Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (369)

Search Parameters:
Keywords = novel anaerobes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 788 KiB  
Article
Gut Microbial Composition on Dienogest Therapy in Patients with Endometriosis
by Veronika Pronina, Pavel Denisov, Vera Muravieva, Alexey Skorobogatiy, Ksenia Zhigalova, Galina Chernukha, Gennady Sukhikh and Tatiana Priputnevich
Microbiol. Res. 2025, 16(8), 169; https://doi.org/10.3390/microbiolres16080169 - 1 Aug 2025
Viewed by 232
Abstract
Endometriosis is a chronic inflammatory condition affecting approximately 10% of women of reproductive age, characterized by pelvic pain, dysmenorrhea, and infertility. Emerging evidence suggests a potential link between gut microbiota dysbiosis and endometriosis pathogenesis, mediated through hormonal regulation, immune modulation, and systemic inflammation. [...] Read more.
Endometriosis is a chronic inflammatory condition affecting approximately 10% of women of reproductive age, characterized by pelvic pain, dysmenorrhea, and infertility. Emerging evidence suggests a potential link between gut microbiota dysbiosis and endometriosis pathogenesis, mediated through hormonal regulation, immune modulation, and systemic inflammation. Dienogest (DNG) is widely used for endometriosis management, but its effects on gut microbiota remain underexplored. This study investigates the impact of DNG on gut microbial composition in endometriosis patients, aiming to elucidate its therapeutic mechanisms beyond hormonal modulation. DNG therapy led to a significant reduction in the Bacillota/Bacteroidota ratio (p = 0.0421), driven by decreased Staphylococcus spp. (p = 0.0244) and increased commensal bacteria such as Lactobacillus spp. and Collinsella aerofaciens (p = 0.049). Species richness and alpha diversity indices showed a non-significant upward trend. Notably, C. aerofaciens, a butyrate producer linked to gut barrier integrity, was detected twice as frequently during therapy. The study also observed reductions in facultative anaerobes like Enterococcus spp. and a trend toward higher titers of beneficial Bacteroidota. This study provides the first evidence that DNG therapy modulates gut microbiota in endometriosis patients, favoring a composition associated with anti-inflammatory and barrier-protective effects. The observed shifts—reduced opportunistic pathogens and increased symbionts—suggest a novel mechanism for DNG’s efficacy, potentially involving the microbial regulation of estrogen metabolism and immune responses. Full article
Show Figures

Figure 1

21 pages, 1208 KiB  
Review
Combination of Irreversible Electroporation and Clostridium novyi-NT Bacterial Therapy for Colorectal Liver Metastasis
by Zigeng Zhang, Guangbo Yu, Qiaoming Hou, Farideh Amirrad, Sha Webster, Surya M. Nauli, Jianhua Yu, Vahid Yaghmai, Aydin Eresen and Zhuoli Zhang
Cancers 2025, 17(15), 2477; https://doi.org/10.3390/cancers17152477 - 26 Jul 2025
Viewed by 293
Abstract
Colorectal liver metastasis (CRLM) poses a significant challenge in oncology due to its high incidence and poor prognosis in unresectable cases. Current treatments, including surgical resection, systemic chemotherapy, and liver-directed therapies, often fail to effectively target hypoxic tumor regions, which are inherently more [...] Read more.
Colorectal liver metastasis (CRLM) poses a significant challenge in oncology due to its high incidence and poor prognosis in unresectable cases. Current treatments, including surgical resection, systemic chemotherapy, and liver-directed therapies, often fail to effectively target hypoxic tumor regions, which are inherently more resistant to these interventions. This review examines the potential of a novel therapeutic strategy combining irreversible electroporation (IRE) ablation and Clostridium novyi-nontoxic (C. novyi-NT) bacterial therapy. IRE is a non-thermal tumor ablation technique that uses high-voltage electric pulses to create permanent nanopores in cell membranes, leading to cell death while preserving surrounding structures, and is often associated with temporary tumor hypoxia due to disrupted perfusion. C. novyi-NT is an attenuated, anaerobic bacterium engineered to selectively germinate and proliferate in hypoxic tumor regions, resulting in localized tumor cell lysis while sparing healthy, oxygenated tissue. The synergy between IRE-induced hypoxia and hypoxia-sensitive C. novyi-NT may enhance tumor destruction and stimulate systemic antitumor immunity. Furthermore, the integration of advanced imaging and artificial intelligence can support precise treatment planning and real-time monitoring. This integrated approach holds promise for improving outcomes in patients with CRLM, though further preclinical and clinical validation is needed. Full article
(This article belongs to the Section Cancer Metastasis)
Show Figures

