Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (467)

Search Parameters:
Keywords = novel antimicrobial molecules

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1978 KiB  
Article
Fluorescent Peptides Internalize HeLa Cells and Kill Multidrug-Resistant Clinical Bacterial Isolates
by Daniel Castellar-Almonacid, Kelin Johana Cuero-Amu, Jose David Mendoza-Mendoza, Natalia Ardila-Chantré, Fernando José Chavez-Salazar, Andrea Carolina Barragán-Cárdenas, Jhon Erick Rivera-Monroy, Claudia Parra-Giraldo, Zuly Jenny Rivera-Monroy, Javier García-Castañeda and Ricardo Fierro-Medina
Antibiotics 2025, 14(8), 793; https://doi.org/10.3390/antibiotics14080793 - 4 Aug 2025
Viewed by 190
Abstract
Palindromic antimicrobial peptides (PAMs) constitute versatile scaffolds for the design and optimization of anticancer agents with applications in therapy, diagnosis, and/or monitoring. In the present study, fluorolabeled peptides derived from the palindromic sequence RWQWRWQWR containing fluorescent probes, such as 2-Aminobenzoyl, 5(6)-Carboxyfluorescein, and Rhodamine [...] Read more.
Palindromic antimicrobial peptides (PAMs) constitute versatile scaffolds for the design and optimization of anticancer agents with applications in therapy, diagnosis, and/or monitoring. In the present study, fluorolabeled peptides derived from the palindromic sequence RWQWRWQWR containing fluorescent probes, such as 2-Aminobenzoyl, 5(6)-Carboxyfluorescein, and Rhodamine B, were obtained. RP-HPLC analysis revealed that the palindromic peptide conjugated to Rhodamine B (RhB-RWQWRWQWR) exhibited the presence of isomers, likely corresponding to the open-ring and spiro-lactam forms of the fluorescent probe. This equilibrium is dependent on the peptide sequence, as the RP-HPLC analysis of dimeric peptide (RhB-RRWQWR-hF-KKLG)2K-Ahx did not reveal the presence of isomers. The antibacterial activity of the fluorescent peptides depends on the probe attached to the sequence and the bacterial strain tested. Notably, some fluorescent peptides showed activity against reference strains as well as sensitive, resistant, and multidrug-resistant clinical isolates of E. coli, S. aureus, and E. faecalis. Fluorolabeled peptides 1-Abz (MIC = 62 µM), RhB-1 (MIC = 62 µM), and Abz-1 (MIC = 31 µM) exhibited significant activity against clinical isolates of E. coli, S. aureus, and E. faecalis, respectively. The RhB-1 (IC50 = 61 µM), Abz-1 (IC50 = 87 µM), and RhB-2 (IC50 = 35 µM) peptides exhibited a rapid, significant, and concentration-dependent cytotoxic effect on HeLa cells, accompanied by morphological changes characteristic of apoptosis. RhB-1 (IC50 = 18 µM) peptide also exhibited significant cytotoxic activity against breast cancer cells MCF-7. These conjugates remain valuable for elucidating the possible mechanisms of action of these novel anticancer peptides. Rhodamine-labeled peptides displayed cytotoxicity comparable to that of their unlabeled analogues, suggesting that cellular internalization constitutes a critical early step in their mechanism of action. These findings suggest that cell death induced by both unlabeled and fluorolabeled peptides proceeds predominantly via apoptosis and is likely contingent upon peptide internalization. Functionalization at the N-terminal end of the palindromic sequence can be evaluated to develop systems for transporting non-protein molecules into cancer cells. Full article
Show Figures

