Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,328)

Search Parameters:
Keywords = normal vector

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5100 KiB  
Article
An Improved PCA and Jacobian-Enhanced Whale Optimization Collaborative Method for Point Cloud Registration
by Haiman Chu, Jingjing Fan, Zai Luo, Yinbao Cheng, Yingqi Tang and Yaru Li
Photonics 2025, 12(8), 823; https://doi.org/10.3390/photonics12080823 - 19 Aug 2025
Abstract
Scanned data often contain substantial outliers due to environmental interference, which drastically decreases the performance of traditional registration algorithms. To address this issue, this article proposes an improved principal component analysis (PCA) and Jacobian-enhanced whale optimization collaborative method for point cloud registration. First, [...] Read more.
Scanned data often contain substantial outliers due to environmental interference, which drastically decreases the performance of traditional registration algorithms. To address this issue, this article proposes an improved principal component analysis (PCA) and Jacobian-enhanced whale optimization collaborative method for point cloud registration. First, an improved PCA point cloud initial registration algorithm is proposed by introducing the normal vector local information to set the screening conditions. This algorithm can streamline the original set of 48 candidate rotation matrices down to 4, achieving rapid point cloud registration at the data level between the scanned and model point clouds. Second, a Jacobian whale optimization algorithm for fine registration (JWOA-FR) is proposed by incorporating local gradient information. The algorithm employs gradient descent on optimal whale individuals to dynamically guide global search updates, thereby enhancing both registration accuracy and efficiency. Finally, a threshold is set to remove the outliers contained in the workpieces based on the information of the matched point pairs. The iterative closest point (ICP) algorithm is further used to improve registration accuracy for data without outliers. The experimental results showed that registration errors of large workpieces 1, 2, and 3 were 2.0755 mm, 2.3955 mm, and 2.5823 mm, respectively, after outlier removal, which indicates that the proposed method is applicable to data with outliers, and the registration accuracy meets the requirements. Full article
(This article belongs to the Special Issue Advancements in Optics and Laser Measurement)
22 pages, 4931 KiB  
Article
Advanced Cybersecurity Framework for Detecting Fake Data Using Optimized Feature Selection and Stacked Ensemble Learning
by Abrar M. Alajlan
Electronics 2025, 14(16), 3275; https://doi.org/10.3390/electronics14163275 - 18 Aug 2025
Abstract
As smart cities continue to generate vast quantities of data, data integrity is increasingly threatened by instances of fraud. Anomalous or fake data deteriorate the process and have impacts on decision-making systems and predictive analytics. Hence, an effective and intelligent fake data detection [...] Read more.
As smart cities continue to generate vast quantities of data, data integrity is increasingly threatened by instances of fraud. Anomalous or fake data deteriorate the process and have impacts on decision-making systems and predictive analytics. Hence, an effective and intelligent fake data detection model was designed by combining an advanced feature selection method with a robust ensemble classification framework. Initially, the raw data are eliminated by performing normalization, feature transformation, and noise filtering that enhances the reliability of the model. The dimensionality issues are mitigated by eliminating redundant features via the proposed Elite Tuning Strategy-Enhanced Polar Bear Optimization algorithm. It simulates the hunting behavior of polar bears, balancing exploration and exploitation features. The proposed Stacking Ensemble-based Random AdaBoost Quadratic Discriminant model leverages the merits of diverse base learners, including AdaBoost, Quadratic Discriminant Analysis, and Random Forest, that classify the feature subset and the integration of prediction processes with a meta-feature vector-processed meta-classifier such as a multilayer perceptron or logistic regression model that predicts the final outcome. This hierarchical architecture validates resilience against noise and improves generalization and prediction accuracy. Thus, the experimental results show that the proposed method outperforms existing approaches in terms of accuracy, precision, and latency, yielding values of 98.78%, 98.75%, and 16 ms, respectively, using the UNSW-NB15 dataset. Full article
Show Figures