Figure 1

25 pages, 2229 KiB  
Review
The Roles of Lactate and Lactylation in Diseases Related to Mitochondrial Dysfunction
by Fei Ma and Wei Yu
Int. J. Mol. Sci. 2025, 26(15), 7149; https://doi.org/10.3390/ijms26157149 - 24 Jul 2025
Viewed by 261
Abstract
Glycolysis and oxidative phosphorylation are the main pathways of cellular energy production. Glucose is metabolized via glycolysis to generate pyruvate, which, under anaerobic conditions, is converted into lactate, while, under aerobic conditions, pyruvate enters mitochondria for oxidative phosphorylation to produce more energy. Accordingly, [...] Read more.
Glycolysis and oxidative phosphorylation are the main pathways of cellular energy production. Glucose is metabolized via glycolysis to generate pyruvate, which, under anaerobic conditions, is converted into lactate, while, under aerobic conditions, pyruvate enters mitochondria for oxidative phosphorylation to produce more energy. Accordingly, mitochondrial dysfunction disrupts the energy balance. Lactate, historically perceived as a harmful metabolic byproduct. However, emerging research indicates that lactate has diverse biological functions, encompassing energy regulation, epigenetic remodeling, and signaling activities. Notably, the 2019 study revealed the role of lactate in regulating gene expression through histone and non-histone lactylation, thereby influencing critical biological processes. Metabolic reprogramming is a key adaptive mechanism of cells responding to stresses. The Warburg effect in tumor cells exemplifies this, with glucose preferentially converted to lactate for rapid energy, accompanied by metabolic imbalances, characterized by exacerbated aerobic glycolysis, lactate accumulation, suppressed mitochondrial oxidative phosphorylation, and compromised mitochondrial function, ultimately resulting in a vicious cycle of metabolic dysregulation. As molecular bridges connecting metabolism and epigenetics, lactate and lactylation offer novel therapeutic targets for diseases like cancer and neurodegenerative diseases. This review summarizes the interplay between metabolic reprogramming and mitochondrial dysfunction, while discussing lactate and lactylation’s mechanistic in the pathogenesis of related diseases. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

35 pages, 1398 KiB  
Review
Process Intensification of Anaerobic Digestion of Biowastes for Improved Biomethane Production: A Review
by Sahil Sahil and Sonil Nanda
Sustainability 2025, 17(14), 6553; https://doi.org/10.3390/su17146553 - 17 Jul 2025
Viewed by 555
Abstract
Anaerobic digestion is a widely adopted technique for biologically converting organic biomass to biogas under oxygen-limited conditions. However, several factors, including the properties of biomass and its complex structure, make it challenging to degrade biomass effectively, thereby reducing the overall efficiency of anaerobic [...] Read more.
Anaerobic digestion is a widely adopted technique for biologically converting organic biomass to biogas under oxygen-limited conditions. However, several factors, including the properties of biomass and its complex structure, make it challenging to degrade biomass effectively, thereby reducing the overall efficiency of anaerobic digestion. This review examines the recent advancements in commonly used pretreatment techniques, including physical, chemical, and biological methods, and their impact on the biodegradability of organic waste for anaerobic digestion. Furthermore, this review explores integrated approaches that utilize two or more pretreatments to achieve synergistic effects on biomass degradation. This article highlights various additives and their physicochemical characteristics, which play a vital role in stimulating direct interspecies electron transfer to enhance biomethanation reaction rates. Direct electron interspecies transfer is a crucial aspect that accelerates electron transfer among syntrophic microbial communities during anaerobic digestion, thereby enhancing biomethane formation. Finally, this article reviews potential approaches, identifies research gaps, and outlines future directions to strengthen and develop advanced pretreatment strategies and novel additives to improve anaerobic digestion processes for generating high-value biogas. Full article
Show Figures

