Theoretical Estimation Based on CT Images and Experiments on the Sound Absorption Coefficient of Foam Materials with Removed Membrane †
Abstract
:1. Introduction
2. Sample and Measuring Apparatus
2.1. Sample Used for Measurements
2.2. Equipment for Measuring the Sound Absorption Coefficient
2.3. Methods and Results of Measuring Tortuosity
3. Theoretical Analysis
3.1. CT Scan Tomograms
3.2. CT Images and Image Processing
3.3. Approximation of Void to Clearance Between Two Planes
3.4. Propagation Constant and Characteristic Impedance
3.5. Transfer Matrices and Their Connections
3.6. Derivation of Normal Incident Sound Absorption Coefficient
4. Comparison of Calculated and Measured Results
4.1. Theoretical Values Obtained by CT Images with Varying Binarization Thresholds
4.2. Sensitivity Analysis of the Correction Factor for Theoretical Values Calculated from CT Images
4.3. Discussion of Differences Between Measured and Theoretical Values
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fischer, J.; Behrendt, M.; Lieske, D.; Albers, A. Measurement and analysis of the interior noise and the transfer path of acoustic phenomena into the driver cabin of a battery electric vehicle. In Proceedings of the INTER-NOISE 2014, Melbourne, Australia, 16–19 November 2014. Paper No. 110. [Google Scholar]
- Kim, J.G.; Kim, S.K.; Kim, J.H. Sound absorption behavior of flexible polyurethane foams with distinct cellular structures. Mater. Des. 2016, 89, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Suzuki, K.; Nishino, S.; Tomota, Y. Relationship between Sound Absorption Property and Microscopic Structure Determined by X-ray Computed Tomography in Urethane Foam Used as Sound Absorption Material for Automobiles. Mater. Trans. 2008, 49, 345–351. [Google Scholar] [CrossRef]
- Bérengier, M.C.; Stinson, M.R.; Daigle, G.A.; Hamet, J.F. Porous Road Pavements: Acoustical Characterization and Propagation Effects. J. Acoust. Soc. Am. 1997, 101, 155–162. [Google Scholar] [CrossRef]
- Licitra, G.; Cerchiai, M.; Teti, L.; Ascari, E.; Fredianelli, L. Durability and Variability of the Acoustical Performance of Rubberized Road Surfaces. Appl. Acoust. 2015, 94, 20–29. [Google Scholar] [CrossRef]
- Ciaburro, G. Recycled Materials for Sound Absorbing Application. Mater. Sci. Forum 2021, 1034, 169–175. [Google Scholar] [CrossRef]
- Mitrevska, M.J.; Mickovski, V.; Samardzioska, T.; Iannace, G. Experimental and Numerical Investigation of Sound Absorption Characteristics of Rebonded Polyurethane Foam. Appl. Sci. 2022, 12, 12936. [Google Scholar] [CrossRef]
- Shinde, N.G.; Patel, D.M. A Short Review on Automobile Dashboard Materials. IOP Conf. Ser. Mater. Sci. Eng. 2020, 810, 012033. [Google Scholar] [CrossRef]
- Patten, W.N.; Sha, S.; Mo, C. A Vibrational Model of Open-Celled Polyurethane Foam Automotive Seat Cushions. J. Sound Vib. 1988, 217, 145–161. [Google Scholar] [CrossRef]
- del Rey, R.; Alba, J.; Arenas, J.P.; Sanchis, V.J. An empirical modelling of porous sound absorbing materials made of recycled foam. Appl. Acoust. 2012, 73, 604–609. [Google Scholar] [CrossRef]
- Iwase, T. Sound absorption properties of porous materials and measurement technique for them. J. Acoust. Soc. Jpn. 1997, 54, 66–71. (In Japanese) [Google Scholar]
- Trinh, V.H.; Langlois, V.; Guilleminot, J.; Perrot, C.; Khidas, Y.; Pitois, O. Tuning membrane content of sound absorbing cellular foams: Fabrication, experimental evidence and multiscale numerical simulations. Mater. Des. 2019, 162, 345–361. [Google Scholar] [CrossRef]
- Zhang, C.; Li, J.; Hu, Z.; Zhu, F.; Huang, Y. Correlation between the acoustic and porous cell morphology of polyurethane foam: Effect of interconnected porosity. Mater. Des. 2012, 41, 319–325. [Google Scholar] [CrossRef]
- Park, J.H.; Minn, K.S.; Lee, H.R.; Yang, S.H.; Yu, C.B.; Pak, S.Y.; Oh, C.S.; Song, Y.S.; Kang, Y.J.; Youn, J.R. Cell openness manipulation of lowdensity polyurethane foam for efficient sound absorption. J. Sound Vib. 2017, 406, 224–236. [Google Scholar] [CrossRef]
- Gaulon, C.; Pierre, J.; Derec, C.; Jaouen, L.; Becot, F.-X.; Chevillotte, F.; Elias, F.; Drenckhan, W.; Leroy, V. Acoustic absorption of solid foams with thin membranes. Appl. Phys. Lett. 2018, 112, 261904. [Google Scholar] [CrossRef]