Figure 1

22 pages, 3221 KiB  
Article
Exploring NDVI Responses to Regional Climate Change by Leveraging Interpretable Machine Learning: A Case Study of Chengdu City in Southwest China
by Ying Xiang, Guirong Hou, Junjie Li, Yidan Zhang, Jie Lu, Zhexiu Yu, Fabao Niu and Hanqing Yang
Atmosphere 2025, 16(8), 974; https://doi.org/10.3390/atmos16080974 - 17 Aug 2025
Viewed by 74
Abstract
Regional extreme climate change remains a major environmental issue of global concern. However, in the context of the joint effects of urban expansion and the urban ecological environment, the responses of the normalized difference vegetation index (NDVI) to regional climate change and its [...] Read more.
Regional extreme climate change remains a major environmental issue of global concern. However, in the context of the joint effects of urban expansion and the urban ecological environment, the responses of the normalized difference vegetation index (NDVI) to regional climate change and its driving mechanism remain unclear. This study takes Chengdu as an example, selects the air temperature (Ta), precipitation (P), wind speed (WS), and soil water content (SWC) within the period from 2001 to 2023 as influencing factors, and uses Theil-Sen median trend analysis and interpretable machine learning models (random forest (RF), BP neural network, support vector machine (SVM), and extreme gradient boosting (XG-Boost) models). The average absolute value of Shapley additive explanations (SHAPs) is adopted as an indicator to explore the key mechanism driving regional climate change in Chengdu in terms of NDVI changes. The analysis results reveal that the NDVI exhibited an extremely significant increasing trend during the study period (p = 8.6 × 10−6 < 0.001), and that precipitation showed a significant increasing trend (p = 1.2 × 10−4 < 0.001); however, the air temperature, wind speed, and soil-relative volumetric water content all showed insignificant increasing trends. A simulation of interpretable machine learning models revealed that the random forest (RF) model performed exceptionally well in terms of simulating the dynamics of the urban NDVI (R2 = 0.746), indicating that the RF model has an excellent ability to capture the complex ecological interactions of a city without prior assumptions. The dependence relationship between the simulation results and the main driving factors indicates that the Ta and P are the main factors affecting the NDVI changes. In contrast, the SWC and WS had relatively small influences on the NDVI changes. The prediction analysis results reveal that a monthly average temperature of 25 °C and a monthly average precipitation of approximately 130 mm are conducive to the stability of the NDVI in the study area. This study provides a reference for exploring the responses of NDVI changes to regional climate change in the context of urban expansion and urban ecological construction. Full article
(This article belongs to the Special Issue Vegetation–Atmosphere Interactions in a Changing Climate)
Show Figures

Figure 1

31 pages, 9665 KiB  
Article
Motor Airgap Torque Harmonics Due to Cascaded H-Bridge Inverter Operating with Failed Cells
by Hamid Hamza, Ideal Oscar Libouga, Pascal M. Lingom, Joseph Song-Manguelle and Mamadou Lamine Doumbia
Energies 2025, 18(16), 4286; https://doi.org/10.3390/en18164286 - 12 Aug 2025
Viewed by 238
Abstract
This paper proposes the expressions for the motor airgap torque harmonics induced by a cascaded H-bridge inverter operating with failed cells. These variable frequency drive systems (VFDs), are widely used in oil and gas applications, where a torsional vibration evaluation is a critical [...] Read more.
This paper proposes the expressions for the motor airgap torque harmonics induced by a cascaded H-bridge inverter operating with failed cells. These variable frequency drive systems (VFDs), are widely used in oil and gas applications, where a torsional vibration evaluation is a critical challenge for field engineers. This paper proposes mathematical expressions that are crucial for an accurate torsional analysis during the design stage of VFDs, as required by international standards such as API 617, API 672, etc. By accurately reconstructing the electromagnetic torque from the stator voltages and currents in the (αβ0) reference frame, the obtained expressions enable the precise prediction of the exact locations of torque harmonics induced by the inverter under various real-world operating conditions, without the need for installed torque sensors. The neutral-shifted and peak-reduction fault-tolerant control techniques are commonly adopted under faulty operation of these VFDs. However, their effects on the pulsating torques harmonics in machine air-gap remain uncovered. This paper fulfils this gap by conducting a detailed evaluation of spectral characteristics of these fault-tolerant methods. The theoretical analyses are supported by MATLAB/Simulink 2024 based offline simulation and Typhoon based virtual real-time simulation results performed on a (4.16 kV and 7 MW) vector-controlled induction motor fed by a 7-level cascaded H-bridge inverter. According to the theoretical analyses- and simulation results, the Neutral-shifted and Peak-reduction approaches rebalance the motor input line-to-line voltages in the event of an inverter’s failed cells but, in contrast to the normal mode the carrier, all the triplen harmonics are no longer suppressed in the differential voltage and current spectra due to inequal magnitudes in the phase voltages. These additional current harmonics induce extra airgap torque components that can excite the lowly damped eigenmodes of the mechanical shaft found in the oil and gas applications and shut down the power conversion system due torsional vibrations. Full article
Show Figures

