Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = normal incidence impedance tube

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1209 KiB  
Article
Sustainable Membrane-Based Acoustic Metamaterials Using Cork and Honeycomb Structures: Experimental and Numerical Characterization
by Giuseppe Ciaburro and Virginia Puyana-Romero
Buildings 2025, 15(15), 2763; https://doi.org/10.3390/buildings15152763 - 5 Aug 2025
Abstract
This work presents the experimental and numerical investigation of a novel acoustic metamaterial based on sustainable and biodegradable components: cork membranes and honeycomb cores made from treated aramid paper. The design exploits the principle of localized resonance induced by tensioned membranes coupled with [...] Read more.
This work presents the experimental and numerical investigation of a novel acoustic metamaterial based on sustainable and biodegradable components: cork membranes and honeycomb cores made from treated aramid paper. The design exploits the principle of localized resonance induced by tensioned membranes coupled with subwavelength cavities, aiming to achieve high sound absorption at low (250–500 Hz) and mid frequencies (500–1400 Hz) with minimal thickness and environmental impact. Three configurations were analyzed, varying the number of membranes (one, two, and three) while keeping a constant core structure composed of three stacked honeycomb layers. Acoustic performance was measured using an impedance tube (Kundt’s tube), focusing on the normal-incidence sound absorption coefficient in the frequency range of 250–1400 Hz. The results demonstrate that increasing the number of membranes introduces multiple resonances and broadens the effective absorption bandwidth. Numerical simulations were performed to predict pressure field distributions. The numerical model showed good agreement with the experimental data, validating the underlying physical model of coupled mass–spring resonators. The proposed metamaterial offers a low-cost, modular, and fully recyclable solution for indoor sound control, combining acoustic performance and environmental sustainability. These findings offer promising perspectives for the application of bio-based metamaterials in architecture and eco-design. Further developments will address durability, high-frequency absorption, and integration in hybrid soundproofing systems. Full article
Show Figures

Figure 1

16 pages, 6601 KiB  
Article
Theoretical Estimation Based on CT Images and Experiments on the Sound Absorption Coefficient of Foam Materials with Removed Membrane
by Shuichi Sakamoto, Takamasa Satoh, Kaito Tanabe, Koki Maruyama and Yusei Himori
Materials 2025, 18(4), 846; https://doi.org/10.3390/ma18040846 - 14 Feb 2025
Viewed by 511
Abstract
The structure of foam sound absorbers is not strictly regular, and it is difficult to create a geometric model. In this study, a method for estimating the sound absorption properties of foam sound absorbers with the membrane removed was proposed based on computed [...] Read more.
The structure of foam sound absorbers is not strictly regular, and it is difficult to create a geometric model. In this study, a method for estimating the sound absorption properties of foam sound absorbers with the membrane removed was proposed based on computed tomography (CT) scan images: the circumference of the structure and the cross-sectional area of the voids in the foam cross-section were determined from CT scans of foam materials. The propagation constant and characteristic impedance at the voids were obtained by approximating the foam material cross-section as the clearance between two planes, and the transfer matrix method was used to calculate the normal incident sound absorption coefficient. Further, the sound absorption coefficient was theoretically derived using the effective density with the measured tortuosity applied and compared with the experimental value using a two-microphone impedance measuring tube. By extracting the skeletal part of foam materials by using image processing and removing the residual noise in CT images, and then varying the correction factor for the skeleton surface area, the theoretical value of the sound-absorbing foam without a membrane was closer to the measured value. Full article
(This article belongs to the Special Issue Novel Materials for Sound-Absorbing Applications)
Show Figures