Figure 1

12 pages, 2639 KiB  
Article
Interspecies Interactions of Single- and Mixed-Species Biofilms of Candida albicans and Aggregatibacter actinomycetemcomitans
by Adèle Huc, Andreia S. Azevedo, José Carlos Andrade and Célia Fortuna Rodrigues
Biomedicines 2025, 13(8), 1890; https://doi.org/10.3390/biomedicines13081890 - 3 Aug 2025
Viewed by 328
Abstract
Polymicrobial biofilms involving fungal and bacterial species are increasingly recognized as contributors to persistent infections, particularly in the oral cavity. Candida albicans and Aggregatibacter actinomycetemcomitans are two commensals that can turn into opportunistic pathogens and are able to form robust biofilms. Objectives: [...] Read more.
Polymicrobial biofilms involving fungal and bacterial species are increasingly recognized as contributors to persistent infections, particularly in the oral cavity. Candida albicans and Aggregatibacter actinomycetemcomitans are two commensals that can turn into opportunistic pathogens and are able to form robust biofilms. Objectives: This study aimed to assess the interaction dynamics between these two microorganisms and to evaluate their susceptibility to fluconazole and azithromycin in single- and mixed-species forms. Methods: Biofilm biomass was quantified using crystal violet assays, while biofilm cell viability was assessed through CFU enumeration (biofilm viability assay). To assess the resistance properties of single versus mixed-species coincubations, we applied the antimicrobial susceptibility test (AST) to each drug, and analysed spatial organization with confocal laser scanning microscopy, using PNA-FISH. Results: The results indicated that both species can coexist without significant mutual inhibition. However, a non-reciprocal synergism was also observed, whereby mixed-species biofilm conditions promoted the growth of A. actinomycetemcomitans, while C. albicans growth remained stable. As expected, antimicrobial tolerance was elevated in mixed cultures, likely due to enhanced extracellular matrix production and potential quorum-sensing interactions, contributing to increased resistance against azithromycin and fluconazole. Conclusions: This study provides novel insights into previously rarely explored interactions between C. albicans and A. actinomycetemcomitans. These findings underscore the importance of investigating interspecies interactions within polymicrobial biofilms, as understanding their mechanisms, such as quorum-sensing molecules and metabolic cooperation, can contribute to improved diagnostics and more effective targeted therapeutic strategies against polymicrobial infections. Full article
Show Figures

Graphical abstract

21 pages, 6211 KiB  
Article
In Silico and In Vitro Potential Antifungal Insights of Insect-Derived Peptides in the Management of Candida sp. Infections
by Catarina Sousa, Alaka Sahoo, Shasank Sekhar Swain, Payal Gupta, Francisco Silva, Andreia S. Azevedo and Célia Fortuna Rodrigues
Int. J. Mol. Sci. 2025, 26(15), 7449; https://doi.org/10.3390/ijms26157449 - 1 Aug 2025
Viewed by 242
Abstract
The worldwide increase in antifungal resistance, particularly in Candida sp., requires the exploration of novel therapeutic agents. Natural compounds have been a rich source of antimicrobial molecules, where peptides constitute the class of the most bioactive components. Therefore, this study looks into the [...] Read more.
The worldwide increase in antifungal resistance, particularly in Candida sp., requires the exploration of novel therapeutic agents. Natural compounds have been a rich source of antimicrobial molecules, where peptides constitute the class of the most bioactive components. Therefore, this study looks into the target-specific binding efficacy of insect-derived antifungal peptides (n = 37) as possible alternatives to traditional antifungal treatments. Using computational methods, namely the HPEPDOCK and HDOCK platforms, molecular docking was performed to evaluate the interactions between selected key fungal targets, lanosterol 14-demethylase, or LDM (PDB ID: 5V5Z), secreted aspartic proteinase-5, or Sap-5 (PDB ID: 2QZX), N-myristoyl transferase, or NMT (PDB ID: 1NMT), and dihydrofolate reductase, or DHFR, of C. albicans. The three-dimensional peptide structure was modelled through the PEP-FOLD 3.5 tool. Further, we predicted the physicochemical properties of these peptides through the ProtParam and PEPTIDE 2.0 tools to assess their drug-likeness and potential for therapeutic applications. In silico results show that Blap-6 from Blaps rhynchopeter and Gomesin from Acanthoscurria gomesiana have the most antifungal potential against all four targeted proteins in Candida sp. Additionally, a molecular dynamics simulation study of LDM-Blap-6 was carried out at 100 nanoseconds. The overall predictions showed that both have strong binding abilities and are good candidates for drug development. In in vitro studies, Gomesin achieved complete biofilm eradication in three out of four Candida species, while Blap-6 showed moderate but consistent reduction across all species. C. tropicalis demonstrated relative resistance to complete eradication by both peptides. The present study provides evidence to support the antifungal activity of certain insect peptides, with potential to be used as alternative drugs or as a template for a new synthetic or modified peptide in pursuit of effective therapies against Candida spp. Full article
Show Figures

