluid Atomiser Design for High-Viscosity, Shear-Thinning Fluids
by Marvin Diamantopoulos and Christoph Hochenauer
Appl. Sci. 2025, 15(14), 7992; https://doi.org/10.3390/app15147992 - 17 Jul 2025
Viewed by 205
Abstract
This study explores the optimisation of nozzle design for external twin fluid, single-stage atomisation in handling high-viscosity, shear-thinning polydimethylsiloxane (PDMS). A single PDMS grade was employed and atomised using unheated sonic air and the viscosity was varied by the fluid temperature. A systematic [...] Read more.
This study explores the optimisation of nozzle design for external twin fluid, single-stage atomisation in handling high-viscosity, shear-thinning polydimethylsiloxane (PDMS). A single PDMS grade was employed and atomised using unheated sonic air and the viscosity was varied by the fluid temperature. A systematic experimental approach was used, varying nozzle geometry—specifically apex angle, gas nozzle diameter, and number of gas nozzles—to identify the optimal nozzle configuration (ONC). The spray qualities of the nozzle configurations were evaluated via high-speed imaging at 75,000 FPS. Shadowgraphy was employed for the optical characterisation of the spray, determining the optimal volumetric air-to-liquid ratio (ALR), a key parameter influencing energy efficiency and operational cost, and for assessing droplet size distributions under varying ALR and viscosity of PDMS. The ONC yielded a Sauter mean diameter d32 of 570 × 10−6m, at an ALR of 8532 and a zero-shear viscosity of 15.9 Pa s. The results are relevant for researchers and engineers developing twin fluid atomisation systems for challenging industrial fluids with similar physical properties, such as those in wastewater treatment and coal–water slurry atomisation (CWS). This study provides design guidelines for external twin fluid atomisers to enhance atomisation efficiency under such conditions. Full article
Show Figures

Figure 1

18 pages, 3737 KiB  
Article
Simulation-Based RF-ICP Torch Optimization for Efficient and Environmentally Sustainable Radioactive Waste Management
by Roman Stetsiuk, Mustafa A. Aldeeb and Hossam A. Gabbar
Recycling 2025, 10(4), 139; https://doi.org/10.3390/recycling10040139 - 15 Jul 2025
Viewed by 280
Abstract
This study examines methods to improve the energy efficiency of radiofrequency inductively coupled plasma (RF-ICP) torches for radioactive waste treatment, with a focus on surpassing the typical energy efficiency limit of approximately 70%. To improve energy efficiency and plasma performance, this research investigates [...] Read more.
This study examines methods to improve the energy efficiency of radiofrequency inductively coupled plasma (RF-ICP) torches for radioactive waste treatment, with a focus on surpassing the typical energy efficiency limit of approximately 70%. To improve energy efficiency and plasma performance, this research investigates the transition from axial gas flow to vortex gas flow patterns using COMSOL Multiphysics software v6.2. Key plasma parameters, including energy efficiency, number of gas vortices, heat transfer, and temperature distribution, were analyzed to evaluate the improvements. The results indicate that adopting a vortex flow pattern increases energy conversion efficiency, increases heat flux, and reduces charge losses. Furthermore, optimizing the torch body design, particularly the nozzle, chamber volume, and gas entry angle, significantly improves plasma properties and energy efficiency by up to 90%. Improvements to RF-ICP torches positively impact waste decomposition by creating better thermal conditions that support resource recovery and potential material recycling. In addition, these improvements contribute to reducing secondary waste, mitigating environmental risks, and fostering long-term public support for nuclear technology, thereby promoting a more sustainable approach to waste management. Simulation results demonstrate the potential of RF-ICP flares as a cost-effective and sustainable solution for the thermal treatment of low- to intermediate-level radioactive waste. Full article
Show Figures