Figure 1

24 pages, 14429 KiB  
Article
Full-Field Dynamic Parameters and Tension Identification of Stayed Cables Using a Novel Holographic Vision-Based Method
by Shuai Shao, Gang Liu, Zhongru Yu, Dongzhe Ren, Guojun Deng and Zhixiang Zhou
Sensors 2025, 25(16), 4891; https://doi.org/10.3390/s25164891 - 8 Aug 2025
Viewed by 172
Abstract
Due to the slender geometry and low-amplitude vibrations of stayed cables, existing vision-based methods often fail to accurately identify their full-field dynamic parameters, especially the higher-order modes. This paper proposes a novel holographic vision-based method to accurately identify the high-order full-field dynamic parameters [...] Read more.
Due to the slender geometry and low-amplitude vibrations of stayed cables, existing vision-based methods often fail to accurately identify their full-field dynamic parameters, especially the higher-order modes. This paper proposes a novel holographic vision-based method to accurately identify the high-order full-field dynamic parameters and estimate the tension of the stayed cables. Particularly, a full-field optical flow tracking algorithm is proposed to obtain the full-field dynamic displacement information of the stayed cable by tracking the changes in the optical flow field of the continuous motion signal spectral components of holographic feature points. Frequency-domain analysis is applied to extract the natural frequencies and damping ratios, and the vibration frequency method is used to estimate the tension. Additionally, an Eulerian-based amplification algorithm—holographic feature point video magnification (HFPVM)—is proposed for enhancing weak visual motion signals of the stayed cables, so that the morphological motion information of the stayed cables can be visualized. The effectiveness of the proposed method has been validated through experiments on the stayed cable models. Compared with the results obtained using contact sensors, the proposed holographic vision-based method can accurately identify the first five natural frequencies with overall errors below 5% and a maximum deviation of 6.86% in cable tension estimation. The first three normalized holographic mode shapes and dynamic displacement vectors are successfully identified, with the MAC value reaching up to 99.51%. This entirely non-contact vision-based method offers a convenient and low-cost approach for cable tension estimation, and this is also the first study to propose a comprehensive, visual, and quantifiable strategy for periodic or long-term monitoring of cable-supported structures, highlighting its strong potential in practical applications. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