Figure 1

21 pages, 1929 KiB  
Review
Antimicrobial Compounds from Anaerobic Microorganisms: A Review of an Untapped Reservoir
by Mamta Mishra, Upasana Sharma, Manisha Rawat, Harshvardhan, Shelley Sardul Singh and Suresh Korpole
Appl. Microbiol. 2025, 5(3), 68; https://doi.org/10.3390/applmicrobiol5030068 - 15 Jul 2025
Viewed by 392
Abstract
Anaerobes, the oldest evolutionary life forms, have been unexplored for their potential to produce secondary metabolites due to the difficulties observed in their cultivation. Antimicrobials derived from anaerobic bacteria are an emerging and valuable source of novel therapeutic agents. The urgent need for [...] Read more.
Anaerobes, the oldest evolutionary life forms, have been unexplored for their potential to produce secondary metabolites due to the difficulties observed in their cultivation. Antimicrobials derived from anaerobic bacteria are an emerging and valuable source of novel therapeutic agents. The urgent need for new antimicrobial agents due to rising antibiotic resistance has prompted an investigation into anaerobic bacteria. The conventional method of antimicrobial discovery is based on cultivation and extraction methods. Antibacterial and antifungal substances are produced by anaerobic bacteria, but reports are limited due to oxygen-deficient growth requirements. The genome mining approach revealed the presence of biosynthetic gene clusters involved in various antimicrobial compound synthesis. Thus, the current review is focused on antimicrobials derived from anaerobes to unravel the potential of anaerobic bacteria as an emerging valuable source of therapeutic agents. These substances frequently consist of peptides, lipopeptides, and other secondary metabolites. Many of these antimicrobials have distinct modes of action that may be able to go around established resistance pathways. To this effect, we discuss diverse antimicrobial compounds produced by anaerobic bacteria, their biosynthesis, heterologous production, and activity. The findings suggest that anaerobic bacteria harbor significant biosynthetic potential, warranting further exploration through recombinant production for developing new antibiotics. Full article
Show Figures

Graphical abstract

14 pages, 6959 KiB  
Article
Power–Cadence Relationships in Cycling: Building Models from a Limited Number of Data Points
by David M. Rouffet, Briar L. Rudsits, Michael W. Daniels, Temi Ariyo and Christophe A. Hautier
Signals 2025, 6(3), 32; https://doi.org/10.3390/signals6030032 - 10 Jul 2025
Viewed by 611
Abstract
Accurate modeling of the power–cadence relationship is essential for assessing maximal anaerobic power (Pmax) of the lower limbs. Experimental data points from Force–Velocity tests during cycling do not always reflect the maximal and cadence-specific power individuals can produce. The quality of the models [...] Read more.
Accurate modeling of the power–cadence relationship is essential for assessing maximal anaerobic power (Pmax) of the lower limbs. Experimental data points from Force–Velocity tests during cycling do not always reflect the maximal and cadence-specific power individuals can produce. The quality of the models and the accuracy of Pmax estimation is potentially compromised by the inclusion of non-maximal data points. This study evaluated a novel residual-based filtering method that selects five strategically located, maximal data points to improve model fit and Pmax prediction. Twenty-three recreationally active male participants (age: 26 ± 5 years; height: 178 ± 5 cm; body mass: 73 ± 11 kg) completed a Force–Velocity test consisting of multiple maximal cycling efforts on a stationary ergometer. Power and cadence data were used to generate third-order polynomial models: from all data points (High Number, HN), from the highest power value in each 5-RPM interval (Moderate Number, MN), and from five selected data points (Low Number, LN). The LN model yielded the best goodness of fit (R2 = 0.995 ± 0.008; SEE = 29 ± 15 W), the most accurate estimates of experimentally measured peak power (mean absolute percentage error = 1.45%), and the highest Pmax values (1220 ± 168 W). Selecting a limited number of maximal data points improves the modeling of individual power–cadence relationships and Pmax assessment. Full article
Show Figures