Figure 1

26 pages, 9003 KiB  
Article
A Pilot-Scale Gasifier Freeboard Equipped with Catalytic Filter Candles for Particulate Abatement and Tar Conversion: 3D-CFD Simulations and Experimental Tests
by Alessandra Tacconi, Pier Ugo Foscolo, Sergio Rapagnà, Andrea Di Carlo and Alessandro Antonio Papa
Processes 2025, 13(7), 2233; https://doi.org/10.3390/pr13072233 - 12 Jul 2025
Viewed by 441
Abstract
This work deals with the catalytic steam reforming of raw syngas to increase the efficiency of coupling gasification with downstream processes (such as fuel cells and catalytic chemical syntheses) by producing high-temperature, ready-to-use syngas without cooling it for cleaning and conditioning. Such a [...] Read more.
This work deals with the catalytic steam reforming of raw syngas to increase the efficiency of coupling gasification with downstream processes (such as fuel cells and catalytic chemical syntheses) by producing high-temperature, ready-to-use syngas without cooling it for cleaning and conditioning. Such a combination is considered a key point for the future exploitation of syngas produced by steam gasification of biogenic solid fuel. The design and construction of an integrated gasification and gas conditioning system were proposed approximately 20 years ago; however, they still require further in-depth study for practical applications. A 3D model of the freeboard of a pilot-scale, fluidized bed gasification plant equipped with catalytic ceramic candles was used to investigate the optimal operating conditions for in situ syngas upgrading. The global kinetic parameters for methane and tar reforming reactions were determined experimentally. A fluidized bed gasification reactor (~5 kWth) equipped with a 45 cm long segment of a fully commercial filter candle in its freeboard was used for a series of tests at different temperatures. Using a computational fluid dynamics (CFD) description, the relevant parameters for apparent kinetic equations were obtained in the frame of a first-order reaction model to describe the steam reforming of key tar species. As a further step, a CFD model of the freeboard of a 100 kWth gasification plant, equipped with six catalytic ceramic candles, was developed in ANSYS FLUENT®. The composition of the syngas input into the gasifier freeboard was obtained from experimental results based on the pilot-scale plant. Simulations showed tar catalytic conversions of 80% for toluene and 41% for naphthalene, still insufficient compared to the threshold limits required for operating solid oxide fuel cells (SOFCs). An overly low freeboard temperature level was identified as the bottleneck for enhancing gas catalytic conversions, so further simulations were performed by injecting an auxiliary stream of O2/steam (50/50 wt.%) through a series of nozzles at different heights. The best simulation results were obtained when the O2/steam stream was fed entirely at the bottom of the freeboard, achieving temperatures high enough to achieve a tar content below the safe operating conditions for SOFCs, with minimal loss of hydrogen content or LHV in the fuel gas. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

36 pages, 5913 KiB  
Article
Design and Temperature Control of a Novel Aeroponic Plant Growth Chamber
by Ali Guney and Oguzhan Cakir
Electronics 2025, 14(14), 2801; https://doi.org/10.3390/electronics14142801 - 11 Jul 2025
Viewed by 409
Abstract
It is projected that the world population will quadruple over the next century, and to meet future food demands, agricultural production will need to increase by 70%. Therefore, there has been a transition from traditional farming methods to autonomous modern agriculture. One such [...] Read more.
It is projected that the world population will quadruple over the next century, and to meet future food demands, agricultural production will need to increase by 70%. Therefore, there has been a transition from traditional farming methods to autonomous modern agriculture. One such modern technique is aeroponic farming, in which plants are grown without soil under controlled and hygienic conditions. In aeroponic farming, plants are significantly less affected by climatic conditions, infectious diseases, and biotic and abiotic stresses, such as pest infestations. Additionally, this method can reduce water, nutrient, and pesticide usage by 98%, 60%, and 100%, respectively, while increasing the yield by 45–75% compared to traditional farming. In this study, a three-dimensional industrial design of an innovative aeroponic plant growth chamber was presented for use by individuals, researchers, and professional growers. The proposed chamber design is modular and open to further innovation. Unlike existing chambers, it includes load cells that enable real-time monitoring of the fresh weight of the plant. Furthermore, cameras were integrated into the chamber to track plant growth and changes over time and weight. Additionally, RGB power LEDs were placed on the inner ceiling of the chamber to provide an optimal lighting intensity and spectrum based on the cultivated plant species. A customizable chamber design was introduced, allowing users to determine the growing tray and nutrient nozzles according to the type and quantity of plants. Finally, system models were developed for temperature control of the chamber. Temperature control was implemented using a proportional-integral-derivative controller optimized with particle swarm optimization, radial movement optimization, differential evolution, and mayfly optimization algorithms for the gain parameters. The simulation results indicate that the temperatures of the growing and feeding chambers in the cabinet reached a steady state within 260 s, with an offset error of no more than 0.5 °C. This result demonstrates the accuracy of the derived model and the effectiveness of the optimized controllers. Full article
(This article belongs to the Special Issue Intelligent and Autonomous Sensor System for Precision Agriculture)
Show Figures