22 pages, 639 KiB  
Article
Variations on the Theme “Definition of the Orthodrome”
by Miljenko Lapaine
ISPRS Int. J. Geo-Inf. 2025, 14(8), 306; https://doi.org/10.3390/ijgi14080306 - 6 Aug 2025
Viewed by 233
Abstract
A geodesic or geodetic line on a sphere is called the orthodrome. Research has shown that the orthodrome can be defined in a large number of ways. This article provides an overview of various definitions of the orthodrome. We recall the definitions of [...] Read more.
A geodesic or geodetic line on a sphere is called the orthodrome. Research has shown that the orthodrome can be defined in a large number of ways. This article provides an overview of various definitions of the orthodrome. We recall the definitions of the orthodrome according to the greats of geodesy, such as Bessel and Helmert. We derive the equation of the orthodrome in the geographic coordinate system and in the Cartesian spatial coordinate system. A geodesic on a surface is a curve for which the geodetic curvature is zero at every point. Equivalent expressions of this statement are that at every point of this curve, the principal normal vector is collinear with the normal to the surface, i.e., it is a curve whose binormal at every point is perpendicular to the normal to the surface, and that it is a curve whose osculation plane contains the normal to the surface at every point. In this case, the well-known Clairaut equation of the geodesic in geodesy appears naturally. It is found that this equation can be written in several different forms. Although differential equations for geodesics can be found in the literature, they are solved in this article, first, by taking the sphere as a special case of any surface, and then as a special case of a surface of rotation. At the end of this article, we apply calculus of variations to determine the equation of the orthodrome on the sphere, first in the Bessel way, and then by applying the Euler–Lagrange equation. Overall, this paper elaborates a dozen different approaches to orthodrome definitions. Full article
Show Figures

Figure 1

19 pages, 1905 KiB  
Article
Fuzzy Frankot–Chellappa Algorithm for Surface Normal Integration
by Saeide Hajighasemi and Michael Breuß
Algorithms 2025, 18(8), 488; https://doi.org/10.3390/a18080488 - 6 Aug 2025
Viewed by 177
Abstract
In this paper, we propose a fuzzy formulation of the classic Frankot–Chellappa algorithm by which surfaces can be reconstructed using normal vectors. In the fuzzy formulation, the surface normal vectors may be uncertain or ambiguous, yielding a fuzzy Poisson partial differential equation that [...] Read more.
In this paper, we propose a fuzzy formulation of the classic Frankot–Chellappa algorithm by which surfaces can be reconstructed using normal vectors. In the fuzzy formulation, the surface normal vectors may be uncertain or ambiguous, yielding a fuzzy Poisson partial differential equation that requires appropriate definitions of fuzzy derivatives. The solution of the resulting fuzzy model is approached by adopting a fuzzy variant of the discrete sine transform, which results in a fast and robust algorithm for surface reconstruction. An adaptive defuzzification strategy is also introduced to improve noise handling in highly uncertain regions. In experiments, we demonstrate that our fuzzy Frankot–Chellappa algorithm achieves accuracy on par with the classic approach for smooth surfaces and offers improved robustness in the presence of noisy normal data. We also show that it can naturally handle missing data (such as gaps) in the normal field by filling them using neighboring information. Full article
(This article belongs to the Collection Feature Papers in Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

15 pages, 2415 KiB  
Article
HBiLD-IDS: An Efficient Hybrid BiLSTM-DNN Model for Real-Time Intrusion Detection in IoMT Networks
by Hamed Benahmed, Mohammed M’hamedi, Mohammed Merzoug, Mourad Hadjila, Amina Bekkouche, Abdelhak Etchiali and Saïd Mahmoudi
Information 2025, 16(8), 669; https://doi.org/10.3390/info16080669 - 6 Aug 2025
Viewed by 345
Abstract
The Internet of Medical Things (IoMT) is revolutionizing healthcare by enabling continuous patient monitoring, early diagnosis, and personalized treatments. However, the het-erogeneity of IoMT devices and the lack of standardized protocols introduce serious security vulnerabilities. To address these challenges, we propose a hybrid [...] Read more.
The Internet of Medical Things (IoMT) is revolutionizing healthcare by enabling continuous patient monitoring, early diagnosis, and personalized treatments. However, the het-erogeneity of IoMT devices and the lack of standardized protocols introduce serious security vulnerabilities. To address these challenges, we propose a hybrid BiLSTM-DNN intrusion detection system, named HBiLD-IDS, that combines Bidirectional Long Short-Term Memory (BiLSTM) networks with Deep Neural Networks (DNNs), leveraging both temporal dependencies in network traffic and hierarchical feature extraction. The model is trained and evaluated on the CICIoMT2024 dataset, which accurately reflects the diversity of devices and attack vectors encountered in connected healthcare environments. The dataset undergoes rigorous preprocessing, including data cleaning, feature selection through correlation analysis and recursive elimination, and feature normalization. Compared to existing IDS models, our approach significantly enhances detection accuracy and generalization capacity in the face of complex and evolving attack patterns. Experimental results show that the proposed IDS model achieves a classification accuracy of 98.81% across 19 attack types confirming its robustness and scalability. This approach represents a promising solution for strengthening the security posture of IoMT networks against emerging cyber threats. Full article
Show Figures