Figure 1

54 pages, 3105 KiB  
Review
Insight into the in Silico Structural, Physicochemical, Pharmacokinetic and Toxicological Properties of Antibacterially Active Viniferins and Viniferin-Based Compounds as Derivatives of Resveratrol Containing a (2,3-Dihydro)benzo[b]furan Privileged Scaffold
by Dominika Nádaská and Ivan Malík
Appl. Sci. 2025, 15(15), 8350; https://doi.org/10.3390/app15158350 - 27 Jul 2025
Viewed by 670
Abstract
Resistance of various bacterial pathogens to the activity of clinically approved drugs currently leads to serious infections, rapid spread of difficult-to-treat diseases, and even death. Taking the threats for human health in mind, researchers are focused on the isolation and characterization of novel [...] Read more.
Resistance of various bacterial pathogens to the activity of clinically approved drugs currently leads to serious infections, rapid spread of difficult-to-treat diseases, and even death. Taking the threats for human health in mind, researchers are focused on the isolation and characterization of novel natural products, including plant secondary metabolites. These molecules serve as inspiration and a suitable structural platform in the design and development of novel semi-synthetic and synthetic derivatives. All considered compounds have to be adequately evaluated in silico, in vitro, and in vivo using relevant approaches. The current review paper briefly focuses on the chemical and metabolic properties of resveratrol (1), as well as its oligomeric structures, viniferins, and viniferin-based molecules. The core scaffolds of these compounds contain so-called privileged structures, which are also present in many clinically approved drugs, indicating that those natural, properly substituted semi-synthetic, and synthetic molecules can provide a notably broad spectrum of beneficial pharmacological activities, including very impressive antimicrobial efficiency. Except for spectral verification of their structures, these compounds suffer from the determination or prediction of other structural and physicochemical characteristics. Therefore, the structure–activity relationships for specific dihydrodimeric and dimeric viniferins, their bioisosteres, and derivatives with notable efficacy in vitro, especially against chosen Gram-positive bacterial strains, are summarized. In addition, a set of descriptors related to their structural, physicochemical, pharmacokinetic, and toxicological properties is generated using various computational tools. The obtained values are compared to those of clinically approved drugs. The particular relationships between these in silico parameters are also explored. Full article
Show Figures

Figure 1

35 pages, 2798 KiB  
Review
Mechanistic Insight into the Antioxidant and Antimicrobial Activities of Palm Oil-Derived Biomaterials: Implications for Dental and Therapeutic Applications
by Syafira Masri, Nurulhuda Mohd, Noor Hayaty Abu Kasim and Masfueh Razali
Int. J. Mol. Sci. 2025, 26(14), 6975; https://doi.org/10.3390/ijms26146975 - 20 Jul 2025
Viewed by 293
Abstract
Palm oil is a highly versatile natural resource that has gathered significant attention due to its bioactive properties, particularly its antimicrobial and antioxidant effects. Rich in tocotrienols, tocopherols, and carotenoids, palm oil exhibits potent antioxidant activity, while its fatty acid content and other [...] Read more.
Palm oil is a highly versatile natural resource that has gathered significant attention due to its bioactive properties, particularly its antimicrobial and antioxidant effects. Rich in tocotrienols, tocopherols, and carotenoids, palm oil exhibits potent antioxidant activity, while its fatty acid content and other bioactive molecules contribute to its antimicrobial efficacy against various pathogens. The underlying mechanisms of action driving these bioactivities involve intricate molecular interactions, biochemical pathways, and redox processes, which influence microbial cell function and oxidative stress reduction. This review provides a critical analysis of the current mechanistic understanding of palm oil’s biofunctional properties, emphasizing its potential incorporation into engineered biomaterials. Particular focus is given to the chemical composition, reaction pathways, and synergistic potential of palm oil derivatives in material-based formulations. Furthermore, the potential applications of palm oil as a standalone or synergistic agent in novel therapeutic and industrial formulations are explored. By elucidating the mechanistic basis of its bioactivity within material contexts, this review highlights palm oil’s promising role in the development of advanced functional materials for pharmaceutical and dental technologies. Full article
(This article belongs to the Special Issue Bone and Cartilage Injury and Repair: Molecular Aspects)
Show Figures