Figure 1

21 pages, 5492 KiB  
Article
Numerical Equivalent Acoustic Material for Air-Filled Porous Absorption Simulations in Finite Different Time Domain Methods: Design and Comparison
by P. C. Iglesias, L. Godinho and J. Redondo
Appl. Sci. 2024, 14(3), 1222; https://doi.org/10.3390/app14031222 - 1 Feb 2024
Viewed by 1466
Abstract
Extracting the microscopic parameters of a porous material is a complex task, and attempts have been made to develop models that can simulate their characteristics, gathering the least amount of information possible. As a case in point, tests to evaluate macroscopic behaviors such [...] Read more.
Extracting the microscopic parameters of a porous material is a complex task, and attempts have been made to develop models that can simulate their characteristics, gathering the least amount of information possible. As a case in point, tests to evaluate macroscopic behaviors such as tortuosity, which depends directly on the microscopic fluid velocities, are highly susceptible to generate errors if the precision of the measurement devices is not correct, and the same goes for the other parameters. For this reason, in this paper, a sound propagation model in porous materials with a rigid frame is presented based on a local theory, which tries to simplify, even more, the way to obtain the basic characteristics of porous materials, such as their absorption coefficient at normal and random incidence, and their normal surface impedance. The proposed linearized equivalent fluid model presents four phenomenological coefficients, which characterize acoustic propagation trough the material. Their values are obtained from the material thickness and a measurement in an impedance tube following the ISO 10534 standard. Thus, what is only required is the measured absorption coefficient, either on one third or one octave bands, to fully represent the acoustic behavior in the finite different in time domain (FDTD) method. The model has been simulated with FDTD in porous and fibrous kernels, and the results show a strong agreement with the laboratory measurements and with the analytical results calculated with well-established semi-phenomenological models. Full article
Show Figures

Figure 1

20 pages, 6787 KiB  
Article
From Micro-Perforates to Micro-Capillary Absorbers: Analysis of Their Broadband Absorption Performance through Modeling and Experiments
by Cédric Maury and Teresa Bravo
Appl. Sci. 2023, 13(19), 10844; https://doi.org/10.3390/app131910844 - 29 Sep 2023
Viewed by 1250
Abstract
A challenging issue is currently the design of non-fibrous ultra-thin acoustic absorbers that are able to provide broadband performance in demanding environments. The objective of this study is to compare using simulations and measurements the broadband absorption performance of highly porous micro-capillary plates [...] Read more.
A challenging issue is currently the design of non-fibrous ultra-thin acoustic absorbers that are able to provide broadband performance in demanding environments. The objective of this study is to compare using simulations and measurements the broadband absorption performance of highly porous micro-capillary plates (MCPs) to that of micro-perforated panels (MPPs) under normal incidence while considering unbacked or backed configurations. MCPs are unusual materials used for sound absorption with micron-sized channels and a high perforation ratio. Impedance-based modeling and Kundt tube experiments show that MCPs with suitable channel diameters have a pure constant resistance that outperforms the acoustic efficiency of MPP absorbers. Unbacked MCPs exhibit a controllable amount of high absorption that can exceed 0.8 over more than five octaves starting from 80 Hz, thereby achieving a highly sub-wavelength absorber. MCPs still provide broadband high absorption when backed by a rigid cavity. Their bandwidth-to-thickness ratio increases toward its causal limit when the cavity depth decreases. A parallel MCP resonant absorber partly backed by closed and open cavities is proposed. Such MCP-based absorbers could serve as short anechoic terminations for the characterization of acoustic materials at low frequencies. Full article
Show Figures

Figure 1

17 pages, 2854 KiB  
Article
Comparison of Semi-Empirical Impedance Models for Locally-Reacting Acoustic Liners in a Wide Range of Sound Pressure Levels
by Vadim Palchikovskiy, Aleksandr Kuznetsov, Igor Khramtsov and Oleg Kustov
Acoustics 2023, 5(3), 676-692; https://doi.org/10.3390/acoustics5030041 - 14 Jul 2023
Cited by 3 | Viewed by 2538
Abstract
A comparison is considered of the experimentally obtained impedance of locally reacting acoustic liner samples with the impedance calculated using semi-empirical Goodrich, Sobolev and Eversman models. The semi-empirical impedance models are outlined. In the experiment, the impedance is synchronously measured on a normal [...] Read more.
A comparison is considered of the experimentally obtained impedance of locally reacting acoustic liner samples with the impedance calculated using semi-empirical Goodrich, Sobolev and Eversman models. The semi-empirical impedance models are outlined. In the experiment, the impedance is synchronously measured on a normal incidence impedance tube by the transfer function method and Dean’s method. A modification of the conventional normal incidence impedance tube is proposed to obtain these measurements. To automate the measurements, a program code is developed that controls sound generation and the recording of signals. The code includes an optimization procedure for selecting the voltage on an acoustic driver, providing the required sound pressure level on the face of the sample at different frequencies. The geometry of acoustic liner samples and specifics of synchronous impedance measurements by the aforementioned methods are considered. Experiments are performed at sound pressure levels from 100 to 150 dB in the frequency range of 500–3500 Hz. A comparative analysis of semi-empirical models with the experimental results at different sound pressure levels is carried out. Full article
Show Figures