Figure 1

31 pages, 4141 KiB  
Article
Automated Quality Control of Candle Jars via Anomaly Detection Using OCSVM and CNN-Based Feature Extraction
by Azeddine Mjahad and Alfredo Rosado-Muñoz
Mathematics 2025, 13(15), 2507; https://doi.org/10.3390/math13152507 - 4 Aug 2025
Viewed by 340
Abstract
Automated quality control plays a critical role in modern industries, particularly in environments that handle large volumes of packaged products requiring fast, accurate, and consistent inspections. This work presents an anomaly detection system for candle jars commonly used in industrial and commercial applications, [...] Read more.
Automated quality control plays a critical role in modern industries, particularly in environments that handle large volumes of packaged products requiring fast, accurate, and consistent inspections. This work presents an anomaly detection system for candle jars commonly used in industrial and commercial applications, where obtaining labeled defective samples is challenging. Two anomaly detection strategies are explored: (1) a baseline model using convolutional neural networks (CNNs) as an end-to-end classifier and (2) a hybrid approach where features extracted by CNNs are fed into One-Class classification (OCC) algorithms, including One-Class SVM (OCSVM), One-Class Isolation Forest (OCIF), One-Class Local Outlier Factor (OCLOF), One-Class Elliptic Envelope (OCEE), One-Class Autoencoder (OCAutoencoder), and Support Vector Data Description (SVDD). Both strategies are trained primarily on non-defective samples, with only a limited number of anomalous examples used for evaluation. Experimental results show that both the pure CNN model and the hybrid methods achieve excellent classification performance. The end-to-end CNN reached 100% accuracy, precision, recall, F1-score, and AUC. The best-performing hybrid model CNN-based feature extraction followed by OCIF also achieved 100% across all evaluation metrics, confirming the effectiveness and robustness of the proposed approach. Other OCC algorithms consistently delivered strong results, with all metrics above 95%, indicating solid generalization from predominantly normal data. This approach demonstrates strong potential for quality inspection tasks in scenarios with scarce defective data. Its ability to generalize effectively from mostly normal samples makes it a practical and valuable solution for real-world industrial inspection systems. Future work will focus on optimizing real-time inference and exploring advanced feature extraction techniques to further enhance detection performance. Full article
Show Figures