Figure 1

21 pages, 2552 KiB  
Review
The Impact of Fusobacterium nucleatum and the Genotypic Biomarker KRAS on Colorectal Cancer Pathogenesis
by Ahmed Dewan, Ivan Tattoli and Maria Teresa Mascellino
Int. J. Mol. Sci. 2025, 26(14), 6958; https://doi.org/10.3390/ijms26146958 - 20 Jul 2025
Viewed by 628
Abstract
Fusobacterium nucleatum and activating mutations in the Kirsten rat sarcoma virus oncogene homolog (KRAS) are increasingly recognized as cooperative drivers of colorectal cancer (CRC). F. nucleatum promotes tumorigenesis via adhesion to epithelial cells, modulation of the immune microenvironment, and delivery of virulence factors, [...] Read more.
Fusobacterium nucleatum and activating mutations in the Kirsten rat sarcoma virus oncogene homolog (KRAS) are increasingly recognized as cooperative drivers of colorectal cancer (CRC). F. nucleatum promotes tumorigenesis via adhesion to epithelial cells, modulation of the immune microenvironment, and delivery of virulence factors, while KRAS mutations—present in 60% of CRC cases—amplify proliferative signaling and inflammatory pathways. Here, we review the molecular interplay by which F. nucleatum enhances KRAS-driven oncogenic cascades and, conversely, how KRAS mutations reshape the tumor niche to favor bacterial colonization. We further discuss the use of KRAS as a prognostic biomarker and explore promising non-antibiotic interventions—such as phage therapy, antimicrobial peptides, and targeted small-molecule inhibitors—aimed at selectively disrupting F. nucleatum colonization and virulence. This integrated perspective on microbial–genetic crosstalk offers novel insights for precision prevention and therapy in CRC. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

23 pages, 11745 KiB  
Article
Tracing the Evolutionary Expansion of a Hyperdiverse Antimicrobial Peptide Gene Family in Mytilus spp.: The MyticalinDB Resource
by Dona Kireta, Pietro Decarli, Damiano Riommi, Nicolò Gualandi, Samuele Greco, Alberto Pallavicini and Marco Gerdol
Genes 2025, 16(7), 816; https://doi.org/10.3390/genes16070816 - 12 Jul 2025
Viewed by 325
Abstract
Background: The overwhelming majority of the antimicrobial peptides (AMPs) studied in mussels (Mytilus spp.) so far are specifically expressed by hemocytes and display compact disulfide-stabilized structures. However, gill-specific myticalins play a role in mucosal immunity and are one of the very [...] Read more.
Background: The overwhelming majority of the antimicrobial peptides (AMPs) studied in mussels (Mytilus spp.) so far are specifically expressed by hemocytes and display compact disulfide-stabilized structures. However, gill-specific myticalins play a role in mucosal immunity and are one of the very few examples of known molluscan AMPs lacking cysteine residues. Methods: We investigate the molecular evolution of myticalins, compiling a collection of sequences obtained by carefully annotating 169 genome assemblies of different Mytilus species. We determine the gene presence/absence patterns and gene expression profiles for the five myticalin subfamilies, including the newly reported myticalin E. Results: All sequences are deposited in MyticalinDB, a novel database that includes a total of 100 unique mature myticalin peptides encoded by 215 protein precursors, greatly enriching the compendium of these molecules from previous reports. Among the five subfamilies, myticalin A and C are the most widespread and highly expressed across all Mytilus species. Interestingly, structural prediction reveals a previously unreported strong amphipathic nature for some myticalins, which may be highly relevant for their biological activity. Conclusions: The results reported in this work support the role of myticalins in gill-associated mucosal immunity and highlight the importance of inter-individual molecular diversity in establishing an efficient response to microbial infections. The newly established MyticalinDB provides a valuable resource for investigating the evolution and extraordinary molecular diversity of this AMP family. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