Figure 1

23 pages, 13789 KiB  
Article
Exploratory Acoustic Investigation of Customizable 3D-Printed Hybrid Acoustic Materials (HAMs) through Interlaboratory Impedance Tube Measurements
by Vaia Tsiokou, Louena Shtrepi, Elena Badino, Arianna Astolfi and Anna Karatza
Acoustics 2023, 5(3), 653-675; https://doi.org/10.3390/acoustics5030040 - 13 Jul 2023
Cited by 6 | Viewed by 5624
Abstract
Acoustic materials are widely used for improving interior acoustics based on their sound absorptive or sound diffusive properties. However, common acoustic materials only offer limited options for customizable geometrical features, performance, and aesthetics. This paper focuses on the sound absorption performance of highly [...] Read more.
Acoustic materials are widely used for improving interior acoustics based on their sound absorptive or sound diffusive properties. However, common acoustic materials only offer limited options for customizable geometrical features, performance, and aesthetics. This paper focuses on the sound absorption performance of highly customizable 3D-printed Hybrid Acoustic Materials (HAMs) by means of parametric stepped thickness, which is used for sound absorption and diffusion. HAMs were parametrically designed and produced using computational design, 3D-printing technology, and feedstock material with adjustable porosity, allowing for the advanced control of acoustic performance through geometry-related sound absorbing/diffusing strategies. The proposed design methodology paves the way to a customizable large-scale cumulative acoustic performance by varying the parametric stepped thickness. The present study explores the challenges posed by the testing of the sound absorption performance of HAMs in an impedance tube. The representativeness of the test samples (i.e., cylindrical sections) with respect to the original (i.e., rectangular) panel samples is contextually limited by the respective impedance tube’s geometrical features (i.e., cylindrical cross-section) and dimensional requirements (i.e., diameter size). To this aim, an interlaboratory comparison was carried out by testing the normal incidence sound absorption of ten samples in two independent laboratories with two different impedance tubes. The results obtained demonstrate a good level of agreement, with HAMs performing better at lower frequencies than expected and behaving like Helmholtz absorbers, as well as demonstrating a frequency shift pattern related to superficial geometric features. Full article
Show Figures

Graphical abstract

20 pages, 10247 KiB  
Article
Sustainable Materials from Waste Paper: Thermal and Acoustical Characterization
by Stefania Liuzzi, Chiara Rubino, Francesco Martellotta and Pietro Stefanizzi
Appl. Sci. 2023, 13(8), 4710; https://doi.org/10.3390/app13084710 - 8 Apr 2023
Cited by 8 | Viewed by 5351
Abstract
A growing research interest currently exists in the use of paper as a building material. This work aims to present the results of a measurement campaign developed on innovative waste paper-based building components. The research was carried out in Southern Italy and used [...] Read more.
A growing research interest currently exists in the use of paper as a building material. This work aims to present the results of a measurement campaign developed on innovative waste paper-based building components. The research was carried out in Southern Italy and used some local by-product aggregates. Three different mixture designs were developed in the laboratory by adding three kinds of biomass to a pulp paper blend: fava bean residues (FB), sawdust powder (SP) and coffee grains (CG) extracted from exhausted chaffs. A physical characterization was carried out measuring the bulk density and bulk porosity. Scanning Electron Microscopy (SEM) analysis of the single aggregates was followed by a microstructure analysis of the final components. Bulk density evaluation showed a range between 200 and 348 kg·m−3. Furthermore, thermal performances were measured; the thermal conductivity of the experimented samples ranged from 0.071 to 0.093 W·m−1·K−1, thus it is possible to classify the tested materials as thermal insulators. Moreover, the acoustic properties were evaluated and tested. The normal incidence sound absorption coefficient was measured by the impedance tube on cylindrical specimens. In general, a different behavior was observed between the upper and lower base of each specimen due to the manufacturing process and the shrinkage caused by the different interactions occurring between the aggregates and the pulp paper waste; for example, the presence of sawdust reduced shrinkage in the final specimens, with consequent smaller physical variations among the two faces. The correlation existing between the manufacturing process and the microstructural properties was also investigated by the estimation of the non-acoustical parameters using the inverse method and taking into account the JCA (Johnson, Champoux and Allard) model as a reference. Full article
(This article belongs to the Special Issue Biomass-Based Materials for Building Applications)
Show Figures