Figure 1

23 pages, 2655 KiB  
Article
Ribosomal RNA-Specific Antisense DNA and Double-Stranded DNA Trigger rRNA Biogenesis and Insecticidal Effects on the Insect Pest Coccus hesperidum
by Vol Oberemok, Nikita Gal’chinsky, Ilya Novikov, Alexander Sharmagiy, Ekaterina Yatskova, Ekaterina Laikova and Yuri Plugatar
Int. J. Mol. Sci. 2025, 26(15), 7530; https://doi.org/10.3390/ijms26157530 - 4 Aug 2025
Viewed by 373
Abstract
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, [...] Read more.
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, which are key vectors of plant DNA viruses and among the most economically damaging herbivorous insects. To further explore the potential of CUADb, this study evaluated the insecticidal efficacy of short 11-mer antisense DNA oligos against Coccus hesperidum, in comparison with long 56-mer single-stranded and double-stranded DNA sequences. The short oligos exhibited higher insecticidal activity. By day 9, the highest mortality rate (97.66 ± 4.04%) was recorded in the Coccus-11 group, while the most effective long sequence was the double-stranded DNA in the dsCoccus-56 group (77.09 ± 6.24%). This study also describes the architecture of the DNA containment (DNAc) mechanism, highlighting the intricate interactions between rRNAs and various types of DNA oligos. During DNAc, the Coccus-11 treatment induced enhanced ribosome biogenesis and ATP production through a metabolic shift from carbohydrates to lipid-based energy synthesis. However, this ultimately led to a ‘kinase disaster’ due to widespread kinase downregulation resulting from insufficient ATP levels. All DNA oligos with high or moderate complementarity to target rRNA initiated hypercompensation, but subsequent substantial rRNA degradation and insect mortality occurred only when the oligo sequence perfectly matched the rRNA. Both short and long oligonucleotide insecticide treatments led to a 3.75–4.25-fold decrease in rRNA levels following hypercompensation, which was likely mediated by a DNA-guided rRNase, such as RNase H1, while crucial enzymes of RNAi (DICER1, Argonaute 2, and DROSHA) were downregulated, indicating fundamental difference in molecular mechanisms of DNAc and RNAi. Consistently, significant upregulation of RNase H1 was detected in the Coccus-11 treatment group. In contrast, treatment with random DNA oligos resulted in only a 2–3-fold rRNA decrease, consistent with the normal rRNA half-life maintained by general ribonucleases. These findings reveal a fundamental new mechanism of rRNA regulation via complementary binding between exogenous unmodified antisense DNA and cellular rRNA. From a practical perspective, this minimalist approach, applying short antisense DNA dissolved in water, offers an effective, eco-friendly and innovative solution for managing sternorrhynchans and other insect pests. The results introduce a promising new concept in crop protection: DNA-programmable insect pest control. Full article
(This article belongs to the Special Issue New Insights into Plant and Insect Interactions (Second Edition))
Show Figures

Figure 1

25 pages, 6507 KiB  
Article
Sustainable Urban Heat Island Mitigation Through Machine Learning: Integrating Physical and Social Determinants for Evidence-Based Urban Policy
by Amatul Quadeer Syeda, Krystel K. Castillo-Villar and Adel Alaeddini
Sustainability 2025, 17(15), 7040; https://doi.org/10.3390/su17157040 - 3 Aug 2025
Viewed by 577
Abstract
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to [...] Read more.
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to UHI mitigation by integrating Machine Learning (ML) with physical and socio-demographic data for sustainable urban planning. Using high-resolution spatial data across five functional zones (residential, commercial, industrial, official, and downtown), we apply three ML models, Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosting Machine (GBM), to predict land surface temperature (LST). The models incorporate both environmental variables, such as imperviousness, Normalized Difference Vegetation Index (NDVI), building area, and solar influx, and social determinants, such as population density, income, education, and age distribution. SVM achieved the highest R2 (0.870), while RF yielded the lowest RMSE (0.488 °C), confirming robust predictive performance. Key predictors of elevated LST included imperviousness, building area, solar influx, and NDVI. Our results underscore the need for zone-specific strategies like more greenery, less impervious cover, and improved building design. These findings offer actionable insights for urban planners and policymakers seeking to develop equitable and sustainable UHI mitigation strategies aligned with climate adaptation and environmental justice goals. Full article
Show Figures