Graphical abstract

26 pages, 1964 KiB  
Review
Food Waste Anaerobic Digestion Under High Organic Loading Rate: Inhibiting Factors, Mechanisms, and Mitigation Strategies
by Hong-Ming Wu, Xiang Li, Jia-Ning Chen, Yi-Juan Yan, Takuro Kobayashi, Yong Hu and Xueying Zhang
Processes 2025, 13(7), 2090; https://doi.org/10.3390/pr13072090 - 1 Jul 2025
Viewed by 450
Abstract
Anaerobic digestion (AD) for food waste (FW) treatment has faced many challenges, especially ammonia nitrogen, acid, and salinity inhibition at a high organic loading rate (OLR). Therefore, a systematic understanding of the issues arising during the FW AD process is a necessity under [...] Read more.
Anaerobic digestion (AD) for food waste (FW) treatment has faced many challenges, especially ammonia nitrogen, acid, and salinity inhibition at a high organic loading rate (OLR). Therefore, a systematic understanding of the issues arising during the FW AD process is a necessity under a high OLR (over 3 g-VS/L d). Primarily, in terms of ammonia nitrogen inhibition, ammonia ions inhibit methane synthesis enzymes, and free ammonia (FAN) contributes to the imbalance of microbial protons. Regulation strategies include substrate C/N ratio regulation, microbial domestication, and ammonia nitrogen removal. In addition, with regard to acid inhibition, including volatile fatty acid (VFA) and long-chain fatty acid (LCFA) accumulation, the elevated acid concentration can contribute to reactive oxygen species stress, and a solution to this includes the addition of alkaline agents and trace elements or the use of microbial electrochemical and biofortification technology and micro-aeration-based AD technology. Furthermore, in terms of salinity inhibition, high salinity can result in a rapid increase in cell osmotic pressure, which can cause cell rupture, and water washing and bio-electrochemical AD are defined as solutions. Future research directions are proposed, mainly in terms of avoiding the introduction of novel containments into these regulation strategies and applying them in large-scale AD plants under a high OLR. Full article
Show Figures

Graphical abstract

20 pages, 4816 KiB  
Article
Exploring the Structural Design, Antibacterial Activity, and Molecular Docking of Newly Synthesized Zn(II) Complexes with NNO-Donor Carbazate Ligands
by Claudia C. Gatto, Daniel J. de Siqueira, Eduardo de A. Duarte, Érica C. M. Nascimento, João B. L. Martins, Mariana B. Santiago, Nagela B. S. Silva and Carlos H. G. Martins
Molecules 2025, 30(13), 2822; https://doi.org/10.3390/molecules30132822 - 30 Jun 2025
Viewed by 400
Abstract
The present work reports the synthesis and structural design of three novel Zn(II) complexes [Zn(L1)(CH3COO)(H2O)] (1), [Zn(L2)2] (2), and [Zn(L3)2] (3) with carbazate ligands, 2-acetylpyridine-methylcarbazate (HL1), 2-acetylpyridine-ethylcarbazate [...] Read more.
The present work reports the synthesis and structural design of three novel Zn(II) complexes [Zn(L1)(CH3COO)(H2O)] (1), [Zn(L2)2] (2), and [Zn(L3)2] (3) with carbazate ligands, 2-acetylpyridine-methylcarbazate (HL1), 2-acetylpyridine-ethylcarbazate (HL2), and 2-acetylpyridine-benzylcarbazate (HL3). All compounds were characterized by spectroscopic methods, and the crystal structures of the complexes were elucidated by single-crystal X-ray. Based on the analysis, distorted square pyramid geometry is suggested for complex (1) and an octahedral geometry is suggested for complexes (2) and (3) with the ligands exhibiting an NNO-donor system. The 3D Hirshfeld surface and the 2D fingerprint plot were used to study the non-covalent interactions in the crystal structures. The in vitro antibacterial investigation of the free ligands and their complexes was performed against different strains of periodontopathogen bacteria. The Zn(II) complexes showed more potent antibacterial activity than the free ligand. Molecular docking studies showed the metal complexes as promising candidates for further therapeutic exploration, particularly in targeting the ATP-binding cassette transporter with peptidase domain of the cariogenic bacteria S. mutans (PDB code 5XE9) and the prolyl tripeptidyl aminopeptidase from P. gingivalis anaerobic bacteria (PDB code 2EEP) inhibition. Full article
Show Figures