Figure 1

11 pages, 2381 KiB  
Article
Influence of Particle Size and Bulk Density on Sound Absorption Performance of Oil Palm Frond-Reinforced Composites Particleboard
by Budi Istana, I Made Londen Batan, Sutikno, Samrith Khem, U Ubaidillah and Iwan Yahya
Polymers 2023, 15(3), 510; https://doi.org/10.3390/polym15030510 - 18 Jan 2023
Cited by 10 | Viewed by 3662
Abstract
The present study deals with the sound absorption performance of natural fibres from the oil palm frond (OPF), mainly considered agricultural waste. Therefore, this study aimed to investigate the sound absorption performance of OPF fibre-reinforced composite under normal incidence sound. The materials used [...] Read more.
The present study deals with the sound absorption performance of natural fibres from the oil palm frond (OPF), mainly considered agricultural waste. Therefore, this study aimed to investigate the sound absorption performance of OPF fibre-reinforced composite under normal incidence sound. The materials used were OPF particles and urea-formaldehyde was used as an adhesive. The particleboards were produced with three particle sizes and four target densities. The absorption coefficient of normal incidence sound (αn) was tested using an impedance tube. The effects of particle size and bulk density were also evaluated. The findings reveal thatαn exceeded 0.45 at 1000 Hz and could reach 0.95 above 3.3 kHz. This occurred when the bulk density of the OPF composite particleboards ranged between 0.3–0.4 g/cm3, and the particle size varied between medium to coarse. The results also indicated that the absorption frequency and the degree of αn significantly increased as the bulk density decreased. Therefore, OPF fibres can be used to create sound-absorbing composite particleboards. Full article
(This article belongs to the Special Issue Advances and Innovations in Recycled Polymer Composites)
Show Figures

Figure 1

17 pages, 5253 KiB  
Article
Effect of 3D-Printed PLA Structure on Sound Reflection Properties
by Katarina Monkova, Martin Vasina, Peter Pavol Monka, Jan Vanca and Dražan Kozak
Polymers 2022, 14(3), 413; https://doi.org/10.3390/polym14030413 - 20 Jan 2022
Cited by 23 | Viewed by 5931
Abstract
3D printing technique is currently one of the promising emerging technologies. It is used in many areas of human activity, including acoustic applications. This paper focuses on studying the sound reflection behavior of four different types of 3D-printed open-porous polylactic acid (PLA) material [...] Read more.
3D printing technique is currently one of the promising emerging technologies. It is used in many areas of human activity, including acoustic applications. This paper focuses on studying the sound reflection behavior of four different types of 3D-printed open-porous polylactic acid (PLA) material structures, namely cartesian, octagonal, rhomboid and starlit structures. Sound reflection properties were evaluated by means of the normal incidence sound reflection coefficient based on the transfer function method using an acoustic impedance tube. In this study, various factors affecting the sound reflection performance of the investigated PLA samples were evaluated. It can be concluded that the sound reflection behavior of the tested PLA specimens was strongly affected by different factors. It was influenced, not only by the type of 3D-printed open-porous material structure, but also by the excitation frequency, the total volume porosity, the specimen thickness, and the air gap size behind the tested specimen inside the acoustic impedance tube. Full article
(This article belongs to the Special Issue Advanced Materials in 3D/4D Printing Technology)
Show Figures

Graphical abstract

12 pages, 4179 KiB  
Article
A Basic Study on the Absorption Properties and Their Prediction of Heterogeneous Micro-Perforated Panels: A Case Study of Micro-Perforated Panels with Heterogeneous Hole Size and Perforation Ratio
by Midori Kusaka, Kimihiro Sakagami and Takeshi Okuzono
Acoustics 2021, 3(3), 473-484; https://doi.org/10.3390/acoustics3030031 - 5 Jul 2021
Cited by 8 | Viewed by 5437
Abstract
Micro-perforated panels (MPPs) are one of the most promising alternatives to conventional porous sound-absorbing materials. Traditionally, the theory of the sound absorption properties of MPPs is based on the assumption that MPPs are a homogeneous material with identical pores at regular intervals. However, [...] Read more.
Micro-perforated panels (MPPs) are one of the most promising alternatives to conventional porous sound-absorbing materials. Traditionally, the theory of the sound absorption properties of MPPs is based on the assumption that MPPs are a homogeneous material with identical pores at regular intervals. However, in recent years, some MPPs have not met these conditions, and although a variety of designs have been created, their properties and prediction methods were studied in only fewer works. In this paper, considering the wide variety of MPP designs, we made a trial production of heterogeneous MPPs, which are MPPs with holes of different diameters, and studied the prediction method applicable to these MPPs. We measured the normal incidence sound absorption characteristics of those MPPs, backed by a rigid backing and air-cavity in-between, in an impedance tube. The prediction method proposed in this work is to treat the heterogeneous MPPs as combinations of several homogeneous components, and to combine them after applying the existing theory on homogeneous MPPs to each component. As a result, except in a few cases, the measured and predicted values of the absorption properties agreed relatively well. We also found that the arrangement of the holes in the material and the depth of the back cavity affected the agreement between the measured and predicted results. Full article
Show Figures