- Satoh, T.; Sakamoto, S.; Iizuka, K.; Tasaki, K.; Tanabe, K. Mathematical Modeling and Experiments on the Acoustic Properties of a Frame Structure with a Membrane. Noise Control Eng. J. 2024, 72, 297–315. [Google Scholar] [CrossRef]
- Sakamoto, S.; Tanabe, K.; Maruyama, K.; Sato, T. Estimation and experiment of the sound absorption coefficient of foam sound-absorbing material (Estimation of sound absorption coefficient using CT scan images). In Proceedings of the 17th International Conference on Motion and Vibration Control and the 20th Asia-Pacific Vibration Conference (MoViC & APVC2024), Tokyo, Japan, 5–8 August 2024. 5p, Paper No. U00126. [Google Scholar]
- Sakamoto, S.; Suzuki, K.; Toda, K.; Seino, S. Estimation of the Acoustic Properties of the Random Packing Structures of Granular Materials: Estimation of the Sound Absorption Coefficient Based on Micro-CT Scan Data. Materials 2023, 16, 337. [Google Scholar] [CrossRef]
- Sakamoto, S.; Toda, K.; Seino, S.; Hoshiyama, K. Theoretical and Experimental Analyses on the Sound Absorption Coefficient of Rice and Buckwheat Husks Based on Micro-CT Scan Data. Materials 2023, 16, 5671. [Google Scholar] [CrossRef]
- Sakamoto, S.; Seino, S.; Hoshiyama, K.; Kaneko, K.; Kojima, Y. Estimation and Experiment on Acoustic Properties of Rice Straw (Estimation of Sound Absorption Coefficient Based on CT Image). In Proceedings of the 53rd International Congress and Exposition on Noise Control Engineering (INTER-NOISE 2024), Nantes, France, 25–29 August 2024. 6p, Paper No. 4064. [Google Scholar]
- Satoh, T.; Sakamoto, S.; Isobe, T.; Iizuka, K.; Tasaki, K. Mathematical Model for Estimating the Sound Absorption Coefficient in Grid Network Structures. Materials 2023, 16, 1124. [Google Scholar] [CrossRef]
- ISO 10534-2; Acoustics—Determination of Acoustic Properties in Impedance Tubes. Part 2: Two-Microphone Technique for Normal Sound Absorption Coefficient and Normal Surface Impedance. ISO: Geneva, Switzerland, 2023.
- Sakamoto, S.; Suzuki, K.; Toda, K.; Seino, S. Mathematical Models and Experiments on the Acoustic Properties of Granular Packing Structures (Measurement of tortuosity in hexagonal close-packed and face-centered cubic lattices). Materials 2022, 15, 7393. [Google Scholar] [CrossRef]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698. [Google Scholar] [CrossRef]
- Tijdeman, H. On the propagation of sound waves in cylindrical tubes. J. Sound Vib. 1975, 39, 1–33. [Google Scholar] [CrossRef]
- Stinson, M.R. The propagation of plane sound waves in narrow and wide circular tubes and generalization to uniform tubes of arbitrary cross-sectional shape. J. Acoust. Soc. Am. 1991, 89, 550–558. [Google Scholar] [CrossRef]
- Stinson, M.R.; Champou, Y. Propagation of sound and the assignment of shape factors in model porous materials having simple pore geometries. J. Acoust. Soc. Am. 1992, 91, 685–695. [Google Scholar] [CrossRef]
- Beltman, W.M.; van der Hoogt, P.J.M.; Spiering, R.M.E.J.; Tijdeman, H. Implementation and Experimental Validation of a New Viscothermal Acoustic Finite Element for Acousto-Elastic Problems. J. Sound Vib. 1998, 216, 159–185. [Google Scholar] [CrossRef]
- Allard, J.F. Propagation of sound in Porous Media Modeling Sound Absorbing Materials. J. Acoust. Soc. Am. 1994, 95, 2785. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakamoto, S.; Satoh, T.; Tanabe, K.; Maruyama, K.; Himori, Y. Theoretical Estimation Based on CT Images and Experiments on the Sound Absorption Coefficient of Foam Materials with Removed Membrane. Materials 2025, 18, 846. https://doi.org/10.3390/ma18040846
Sakamoto S, Satoh T, Tanabe K, Maruyama K, Himori Y. Theoretical Estimation Based on CT Images and Experiments on the Sound Absorption Coefficient of Foam Materials with Removed Membrane. Materials. 2025; 18(4):846. https://doi.org/10.3390/ma18040846
Chicago/Turabian StyleSakamoto, Shuichi, Takamasa Satoh, Kaito Tanabe, Koki Maruyama, and Yusei Himori. 2025. "Theoretical Estimation Based on CT Images and Experiments on the Sound Absorption Coefficient of Foam Materials with Removed Membrane" Materials 18, no. 4: 846. https://doi.org/10.3390/ma18040846
APA StyleSakamoto, S., Satoh, T., Tanabe, K., Maruyama, K., & Himori, Y. (2025). Theoretical Estimation Based on CT Images and Experiments on the Sound Absorption Coefficient of Foam Materials with Removed Membrane. Materials, 18(4), 846. https://doi.org/10.3390/ma18040846