Graphical abstract

16 pages, 1110 KiB  
Article
Sustainable Treatment of High-Ammonia-Nitrogen Organic Wastewater via Anaerobic Ammonium Oxidation (Anammox) Combined with Effluent Recirculation/Micro-Aeration
by Zichun Yan, Rong Zeng and Hao Yang
Sustainability 2025, 17(13), 5926; https://doi.org/10.3390/su17135926 - 27 Jun 2025
Viewed by 326
Abstract
High-ammonia-nitrogen organic wastewater poses significant challenges to traditional nitrogen removal processes due to their high energy consumption and carbon dependency, conflicting with global sustainability goals. Anammox presents a sustainable alternative with lower energy demands, yet its application is constrained by organic matter inhibition. [...] Read more.
High-ammonia-nitrogen organic wastewater poses significant challenges to traditional nitrogen removal processes due to their high energy consumption and carbon dependency, conflicting with global sustainability goals. Anammox presents a sustainable alternative with lower energy demands, yet its application is constrained by organic matter inhibition. This study aimed to optimize nitrogen and organic matter removal in Anammox systems by comparing two strategies: effluent recirculation and micro-aeration. Anammox reactors were operated under three conditions: (1) no recirculation (control group), (2) 100–300% effluent recirculation, (3) micro-aeration at 50–150 mL/min. The effects on total nitrogen (TN) and chemical oxygen demand (COD) removal were evaluated, alongside microbial community analysis via high-throughput sequencing. The results show that micro-aeration at 100 mL/min achieved 78.9% COD and 88.3% TN removal by creating micro-anaerobic conditions for metabolic synergy. Excessive aeration (150 mL/min) inhibited Anammox, dropping TN removal to 49.7%. Recirculation enriched Planctomycetota, while micro-aeration slightly increased Planctomycetota abundance at 45 cm and enhanced Proteobacteria and Chloroflexi for denitrification. Optimal conditions—200% recirculation and 100 mL/min aeration—improve efficiency via dilution and synergistic metabolism, providing a novel comparative framework for treating high-ammonia-nitrogen organic wastewater and filling a research gap in the parallel evaluation of Anammox enhancement strategies. Full article
Show Figures