12 pages, 1380 KiB  
Article
Halicin: A New Approach to Antibacterial Therapy, a Promising Avenue for the Post-Antibiotic Era
by Imane El Belghiti, Omayma Hammani, Fatima Moustaoui, Mohamed Aghrouch, Zohra Lemkhente, Fatima Boubrik and Ahmed Belmouden
Antibiotics 2025, 14(7), 698; https://doi.org/10.3390/antibiotics14070698 - 11 Jul 2025
Viewed by 761
Abstract
Background: The global spread of antibiotic-resistant bacteria presents a major public health challenge and necessitates the development of innovative antimicrobial agents. Artificial intelligence (AI)-driven drug discovery has recently enabled the repurposing of existing compounds with novel therapeutic potential. Halicin, originally developed as an [...] Read more.
Background: The global spread of antibiotic-resistant bacteria presents a major public health challenge and necessitates the development of innovative antimicrobial agents. Artificial intelligence (AI)-driven drug discovery has recently enabled the repurposing of existing compounds with novel therapeutic potential. Halicin, originally developed as an anti-diabetic molecule, has been identified through AI screening as a promising antibiotic candidate due to its broad-spectrum activity, including efficacy against multidrug-resistant pathogens. Methods: In this study, the antibacterial activity of halicin was evaluated against a range of clinically relevant multidrug-resistant bacterial strains. Bacterial isolates were first characterized using the agar disk diffusion method with a panel of 22 conventional antibiotics to confirm resistance profiles. The minimum inhibitory concentration (MIC) of halicin was then determined for selected isolates, including Escherichia coli ATCC® 25922™ and Staphylococcus aureus ATCC® 29213™, using broth microdilution according to Clinical and Laboratory Standards Institute (CLSI) guidelines. Results: Halicin demonstrated notable antibacterial activity, with MIC values of 16 μg/mL and 32 μg/mL against E. coli ATCC® 25922™ and S. aureus ATCC® 29213™, respectively. A dose-dependent inhibition of bacterial growth was observed for the majority of tested isolates, except for Pseudomonas aeruginosa, which exhibited intrinsic resistance. This lack of susceptibility is likely related to reduced outer membrane permeability, limiting the intracellular accumulation of halicin. Conclusions: Our findings support the potential of halicin as a novel antimicrobial agent for the treatment of infections caused by antibiotic-resistant bacteria. However, further investigations, including pharmacokinetic, pharmacodynamic, and toxicity studies, are essential to assess its clinical safety and therapeutic applicability. Full article
Show Figures

Figure 1

24 pages, 1889 KiB  
Article
In Silico Approach for Early Antimalarial Drug Discovery: De Novo Design of Virtual Multi-Strain Antiplasmodial Inhibitors
by Valeria V. Kleandrova, M. Natália D. S. Cordeiro and Alejandro Speck-Planche
Microorganisms 2025, 13(7), 1620; https://doi.org/10.3390/microorganisms13071620 - 9 Jul 2025
Viewed by 358
Abstract
Plasmodium falciparum is the causative agent of malaria, a parasitic disease that affects millions of people in terms of prevalence and is associated with hundreds of thousands of deaths. Current antimalarial medications, in addition to exhibiting moderate to serious adverse reactions, are not [...] Read more.
Plasmodium falciparum is the causative agent of malaria, a parasitic disease that affects millions of people in terms of prevalence and is associated with hundreds of thousands of deaths. Current antimalarial medications, in addition to exhibiting moderate to serious adverse reactions, are not efficacious enough due to factors such as drug resistance. In silico approaches can speed up the discovery and design of new molecules with wide-spectrum antimalarial activity. Here, we report a unified computational methodology combining a perturbation theory machine learning model based on multilayer perceptron networks (PTML-MLP) and the fragment-based topological design (FBTD) approach for the prediction and design of novel molecules virtually exhibiting versatile antiplasmodial activity against diverse P. falciparum strains. Our PTML-MLP achieved an accuracy higher than 85%. We applied the FBTD approach to physicochemically and structurally interpret the PTML-MLP, subsequently extracting several suitable molecular fragments and designing new drug-like molecules. These designed molecules were predicted as multi-strain antiplasmodial inhibitors, thus representing promising chemical entities for future synthesis and biological experimentation. The present work confirms the potential of combining PTML modeling and FBTD for early antimalarial drug discovery while opening new horizons for extended computational applications for antimicrobial research and beyond. Full article
(This article belongs to the Special Issue Infectious Diseases: New Approaches to Old Problems, 3rd Edition)
Show Figures

Figure 1

18 pages, 5113 KiB  
Article
Exploring the Energy Landscape of Conformationally Constrained Peptides in Vacuum and in the Presence of an Explicit Solvent Using the MOLS Technique
by Balaji Nagarajan and Nehru Viji Sankaranarayanan
Sci 2025, 7(3), 93; https://doi.org/10.3390/sci7030093 - 1 Jul 2025
Viewed by 368
Abstract
This research represents the first application of the MOLS method to characterize the conformational energy landscape of an antimicrobial peptide within a solvent environment, providing a novel approach to understanding peptide behavior in solution. This method’s exhaustive nature ensures that all minimum-energy conformations [...] Read more.
This research represents the first application of the MOLS method to characterize the conformational energy landscape of an antimicrobial peptide within a solvent environment, providing a novel approach to understanding peptide behavior in solution. This method’s exhaustive nature ensures that all minimum-energy conformations for a given amino acid sequence are sampled. In this work, we employed a combination of MOLS and VMD software to generate structural models of a cyclic peptide, both solvated and non-solvated, and then utilized the CHARMM force field to conduct energy calculations throughout the sampling process. In the presence of a solvent, this method predicted a structure close to the experimental crystal structure. A significant reduction was observed in gamma turn motifs in the presence of water. The solvent molecules also favored different hydrogen bonding patterns in the peptide by orchestrating an intermolecular interaction with the peptide atoms. This intermolecular interaction involves an ARG side chain and further stabilizes the backbone. It is evident that solvent interactions are key in designing antimicrobial peptides. This study will help in designing and understanding peptides for use as therapeutic agents like antibacterial or antimicrobial peptides. Each conformer obtained from the MOLS method would be one of the best starting points for molecular dynamic simulation to further explore the landscape. Full article
Show Figures