Figure 1

22 pages, 5806 KiB  
Article
Sustainable Design and Wall Thickness Optimization for Enhanced Lifetime of Ultra-High Temperature Ceramic Matrix Composite Thruster for Use in Green Propulsion Systems
by Tamim Doozandeh, Prakhar Jindal and Jyoti Botchu
Materials 2025, 18(13), 3196; https://doi.org/10.3390/ma18133196 - 7 Jul 2025
Viewed by 331
Abstract
This study presents a comprehensive finite element investigation into the design optimization of an ultra-high temperature ceramic matrix composite thruster for green bipropellant systems. Focusing on ZrB2–SiC–Cfiber composites, it explores their thermal and mechanical response under realistic transient combustion conditions. Two [...] Read more.
This study presents a comprehensive finite element investigation into the design optimization of an ultra-high temperature ceramic matrix composite thruster for green bipropellant systems. Focusing on ZrB2–SiC–Cfiber composites, it explores their thermal and mechanical response under realistic transient combustion conditions. Two geometries, a simplified and a complex full-featured model, were evaluated to assess the impact of geometric fidelity on stress prediction. The complex thruster model (CTM) offered improved resolution of temperature gradients and stress concentrations, especially near flange and convergent regions, and was adopted for optimization. A parametric study with nine wall thickness profiles identified a 2 mm tapered configuration in both convergent and divergent sections that minimized mass while maintaining structural integrity. This optimized profile reduced peak thermal stress and overall mass without compromising safety margins. Transient thermal and strain analyses showed that thermal stress dominates initially (≤3 s), while thermal strain becomes critical later due to stiffness degradation. Damage risk was evaluated using temperature-dependent stress margins at four critical locations. Time-dependent failure maps revealed throat degradation for short burns and flange cracking for longer durations. All analyses were conducted under hot-fire conditions without cooling. The validated methodology supports durable, lightweight nozzle designs for future green propulsion missions. Full article
Show Figures

Figure 1

24 pages, 7077 KiB  
Article
Manufacturing Process of Stealth Unmanned Aerial Vehicle Exhaust Nozzles Based on Carbon Fiber-Reinforced Silicon Carbide Matrix Composites
by Byeong-Joo Kim, Jae Won Kim, Man Young Lee, Jong Kyoo Park, Nam Choon Cho and Cheul Woo Baek
Aerospace 2025, 12(7), 600; https://doi.org/10.3390/aerospace12070600 - 1 Jul 2025
Viewed by 400
Abstract
This study presents the development of a manufacturing process for a double-serpentine (DS) exhaust nozzle for unmanned aerial vehicles (UAVs) based on carbon fiber-reinforced silicon carbide matrix composites (C/SiCs). The DS nozzle is designed to reduce infrared emissions from hot exhaust plumes, a [...] Read more.
This study presents the development of a manufacturing process for a double-serpentine (DS) exhaust nozzle for unmanned aerial vehicles (UAVs) based on carbon fiber-reinforced silicon carbide matrix composites (C/SiCs). The DS nozzle is designed to reduce infrared emissions from hot exhaust plumes, a critical factor in enhancing stealth performance during UAV operations. The proposed nozzle structure was fabricated using a multilayer configuration consisting of an inner C/SiC layer for thermal and oxidation resistance, a silica–phenolic insulation layer to suppress heat transfer, and an outer carbon fiber-reinforced polymer matrix composite (CFRPMC) for mechanical reinforcement. The C/SiC layer was produced by liquid silicon infiltration, preceded by pyrolysis and densification of a phenolic-based CFRPMC preform. The final nozzle was assembled through precision machining and bonding of segmented components, followed by lamination of the insulation and outer layers. Mechanical and thermal property tests confirmed the structural integrity and performance under high-temperature conditions. Additionally, oxidation and ablation tests demonstrated the excellent durability of the developed C/SiC. The results indicate that the developed process is suitable for producing large-scale, complex-shaped, high-temperature composite structures for stealth UAV applications. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