Figure 1

19 pages, 1107 KiB  
Article
A Novel Harmonic Clocking Scheme for Concurrent N-Path Reception in Wireless and GNSS Applications
by Dina Ibrahim, Mohamed Helaoui, Naser El-Sheimy and Fadhel Ghannouchi
Electronics 2025, 14(15), 3091; https://doi.org/10.3390/electronics14153091 - 1 Aug 2025
Viewed by 348
Abstract
This paper presents a novel harmonic-selective clocking scheme that facilitates concurrent downconversion of spectrally distant radio frequency (RF) signals using a single low-frequency local oscillator (LO) in an N-path receiver architecture. The proposed scheme selectively generates LO harmonics aligned with multiple RF bands, [...] Read more.
This paper presents a novel harmonic-selective clocking scheme that facilitates concurrent downconversion of spectrally distant radio frequency (RF) signals using a single low-frequency local oscillator (LO) in an N-path receiver architecture. The proposed scheme selectively generates LO harmonics aligned with multiple RF bands, enabling simultaneous downconversion without modification of the passive mixer topology. The receiver employs a 4-path passive mixer configuration to enhance harmonic selectivity and provide flexible frequency planning.The architecture is implemented on a printed circuit board (PCB) and validated through comprehensive simulation and experimental measurements under continuous wave and modulated signal conditions. Measured results demonstrate a sensitivity of 55dBm and a conversion gain varying from 2.5dB to 9dB depending on the selected harmonic pair. The receiver’s performance is further corroborated by concurrent (dual band) reception of real-world signals, including a GPS signal centered at 1575 MHz and an LTE signal at 1179 MHz, both downconverted using a single 393 MHz LO. Signal fidelity is assessed via Normalized Mean Square Error (NMSE) and Error Vector Magnitude (EVM), confirming the proposed architecture’s effectiveness in maintaining high-quality signal reception under concurrent multiband operation. The results highlight the potential of harmonic-selective clocking to simplify multiband receiver design for wireless communication and global navigation satellite system (GNSS) applications. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

15 pages, 1899 KiB  
Article
Heterologous Watermelon HSP17.4 Expression Confers Improved Heat Tolerance to Arabidopsis thaliana
by Yajie Hong, Yurui Li, Jing Chen, Nailin Xing, Wona Ding, Lili Chen, Yunping Huang, Qiuping Li and Kaixing Lu
Curr. Issues Mol. Biol. 2025, 47(8), 606; https://doi.org/10.3390/cimb47080606 - 1 Aug 2025
Viewed by 229
Abstract
Members of the heat shock protein 20 (HSP20) family of proteins play an important role in responding to various forms of stress. Here, the expression of ClaHSP17.4 was induced by heat stress in watermelon. Then, a floral dipping approach was used to introduce [...] Read more.
Members of the heat shock protein 20 (HSP20) family of proteins play an important role in responding to various forms of stress. Here, the expression of ClaHSP17.4 was induced by heat stress in watermelon. Then, a floral dipping approach was used to introduce the pCAMBIA1391b-GFP overexpression vector encoding the heat tolerance-related gene ClaHSP17.4 from watermelon into Arabidopsis thaliana, and we obtained ClaHSP17.4-overexpressing Arabidopsis plants. Under normal conditions, the phenotypes of transgenic and wild-type (WT) Arabidopsis plants were largely similar. Following exposure to heat stress, however, the germination rates (96%) of transgenic Arabidopsis plants at the germination stages were significantly higher than those of wild-type idopsis (17%). Specifically, the malondialdehyde (MDA) content of transgenic Arabidopsis was half that of the control group, while the activities of peroxidase (POD) and superoxide dismutase (SOD) were 1.25 times those of the control group after exposure to high temperatures for 12 h at the seedling stages. The proline content in ClaHSP17.4-overexpressing transgenic Arabidopsis increased by 17% compared to WT plants (* p < 0.05), while the soluble sugar content rose by 37% (* p < 0.05). These results suggest that ClaHSP17.4 overexpression indirectly improves the antioxidant capacity and osmotic regulatory capacity of Arabidopsis seedlings, leading to improved survival and greater heat tolerance. Meanwhile, the results of this study provide a reference for further research on the function of the ClHSP17.4 gene and lay a foundation for breeding heat-tolerant watermelon varieties and advancing our understanding of plant adaptation to environmental stress. Full article
Show Figures