Figure 1

27 pages, 3604 KiB  
Review
Bioactive Polyketides from Amphidinium spp.: An In-Depth Review of Biosynthesis, Applications, and Current Research Trends
by Noemi Russo, Giulia Quaini, Marcello Ziaco, Daniela Castiglia, Alessandra Ruggiero, Vincenzo D’Amelia, Concetta Di Napoli, Sergio Esposito, Angelo Fontana, Genoveffa Nuzzo and Simone Landi
Mar. Drugs 2025, 23(6), 255; https://doi.org/10.3390/md23060255 - 16 Jun 2025
Viewed by 824
Abstract
Polyketides (PKs) are a widespread class of secondary metabolites with recognised pharmacological properties. These molecules are abundantly produced in the marine environment, especially by dinoflagellate-photosynthetic organisms able to produce several PKs, including neurotoxins, cytotoxins, and immunomodulating agents. The biosynthesis of these compounds is [...] Read more.
Polyketides (PKs) are a widespread class of secondary metabolites with recognised pharmacological properties. These molecules are abundantly produced in the marine environment, especially by dinoflagellate-photosynthetic organisms able to produce several PKs, including neurotoxins, cytotoxins, and immunomodulating agents. The biosynthesis of these compounds is driven by a conserved enzymatic process involving polyketide synthase complexes. Different genera of dinoflagellates produce PKs. Among them, dinoflagellates of the genus Amphidinium are of particular interest due to its ability to produce the following two major families of PKs: amphidinolides and amphidinols. These compounds display remarkable biological activities, including anticancer, antimicrobial, and antifungal effects, making them attractive targets for pharmaceutical research and development. However, the natural yield of Amphidinium-derived polyketides (APKs) is generally low, limiting their potential for sustainable molecular farming. This challenge has prompted interest in developing biotechnological strategies to enhance their production. This review aims to define the current state of studies about APKs, starting from their initial discoveries to the recent understanding of their biosynthetic pathways. Additionally, it summarizes the structures of compounds discovered, highlights their biotechnological potential, and discusses novel trends in their production. Full article
Show Figures