Figure 1

13 pages, 709 KiB  
Article
Electric-Field Nanobubble-Enhanced Progress in Anaerobic Digestion Unit Operations: Biogas Upgrading and Up- and Down-Stream Water and Sludge Treatment Operations
by Niall J. English
Nanomaterials 2025, 15(13), 968; https://doi.org/10.3390/nano15130968 - 22 Jun 2025
Viewed by 427
Abstract
An integrated approach is sorely needed to treat biogas emanating from anaerobic digesters (AD) which is cost-effective, in terms of upgrade/purification to ~95–98% methane needed for pipeline injection. This is a very pressing environmental and waste-management problem. At present, biogas water-/solvent-washing operations require [...] Read more.
An integrated approach is sorely needed to treat biogas emanating from anaerobic digesters (AD) which is cost-effective, in terms of upgrade/purification to ~95–98% methane needed for pipeline injection. This is a very pressing environmental and waste-management problem. At present, biogas water-/solvent-washing operations require significant capital investment, with high operational and maintenance costs. In the present study, we deployed a facile and efficient novel nanobubble-formation approach using applied electric fields to boost biogas-enrichment operations: we achieve substantial methane enrichment via selective CO2 and H2S take-up in water in the form of nanobubbles. This enables an integrated waste-processing vision using cutting-edge engineering-science advances, and making anaerobic digestion a circular-economic and practical reality, that can be deployed at scale—initially developing at the small scale—and points the way for low-energy CO2 capture in the form of nanobubbles by dint of the electric-field approach. In addition, we carried out nanobubble generation using various gases for water treatment for both up- and down-stream sludge-containing (waste)water, achieving meaningful operational successes in AD operations and organic-fertiliser production, respectively. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

27 pages, 2885 KiB  
Review
Proton-Sensing G Protein-Coupled Receptors and Their Potential Role in Exercise Regulation of Arterial Function
by Fengzhi Yu, Dandan Jia and Ru Wang
Biomolecules 2025, 15(6), 813; https://doi.org/10.3390/biom15060813 - 4 Jun 2025
Viewed by 828
Abstract
During periods of exercise, the primary cause of metabolic acidosis is the accumulation of lactate from anaerobic metabolism, whereas a transient increase in CO2 triggers a mild respiratory acidosis through the production of carbonic acid (H2CO3). The combined [...] Read more.
During periods of exercise, the primary cause of metabolic acidosis is the accumulation of lactate from anaerobic metabolism, whereas a transient increase in CO2 triggers a mild respiratory acidosis through the production of carbonic acid (H2CO3). The combined effects of these reactions result in a slight acidifying shift in arterial blood pH. Proton-sensing G protein-coupled receptors (including GPR68, GPR4, GPR132, and GPR65) represent the primary receptors within the body for detecting alterations in extracellular proton concentrations. These receptors have been demonstrated to possess potential roles in mechanosensation, intestinal inflammation, oncoimmunological interactions, hematopoiesis, as well as inflammatory and neuropathic pain. Recent studies have shown that the activation or inhibition of these receptors modulates a number of arterial functions, including angiogenesis, arterial relaxation, and arterial inflammation. It is well established that moderate exercise has a beneficial effect on the regulation of arterial function. This study examines the effect of exercise on proton concentrations in the microenvironment of the organism and its influence on proton-sensing G protein-coupled receptors located on cell membranes, as well as possible mechanisms involved in the regulation of arterial function. The objective is to present novel perspectives for the exploration of potential drug targets for the prevention and treatment of arterial dysfunction and the development of exercise regimens. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