Figure 1

21 pages, 3683 KiB  
Article
A Porous Media Model for the Numerical Simulation of Acoustic Attenuation by Perforated Liners in the Presence of Grazing Flows
by Jianguo Wang, Philip Rubini and Qin Qin
Appl. Sci. 2021, 11(10), 4677; https://doi.org/10.3390/app11104677 - 20 May 2021
Cited by 6 | Viewed by 3362
Abstract
In this paper, a novel model is proposed for the numerical simulation of noise-attenuating perforated liners. Effusion cooling liners offer the potential of being able to attenuate combustion instabilities in gas turbine engines. However, the acoustic attenuation of a perforated liner is a [...] Read more.
In this paper, a novel model is proposed for the numerical simulation of noise-attenuating perforated liners. Effusion cooling liners offer the potential of being able to attenuate combustion instabilities in gas turbine engines. However, the acoustic attenuation of a perforated liner is a combination of a number of interacting factors, resulting in the traditional approach of designing perforated combustor liners relying heavily on combustor rig tests. On the other hand, direct computation of thousands of small-scale holes is too expensive to be employed as an engineering design tool. In recognition of this, a novel physical velocity porous media (PVPM) model was recently proposed by the authors as a computationally less demanding approach to represent the acoustic attenuation of perforated liners. The model was previously validated for the normal incidence of a sound wave by comparison with experimental data from impedance tubes. In this paper, the model is further developed for configurations where the noise signal propagates in parallel with the perforated liners, both in the presence and absence of a mean flow. The model is significantly improved and successfully validated within coexisting grazing and bias flow scenarios, with reference to a series of well-recognized experimental data. Full article
Show Figures

Figure 1

13 pages, 3118 KiB  
Article
Angle-Dependent Absorption of Sound on Porous Materials
by Jose Cucharero, Tuomas Hänninen and Tapio Lokki
Acoustics 2020, 2(4), 753-765; https://doi.org/10.3390/acoustics2040041 - 16 Oct 2020
Cited by 18 | Viewed by 6959
Abstract
Sound-absorbing materials are usually measured in a reverberation chamber (diffuse field condition) or in an impedance tube (normal sound incidence). In this paper, we show how angle-dependent absorption coefficients could be measured in a factory-type setting. The results confirm that the materials have [...] Read more.
Sound-absorbing materials are usually measured in a reverberation chamber (diffuse field condition) or in an impedance tube (normal sound incidence). In this paper, we show how angle-dependent absorption coefficients could be measured in a factory-type setting. The results confirm that the materials have different attenuation behavior to sound waves coming from different directions. Furthermore, the results are in good agreement with sound absorption coefficients measured for comparison in a reverberation room and in an impedance tube. In addition, we introduce a biofiber-based material that has similar sound absorption characteristics to glass-wool. The angle-dependent absorption coefficients are important information in material development and in room acoustics modeling. Full article
Show Figures

Figure 1

19 pages, 9623 KiB  
Article
Effect of the Pore Shape and Size of 3D-Printed Open-Porous ABS Materials on Sound Absorption Performance
by Katarina Monkova, Martin Vasina, Peter Pavol Monka, Drazan Kozak and Jan Vanca
Materials 2020, 13(20), 4474; https://doi.org/10.3390/ma13204474 - 9 Oct 2020
Cited by 26 | Viewed by 7252
Abstract
Noise has a negative impact on our environment and human health. For this reason, it is necessary to eliminate excessive noise levels. This paper is focused on the study of the sound absorption properties of materials with open-porous structures, which were made of [...] Read more.
Noise has a negative impact on our environment and human health. For this reason, it is necessary to eliminate excessive noise levels. This paper is focused on the study of the sound absorption properties of materials with open-porous structures, which were made of acrylonitrile butadiene styrene (ABS) material using additive technology. Four types of structures (Cartesian, Octagonal, Rhomboid, and Starlit) were evaluated in this work, and every structure was prepared in three different volume ratios of the porosity and three different thicknesses. The sound absorption properties of the investigated ABS specimens were examined utilizing the normal incidence sound absorption and noise reduction coefficients, which were experimentally determined by the transfer function method using a two-microphone acoustic impedance tube. This work deals with various factors that influence the sound absorption performance of four different types of investigated ABS material’s structures. It was found, in this study, that the sound absorption performance of the investigated ABS specimens is strongly affected by different factors, specifically by the structure geometry, material volume ratio, excitation frequency of an acoustic wave, material’s thickness, and air space size behind the tested sound-absorbing materials. Full article
(This article belongs to the Special Issue Recent Advances in Cellular Materials)
Show Figures