Figure 1

41 pages, 13934 KiB  
Article
Unveiling Palmitoyl Thymidine Derivatives as Antimicrobial/Antiviral Inhibitors: Synthesis, Molecular Docking, Dynamic Simulations, ADMET, and Assessment of Protein–Ligand Interactions
by Sarkar M. A. Kawsar, Samiah Hamad Al-mijalli, Gassoumi Bouzid, Emad M. Abdallah, Noimul H. Siddiquee, Mohammed A. Hosen, Mabrouk Horchani, Houcine Ghalla, Hichem B. Jannet, Yuki Fujii and Yasuhiro Ozeki
Pharmaceuticals 2025, 18(6), 806; https://doi.org/10.3390/ph18060806 - 27 May 2025
Viewed by 1899
Abstract
Background/Objectives: Nucleoside precursors and derivatives play pivotal roles in the development of antimicrobial and antiviral therapeutics. The 2022 global outbreak of monkeypox (Mpox) across more than 100 nonendemic countries underscores the urgent need for novel antiviral agents. This study aimed to synthesize and [...] Read more.
Background/Objectives: Nucleoside precursors and derivatives play pivotal roles in the development of antimicrobial and antiviral therapeutics. The 2022 global outbreak of monkeypox (Mpox) across more than 100 nonendemic countries underscores the urgent need for novel antiviral agents. This study aimed to synthesize and evaluate a series of 5′-O-(palmitoyl) derivatives (compounds 26), incorporating various aliphatic and aromatic acyl groups, for their potential antimicrobial activities. Methods: The structures of the synthesized derivatives were confirmed through physicochemical, elemental, and spectroscopic techniques. In vitro antibacterial efficacy was assessed, including minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) determinations for the most active compounds (4 and 5). The antifungal activity was evaluated based on mycelial growth inhibition. Density functional theory (DFT) calculations were employed to investigate the electronic and structural properties, including the global reactivity, frontier molecular orbital (FMO), natural bond orbital (NBO), and molecular electrostatic potential (MEP). Molecular docking studies were conducted against the monkeypox virus and the Marburg virus. The top-performing compounds (3, 5, and 6) were further evaluated via 200 ns molecular dynamics (MD) simulations. ADMET predictions were performed to assess drug-likeness and pharmacokinetic properties. Results: Compounds 4 and 5 demonstrated remarkable antibacterial activity compared with the precursor molecule, while most derivatives inhibited fungal mycelial growth by up to 79%. Structure-activity relationship (SAR) analysis highlighted the enhanced antibacterial/antifungal efficacy with CH3(CH2)10CO– and CH3(CH2)12CO–acyl chains. In silico docking revealed that compounds 3, 5, and 6 had higher binding affinities than the other derivatives. MD simulations confirmed the stability of the protein-ligand complexes. ADMET analyses revealed favorable drug-like profiles for all the lead compounds. Conclusions: The synthesized compounds 3, 5, and 6 exhibit promising antimicrobial and antiviral activities. Supported by both in vitro assays and comprehensive in silico analyses, these derivatives have emerged as potential candidates for the development of novel therapeutics against bacterial, fungal, and viral infections, including monkeypox and Marburg viruses. Full article
Show Figures

Graphical abstract

16 pages, 1981 KiB  
Article
Quorum Sensing and Mobility Inhibition of Pathogenic Bacteria by Fulvifomes mexicanus sp. nov.
by Angelica Bolaños-Nuñez, Michelle Martínez-Pineda, Ricardo Valenzuela, Mario Figueroa, Albert D. Patiño, Everardo Curiel-Quesada, César Ramiro Martínez-Gonzáles, Rodrigo Villanueva-Silva, Tania Raymundo and Abigail Pérez-Valdespino
Molecules 2025, 30(11), 2278; https://doi.org/10.3390/molecules30112278 - 22 May 2025
Viewed by 784
Abstract
The development of antimicrobial resistance drives the search for molecules capable of inhibiting bacterial virulence. Fungi of the Basidiomycota phylum constitute an important source of compounds with antimicrobial activity. The present paper describes a new species named Fulvifomes mexicanus sp. nov. based on [...] Read more.
The development of antimicrobial resistance drives the search for molecules capable of inhibiting bacterial virulence. Fungi of the Basidiomycota phylum constitute an important source of compounds with antimicrobial activity. The present paper describes a new species named Fulvifomes mexicanus sp. nov. based on morphological and phylogenetic analyses. The methanolic extract of basidiome of this fungus inhibited the motility of Pseudomonas aeruginosa ATCC 9027 and the production of violacein by Chromobacterium violaceum CV026. The metabolomic study of the extract by liquid chromatography–high-resolution electrospray ionization mass spectrometry (LC-HRESIMS) and molecular networking analyses revealed the presence of a complex composition of metabolites including hispidin derivatives, terpenoids, phenols, furanones, alkylglycerols, pyrones, and γ-butyrolactones, among others. Overall, this work represents the first chemical and biological study of a new species of Fulvifomes mexicanus as a source of antipathogenic metabolites for the development of novel antimicrobial agents. Full article
(This article belongs to the Special Issue Antibacterial Agents from Natural Source, 2nd Edition)
Show Figures