Figure 1

26 pages, 8762 KiB  
Article
Clustered Rainfall-Induced Landslides in Jiangwan Town, Guangdong, China During April 2024: Characteristics and Controlling Factors
by Ruizeng Wei, Yunfeng Shan, Lei Wang, Dawei Peng, Ge Qu, Jiasong Qin, Guoqing He, Luzhen Fan and Weile Li
Remote Sens. 2025, 17(15), 2635; https://doi.org/10.3390/rs17152635 - 29 Jul 2025
Viewed by 312
Abstract
On 20 April 2024, an extreme rainfall event occurred in Jiangwan Town Shaoguan City, Guangdong Province, China, where a historic 24 h precipitation of 206 mm was recorded. This triggered extensive landslides that destroyed residential buildings, severed roads, and drew significant societal attention. [...] Read more.
On 20 April 2024, an extreme rainfall event occurred in Jiangwan Town Shaoguan City, Guangdong Province, China, where a historic 24 h precipitation of 206 mm was recorded. This triggered extensive landslides that destroyed residential buildings, severed roads, and drew significant societal attention. Rapid acquisition of landslide inventories, distribution patterns, and key controlling factors is critical for post-disaster emergency response and reconstruction. Based on high-resolution Planet satellite imagery, landslide areas in Jiangwan Town were automatically extracted using the Normalized Difference Vegetation Index (NDVI) differential method, and a detailed landslide inventory was compiled. Combined with terrain, rainfall, and geological environmental factors, the spatial distribution and causes of landslides were analyzed. Results indicate that the extreme rainfall induced 1426 landslides with a total area of 4.56 km2, predominantly small-to-medium scale. Landslides exhibited pronounced clustering and linear distribution along river valleys in a NE–SW orientation. Spatial analysis revealed concentrations on slopes between 200–300 m elevation with gradients of 20–30°. Four machine learning models—Logistic Regression, Support Vector Machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost)—were employed to assess landslide susceptibility mapping (LSM) accuracy. RF and XGBoost demonstrated superior performance, identifying high-susceptibility zones primarily on valley-side slopes in Jiangwan Town. Shapley Additive Explanations (SHAP) value analysis quantified key drivers, highlighting elevation, rainfall intensity, profile curvature, and topographic wetness index as dominant controlling factors. This study provides an effective methodology and data support for rapid rainfall-induced landslide identification and deep learning-based susceptibility assessment. Full article
(This article belongs to the Special Issue Study on Hydrological Hazards Based on Multi-Source Remote Sensing)
Show Figures

Figure 1

25 pages, 2287 KiB  
Article
Quantitative Measurement of Hakka Phonetic Distances
by I-Ping Wan
Languages 2025, 10(8), 185; https://doi.org/10.3390/languages10080185 - 29 Jul 2025
Viewed by 260
Abstract
This study proposes a novel approach to measuring phonetic distances among six Hailu Hakka vowels ([i, e, ɨ, a, u, o]) by applying Euclidean distance-based calculations from both articulatory and acoustic perspectives. By analyzing articulatory feature values and acoustic formant structures, vowel distances [...] Read more.
This study proposes a novel approach to measuring phonetic distances among six Hailu Hakka vowels ([i, e, ɨ, a, u, o]) by applying Euclidean distance-based calculations from both articulatory and acoustic perspectives. By analyzing articulatory feature values and acoustic formant structures, vowel distances are systematically represented through linear vector arrangements. These measurements address ongoing debates regarding the central positioning of [ɨ], specifically whether it aligns more closely with front or back vowels and whether [a] or [ɑ] more accurately represents vowel articulation. This study also reassesses the validity of prior acoustic findings on Hailu Hakka vowels and evaluates the correspondence between articulatory normalization and acoustic formant-based models. Through the integration of articulatory and acoustic data, this research advances a replicable and theoretically grounded method for quantitative vowel analysis. The results not only refine phonetic classification within a Euclidean framework but also help resolve transcription inconsistencies in phonetic distance matrices. This study contributes to the growing field of quantitative phonetics by offering a systematic, multidimensional model applicable to both theoretical and experimental investigations of Taiwan Hailu Hakka. Full article
Show Figures

Figure 1

Back to TopTop