19 pages, 4294 KiB  
Article
Fermentation Products Originated from Bacillus subtilis Promote Hepatic–Intestinal Health in Largemouth Bass, Micropterus salmoides
by Kaifang Liu, Shubin Liu, Dexiang Feng, Pengwei Xun, Hanjun Jiang, Yanwei Zhang, Gaoliang Yuan and Xusheng Guo
Biology 2025, 14(6), 646; https://doi.org/10.3390/biology14060646 - 2 Jun 2025
Viewed by 618
Abstract
The fermentation product FP-WeiGuangSu is regarded as a novel, green and efficient antibiotic substitute. Such products constitute one of the principal strategies for addressing bacterial diseases in aquaculture in the future. This study investigates the effects of FPs derived from Bacillus subtilis on [...] Read more.
The fermentation product FP-WeiGuangSu is regarded as a novel, green and efficient antibiotic substitute. Such products constitute one of the principal strategies for addressing bacterial diseases in aquaculture in the future. This study investigates the effects of FPs derived from Bacillus subtilis on the antioxidant capacity and gut microbiota of Largemouth Bass (Micropterus salmoides). Experimental diets containing 0, 1%, 3% and 5% FPs (Control, H1, H2 and H3) were fed to M. salmoides. Although short-term administration of FPs exerted no significant influence on the growth performance of Largemouth Bass, serological findings demonstrated that supplementation with FPs decreased the contents of the liver injury markers ALT, AST and AKP, along with liver MDA content, and enhanced antioxidant capacity (SOD, CAT and GSH-px). Notably, the addition of 1% FPs significantly improved the systemic antioxidant performance (SOD, CAT, GSH-px and T-AOC). Moreover, the FP supplementation increased the expression levels of il-10 and IgM, and lipolysis-related genes. The results of gut microbiota analysis revealed that FPs significantly altered the diversity and structure of gut microbiota. The LEfSe results indicated that the microbial marker of the control group was Cetobacterium, those of the H1 group were Bacillus and Mycoplasma, those of the H2 group were Acinetobacter, Paenibacillus and g_unclassified_Rhizobiaceae, and that of the H3 group was Enterococcus. The most significant microbial marker upon the addition of FPs was Paenibacillus, and the pathways for biosynthesis of secondary metabolites, biosynthesis of antibiotics, and biosynthesis of amino acids were significantly activated. The Bugbase analysis results suggested that, compared with the control group, the abundance of anaerobic bacteria in the FP group decreased, while the abundance of microorganisms with mobile-element-containing and oxidative-stress-tolerant phenotypes increased. Hence, this study demonstrated that 1–3% FP dietary supplementation can be used to enhance antioxidant ability, and liver and intestine health of M. salmoides in the aquaculture industry and can be regarded as a promising feed additive in aquaculture. Full article
Show Figures

Figure 1

24 pages, 1984 KiB  
Article
Recent Developments, Challenges, and Environmental Benefits of Using Hermetia illucens for Bioenergy Production Within a Circular Economy Approach
by Luana Bataglia, Antonio Conversano, Daniele Di Bona, Davide Sogni, Diego Voccia, Emanuele Mazzoni and Lucrezia Lamastra
Energies 2025, 18(11), 2826; https://doi.org/10.3390/en18112826 - 29 May 2025
Viewed by 754
Abstract
This study proposes a novel integrated biorefinery approach that combines Hermetia illucens (Black Soldier Fly) larvae treatment, anaerobic digestion (AD), and hydrothermal carbonization (HTC) to enhance the valorisation of fat-rich food residues. The process was designed to improve biogas yields while mitigating the [...] Read more.
This study proposes a novel integrated biorefinery approach that combines Hermetia illucens (Black Soldier Fly) larvae treatment, anaerobic digestion (AD), and hydrothermal carbonization (HTC) to enhance the valorisation of fat-rich food residues. The process was designed to improve biogas yields while mitigating the inhibitory effects of lipid accumulation in AD systems. Results from larval bioconversion showed effective fat removal and a promising potential for protein and biomass valorisation. Downstream integration with AD and HTC enabled thermal self-sufficiency, enhanced energy recovery, and improved digestate dewaterability. Additionally, HTC process water recirculation to the AD unit was evaluated, considering its acidic nature and impact on biomethane production. A thermally integrated process flow was proposed, enabling efficient heat exchange and reduced external energy input. The overall system allows for multi-product recovery—including biogas, hydrochar, and larval biomass—offering a sustainable pathway for circular bioeconomy applications. This study illustrates the feasibility of a synergetic process chain that maximises energy recovery and resource efficiency from food industry waste streams. Full article
Show Figures