Figure 1

57 pages, 2557 KiB  
Review
Recent Advances in the Therapeutic Potential of Bioactive Molecules from Plants of Andean Origin
by Carlos Barba-Ostria, Jéssica Guamán-Bautista, Augusto A. Tosi-Vélez, Juan A. Puente-Pineda, Melanie A. Cedeño-Zambrano, Enrique Teran and Linda P. Guamán
Nutrients 2025, 17(11), 1749; https://doi.org/10.3390/nu17111749 - 22 May 2025
Cited by 1 | Viewed by 1191
Abstract
Background: Andean plants are rich in bioactive compounds shaped by extreme environmental conditions, contributing to their antioxidant, antimicrobial, and anti-inflammatory properties. This review explores their phytochemical composition, biological activities, and therapeutic potential in modern medicine and nutrition of three plants of Andean origin. [...] Read more.
Background: Andean plants are rich in bioactive compounds shaped by extreme environmental conditions, contributing to their antioxidant, antimicrobial, and anti-inflammatory properties. This review explores their phytochemical composition, biological activities, and therapeutic potential in modern medicine and nutrition of three plants of Andean origin. Methods: A literature review of peer-reviewed studies was conducted, focusing on key species such as quinoa (Chenopodium quinoa), amaranth (Amaranthus spp.), and lupin (Lupinus spp.), selected for this review due to their Andean origin, long-standing role in traditional diets, and growing scientific interest in their unique phytochemical profiles and therapeutic potential. This analysis covers their phytochemistry, bioactivities, and the influence of environmental factors on compound potency. Results: These Andean-origin plants contain flavonoids, terpenoids, alkaloids, and phenolic compounds that support antioxidant, antimicrobial, anti-inflammatory, and anticancer activities. High-altitude conditions enhance the biosynthesis of these bioactives, increasing their therapeutic value. Quinoa, amaranth, and lupin show strong potential for dietary and pharmaceutical applications, particularly in metabolic health and disease prevention. Additionally, preclinical studies and clinical trials have begun exploring the efficacy of these compounds in preventing and treating metabolic and chronic diseases. Conclusions: Andean plants are a valuable source of functional bioactive molecules with diverse health benefits. Future research should optimize cultivation strategies and explore novel applications in nutrition and medicine. Full article
Show Figures

Figure 1

25 pages, 5557 KiB  
Article
Evaluation of the Effects of the Quaternary Ammonium Silane K21 on Zebrafish Viability, Toxicity, Growth, and Development
by Surendra K. Rajpurohit, Devan Anmol S. Manhiani, Ashwin Ajith, Pragya Rajpurohit, Simran Hotwani, Sai Nasanally, Arsha Sreekumar, Keshu Bhat, Aiden Van Derhei, Rohan Pasi, Arishia Mishra, Kirk Kimmerling and Clifton M. Carey
Biomedicines 2025, 13(6), 1267; https://doi.org/10.3390/biomedicines13061267 - 22 May 2025
Viewed by 3513
Abstract
Background: The FDA-cleared antimicrobial quaternary ammonium silane K21 is recognized for its antimicrobial properties. This study explored potential applications of the K21 molecule in human health protection, disease prevention, and treatment using the zebrafish model. Method: A multi-dimensional approach was utilized [...] Read more.
Background: The FDA-cleared antimicrobial quaternary ammonium silane K21 is recognized for its antimicrobial properties. This study explored potential applications of the K21 molecule in human health protection, disease prevention, and treatment using the zebrafish model. Method: A multi-dimensional approach was utilized to assess the toxicity, tolerance, and optimal dosage of K21 through serial dilutions at various concentrations. Acute and chronic exposure studies were performed at different developmental stages (embryonic, larval, juvenile, and adult) to evaluate its efficacy and toxicity in wild-type (WT), Casper (transparent skin mutant), and transgenic zebrafish lines. Results: Significant weight gain was observed in the F1 generation following K21 treatment, a trend that continued into the F2 and F3 generations. The effects of K21 on lipopolysaccharide-induced inflammation were also examined in Casper NFkB:GFP transgenic lines. Treatment with K21 reduced inflammation, indicating anti-inflammatory properties. Improved hatching rates, accelerated larval development, an increased adult mass, and modest reductions in embryonic motility (less than 20%) suggested positive developmental influences. Single-cell RNA sequencing further validated the biological impacts of K21, revealing the potential activation of a novel pathway that accelerates zebrafish growth. Summary and Conclusions: These findings position K21 as a promising candidate for biomedical applications and aquaculture, warranting further investigation into its underlying molecular mechanisms. Our additional study on the effect of K21 on the artemia (brine shrimp) hatching process provide strong evidence of better hatching ratio of 90% for brine shrimp in the group with K21 drug treatment as compared to 70% in the group without the K21 drug at 24 h of treatment; the K21 drug helps the early hatching process, as observed the 90% hatching rate in 20 h K21 treatment group hatching while in the group without K21, only 40% of brine shrimps hatched. Full article
(This article belongs to the Special Issue Advances in Novel Drug Discovery, Synthesis, and Evaluation)
Show Figures

Figure 1

Back to TopTop