Figure 1

12 pages, 2416 KiB  
Communication
The Effect of Deviation Due to the Manufacturing Accuracy in the Parameters of an MPP on Its Acoustic Properties: Trial Production of MPPs of Different Hole Shapes Using 3D Printing
by Kimihiro Sakagami, Midori Kusaka, Takeshi Okuzono and Shinsuke Nakanishi
Acoustics 2020, 2(3), 605-616; https://doi.org/10.3390/acoustics2030032 - 14 Aug 2020
Cited by 14 | Viewed by 4354
Abstract
In this study, we discuss the effect of the manufacturing accuracy of a microperforated panel (MPP) produced by 3D printers on acoustic properties through measured and calculated results as a pilot study. The manufacturing costs of MPPs have long been one of their [...] Read more.
In this study, we discuss the effect of the manufacturing accuracy of a microperforated panel (MPP) produced by 3D printers on acoustic properties through measured and calculated results as a pilot study. The manufacturing costs of MPPs have long been one of their shortcomings; however, with recent developments in the manufacturing process, low-cost MPPs are now available. In a further attempt at reducing the cost, 3D printing techniques have recently been considered. Cases of trial production of MPPs manufactured by 3D printing have been reported. When introducing such new techniques, despite the conventional microdrill procedure, manufacturing accuracy can often become an issue. However, there are few studies reporting the effect of manufacturing accuracy on the acoustic properties in the case of 3D-printed MPPs. Considering this situation, in this pilot study, we attempted to produce MPPs with circular and rectangular perforations using a consumer 3D printer of the additive manufacturing type. The hole sizes of the specimens were measured, and the accuracy was evaluated. The normal incidence absorption coefficient and specific impedance were measured using an impedance tube. The measured results were compared with the theoretical values using Guo’s model. Through these basic studies, the MPPs produced by an additive manufacturing 3D printer demonstrated good sound absorption performance; however, due to the large deviations of parameters, the agreement with the theoretical values was not good, which suggests that it is difficult to predict the acoustic properties of MPPs made by a consumer-grade additive manufacturing 3D printer. Full article
Show Figures

Figure 1

14 pages, 6144 KiB  
Article
Study of the Sound Absorption Properties of 3D-Printed Open-Porous ABS Material Structures
by Martin Vasina, Katarina Monkova, Peter Pavol Monka, Drazan Kozak and Jozef Tkac
Polymers 2020, 12(5), 1062; https://doi.org/10.3390/polym12051062 - 6 May 2020
Cited by 47 | Viewed by 9685
Abstract
Noise pollution is a negative factor that affects our environment. It is, therefore, necessary to take appropriate measures to minimize it. This article deals with the sound absorption properties of open-porous Acrylonitrile Butadiene Styrene (ABS) material structures that were produced using 3D printing [...] Read more.
Noise pollution is a negative factor that affects our environment. It is, therefore, necessary to take appropriate measures to minimize it. This article deals with the sound absorption properties of open-porous Acrylonitrile Butadiene Styrene (ABS) material structures that were produced using 3D printing technology. The material’s ability to damp sound was evaluated based on the normal incidence sound absorption coefficient and the noise reduction coefficient, which were experimentally measured by the transfer function method using an acoustic impedance tube. The different factors that affect the sound absorption behavior of the studied ABS specimens are presented in this work. In this study, it was discovered that the sound absorption properties of the tested ABS samples are significantly influenced by many factors, namely by the type of 3D-printed, open-porous material structure, the excitation frequency, the sample thickness, and the air gap size behind the sound-absorbing materials inside the acoustic impedance tube. Full article
(This article belongs to the Special Issue Polymer Processing and Surfaces)
Show Figures

Graphical abstract

Back to TopTop