Figure 1

13 pages, 1061 KiB  
Article
Lactiplantibacillus plantarum S1 as a Novel Dual-Functional Probiotic Strain for High-Efficiency Organoselenium Biotransformation in Functional Food Development
by Lin Yuan, Jianfeng Yuan, Chen Gao, Haoming Zhao, Chengye Wu and Zhong-Hua Yang
Foods 2025, 14(11), 1851; https://doi.org/10.3390/foods14111851 - 22 May 2025
Viewed by 621
Abstract
The microbial conversion of inorganic Se into bioactive organoselenium compounds represents a cutting-edge strategy for developing functional foods with enhanced nutritional value. This study introduces Lactiplantibacillus plantarum S1, a novel Se-enriched probiotic strain isolated from traditional Chinese sauerkraut, and systematically optimizes its capacity [...] Read more.
The microbial conversion of inorganic Se into bioactive organoselenium compounds represents a cutting-edge strategy for developing functional foods with enhanced nutritional value. This study introduces Lactiplantibacillus plantarum S1, a novel Se-enriched probiotic strain isolated from traditional Chinese sauerkraut, and systematically optimizes its capacity for selenite biotransformation. Critical fermentation parameters—including sodium selenite supplementation timing (2 μg/mL added at mid-log phase, 7 h post-inoculation), pH (5.0), and anaerobic cultivation duration (12 h)—were identified as key determinants of conversion efficiency. The optimized protocol achieved a 72.3% organoselenium conversion yield, producing 626.6 μg/g cellular organoselenium while maintaining probiotic viability (2.28 × 109 CFU/mL). Se speciation analysis demonstrated that 78.51% of intracellular Se existed in organic forms, with protein-bound Se constituting the predominant fraction (85.33%), followed by polysaccharide-associated (6.42%) and nucleic acid-linked (3.38%) species. The strain’s dual functionality as both an efficient Se bioconverter and a resilient probiotic carrier highlights its potential for nutraceutical applications. These findings not only establish a robust bioprocess for Se-enriched probiotic production but also reveal mechanistic insights into preferential Se incorporation into protein matrices. This work bridges microbial Se metabolism research with scalable functional food innovation, offering a sustainable platform for developing Se-fortified products with dual health benefits. Full article
Show Figures

Figure 1

21 pages, 3387 KiB  
Review
Pan-Genomic Insights into Rumen Microbiome-Mediated Short-Chain Fatty Acid Production and Regulation in Ruminants
by Jingyi Shi, Hongren Su, Shichun He, Sifan Dai, Huaming Mao and Dongwang Wu
Microorganisms 2025, 13(6), 1175; https://doi.org/10.3390/microorganisms13061175 - 22 May 2025
Viewed by 748
Abstract
The rumen microbiome represents a cornerstone of ruminant digestive physiology, orchestrating the anaerobic fermentation of plant biomass into short-chain fatty acids (SCFAs)—critical metabolites underpinning host energy metabolism, immune function, and environmental sustainability. This comprehensive review evaluates the transformative role of pan-genomics in deciphering [...] Read more.
The rumen microbiome represents a cornerstone of ruminant digestive physiology, orchestrating the anaerobic fermentation of plant biomass into short-chain fatty acids (SCFAs)—critical metabolites underpinning host energy metabolism, immune function, and environmental sustainability. This comprehensive review evaluates the transformative role of pan-genomics in deciphering the genetic and metabolic networks governing SCFA production in the rumen ecosystem. By integrating multi-omics datasets, pan-genomic approaches unveil unprecedented layers of microbial diversity, enabling precise identification of core functional genes and their dynamic contributions to carbohydrate degradation and SCFA biosynthesis. Notable advancements include the following: mechanistic insights into microbial community assembly and metabolic pathway regulation, highlighting strain-specific adaptations to dietary shifts; precision interventions for optimizing feed efficiency, such as rationally designing microbial consortia and screening novel feed additives through pan-genome association studies; and sustainability breakthroughs, demonstrating how targeted modulation of rumen fermentation can simultaneously enhance production efficiency and mitigate methane emissions. This synthesis underscores the potential of pan-genomics to revolutionize ruminant nutrition, offering a blueprint for developing next-generation strategies that reconcile agricultural productivity with environmental stewardship. The translational applications discussed herein position pan-genomics as a critical tool for advancing animal science and fostering a resilient livestock industry. Full article
(This article belongs to the Special Issue Genomics Approaches in Microbial Ecology)
Show Figures

Figure 1

Back to TopTop