23 pages, 7874 KiB  
Article
Enhancing 3D Printing of Gelatin/Siloxane-Based Cellular Scaffolds Using a Computational Model
by Marcos B. Valenzuela-Reyes, Esmeralda S. Zuñiga-Aguilar, Christian Chapa-González, Javier S. Castro-Carmona, Luis C. Méndez-González, R. Álvarez-López, Humberto Monreal-Romero and Carlos A. Martínez-Pérez
Polymers 2025, 17(13), 1838; https://doi.org/10.3390/polym17131838 - 30 Jun 2025
Viewed by 357
Abstract
In recent years, there has been a surge in the extrusion-based 3D printing of materials for various biomedical applications. This work presents a novel methodology for optimizing extrusion-based 3D bioprinting of a gelatin/siloxane hybrid material for biomedical applications. A systematic approach integrating rheological [...] Read more.
In recent years, there has been a surge in the extrusion-based 3D printing of materials for various biomedical applications. This work presents a novel methodology for optimizing extrusion-based 3D bioprinting of a gelatin/siloxane hybrid material for biomedical applications. A systematic approach integrating rheological characterization, computational fluid dynamics simulation (CFD), and machine-learning-based image analysis, was employed. Rheological tests revealed a shear stress of 50 Pa, a maximum viscosity of 3 × 105 Pa·s, a minimum viscosity of 0.089 Pa·s, and a shear rate of 15 rad/s (27G nozzle, 180 kPa pressure, 32 °C temperature, 30 mm/s velocity) for a BIO X bioprinter. While these parameters yielded constructs with 54.5% similarity to the CAD design, a multi-faceted optimization strategy was implemented to enhance fidelity, computational fluid dynamics simulations in SolidWorks, coupled with a custom-develop a binary classifier convolutional neuronal network for post-printing image analysis, facilitated targeted parameter refinement. Subsequent printing optimized parameters (25G nozzle, 170 kPa, 32 °C, 20 mm/s) achieved a significantly improved similarity of 92.35% CAD, demonstrating efficacy. The synergistic combination of simulation and machine learning ultimately enabled the fabrication of complex 3D constructs with a high fidelity of 94.13% CAD similarity, demonstrating the efficacy and potential of this integrated approach for advanced biofabrication. Full article
(This article belongs to the Special Issue Designing Polymers for Emerging Applications)
Show Figures

Figure 1

17 pages, 4185 KiB  
Article
Preparation of Microcellular High-Density Polyethylene with Thermal Expandable Microspheres
by Guo-Shun Chen, Xue-Kun Li and Wei-Cheng Yang
Polymers 2025, 17(13), 1773; https://doi.org/10.3390/polym17131773 - 26 Jun 2025
Viewed by 370
Abstract
The microstructure and mechanical properties of foamed high-density polyethylene (HDPE) prepared with thermal expandable microspheres (TEMs) by an injection molding method were investigated, especially for the effect of different injection times, nozzle temperatures, and TEM contents. The results showed that it was beneficial [...] Read more.
The microstructure and mechanical properties of foamed high-density polyethylene (HDPE) prepared with thermal expandable microspheres (TEMs) by an injection molding method were investigated, especially for the effect of different injection times, nozzle temperatures, and TEM contents. The results showed that it was beneficial to increase the expansion ratio in the HDPE of microspheres with a shorter injection time and higher nozzle temperature. However, the addition of TEMs reduced the crystallinity of the foamed HDPE, and the crystallinity decreases further with the increasing TEMs content, which led to the decrease in Young’s modulus and tensile strength. When the nozzle temperature reached 220 °C, the mechanical properties of the foamed HDPE diminished significantly due to the collapse of the internal cells. At the TEMs content of 1.5 wt.%, an injection time of 2.0 s, and a nozzle temperature of 210 °C, a foamed HDPE was prepared with a cell size of 89.72 μm and a cell density of 4.39 × 108 cells/cm3. This foam exhibited a reduction density of 5.75%, a tensile strength of 22.6 MPa, and a Yang’s modulus of 1172.3 MPa, demonstrating excellent overall mechanical properties. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Figure 1

11 pages, 1639 KiB  
Article
New Approach to the Combined Removal of NOx and SO2 for Circulating Fluidized Beds
by Chao Wang and Qinggang Lyu
ChemEngineering 2025, 9(4), 67; https://doi.org/10.3390/chemengineering9040067 - 25 Jun 2025
Viewed by 313
Abstract
Post-combustion technology is a new kind of low-nitrogen combustion technology. To achieve the combined removal of nitrogen oxides (NOx) and sulfur dioxide (SO2) emissions, the post-combustion technology combined with the sorbent injection in the furnace and post-combustion chamber is [...] Read more.
Post-combustion technology is a new kind of low-nitrogen combustion technology. To achieve the combined removal of nitrogen oxides (NOx) and sulfur dioxide (SO2) emissions, the post-combustion technology combined with the sorbent injection in the furnace and post-combustion chamber is proposed. Experiments investigating the effects of the sorbent addition in a post-combustion chamber and post-combustion air arrangement on NOx and SO2 emissions were conducted in a 0.1 MWth circulating fluidized bed test platform. In addition, a comparative analysis of the NOx and SO2 emissions under both combined removal methods was also performed. The results indicated that adding sorbent to the post-combustion chamber can reduce SO2 emissions, but further increasing the amount of sorbent will not significantly improve the desulfurization effect. The injection position of the post-combustion air will affect the emissions of NOx and SO2 in the flue gas. When the three-stage distribution of post-combustion air is adopted, the further back the third nozzle is distributed, the lower the temperature in the post-combustion chamber, which is beneficial to the control of NOx and SO2 emissions. Compared with the conventional combined removal method, the NOx emissions were significantly reduced under the new combined removal method. Through secondary desulfurization in the furnace and post-combustion chamber, oxygen-deficient combustion in the furnace can achieve the combined removal of NOx and SO2. Full article
(This article belongs to the Special Issue Fuel Engineering and Technologies)
Show Figures

Figure 1

18 pages, 10483 KiB  
Article
The Effect of Low-Temperature Plasma Treatment on the Adhesive Bonding Performance of CF/PEKK Surfaces
by Liwei Wen, Zhentao Dong and Ruozhou Wang
Surfaces 2025, 8(3), 41; https://doi.org/10.3390/surfaces8030041 - 20 Jun 2025
Viewed by 391
Abstract
Polyaryletherketone (PAEK) polymers inherently exhibit low surface activity, leading to poor adhesive bonding performance when using epoxy-based adhesives. In this study, low-temperature plasma surface modification was conducted on carbon fiber-reinforced polyetherketone ketone (CF/PEKK) composites to investigate the influence of plasma treatment parameters on [...] Read more.
Polyaryletherketone (PAEK) polymers inherently exhibit low surface activity, leading to poor adhesive bonding performance when using epoxy-based adhesives. In this study, low-temperature plasma surface modification was conducted on carbon fiber-reinforced polyetherketone ketone (CF/PEKK) composites to investigate the influence of plasma treatment parameters on their lap shear strength. Surface characterization was systematically performed using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle analysis to evaluate morphological, chemical, and wettability changes induced via plasma treatment. The results demonstrated a significant enhancement in lap shear strength after plasma treatment. Optimal bonding performance was achieved at a treatment speed of 10 mm/s and a nozzle-to-substrate distance of 5 mm, yielding a maximum shear strength of 28.28 MPa, a 238% improvement compared to the untreated control. Notably, the failure mode transitioned from interfacial fracture in the untreated sample to a mixed-mode failure dominated by cohesive failure of the adhesive and substrate. Plasma treatment substantially reduced the contact angle of CF/PEKK, indicating improved surface wettability. SEM micrographs revealed an increased micro-porous texture on the treated surface, which enhanced mechanical interlocking between the composite and adhesive. XPS analysis confirmed compositional alterations, specifically elevated oxygen-containing functional groups on the plasma-treated surface. These modifications facilitated stronger chemical bonding between CF/PEKK and the epoxy resin, thereby validating the efficacy of plasma treatment in optimizing surface chemical activity and adhesion performance. Full article
Show Figures

Graphical abstract

Back to TopTop