Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = nonbonding-pairs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6924 KiB  
Article
Trinuclear and Tetranuclear Ruthenium Carbonyl Nitrosyls: Oxidation of a Carbonyl Ligand by an Adjacent Nitrosyl Ligand
by Shengchun Chen, Xuejun Feng, Yaoming Xie, R. Bruce King and Henry F. Schaefer
Molecules 2024, 29(17), 4165; https://doi.org/10.3390/molecules29174165 - 3 Sep 2024
Cited by 1 | Viewed by 1230
Abstract
Trinuclear and tetranuclear ruthenium carbonyls of the types Ru3(CO)n(NO)2, Ru3(N)(CO)n(NO), Ru3(N)2(CO)n, Ru3(N)(CO)n(NCO), Ru3(CO)n(NCO)(NO), Ru4(N)(CO)n(NO), Ru [...] Read more.
Trinuclear and tetranuclear ruthenium carbonyls of the types Ru3(CO)n(NO)2, Ru3(N)(CO)n(NO), Ru3(N)2(CO)n, Ru3(N)(CO)n(NCO), Ru3(CO)n(NCO)(NO), Ru4(N)(CO)n(NO), Ru4(N)(CO)n(NCO), and Ru4(N)2(CO)n related to species observed experimentally in the chemistry of Ru3(CO)10(µ-NO)2 have been investigated using density functional theory. In all cases, the experimentally observed structures have been found to be low-energy structures. The low-energy trinuclear structures typically have a central strongly bent Ru–Ru–Ru chain with terminal CO groups and bridging nitrosyl, isocyanate, and/or nitride ligands across the end of the chain. The low-energy tetranuclear structures typically have a central Ru4N unit with terminal CO groups and a non-bonded pair of ruthenium atoms bridged by a nitrosyl or isocyanate group. Full article
Show Figures

Graphical abstract

22 pages, 4262 KiB  
Article
An Electronic Structure Investigation of PEDOT with AlCl4 Anions—A Promising Redox Combination for Energy Storage Applications
by Ben Craig, Peter Townsend, Carlos Ponce de Leon, Chris-Kriton Skylaris and Denis Kramer
Polymers 2024, 16(10), 1376; https://doi.org/10.3390/polym16101376 - 11 May 2024
Viewed by 2113
Abstract
In this work, we use density functional theory to investigate the electronic structure of poly(3,4-ethylenedioxythiophene) (PEDOT) oligomers with co-located AlCl4 anions, a promising combination for energy storage. The 1980s bipolaron model remains the dominant interpretation of the electronic structure of PEDOT [...] Read more.
In this work, we use density functional theory to investigate the electronic structure of poly(3,4-ethylenedioxythiophene) (PEDOT) oligomers with co-located AlCl4 anions, a promising combination for energy storage. The 1980s bipolaron model remains the dominant interpretation of the electronic structure of PEDOT despite recent theoretical progress that has provided new definitions of bipolarons and polarons. By considering the influence of oligomer length, oxidation or anion concentration and spin state, we find no evidence for many of the assertions of the 1980s bipolaron model and so further contribute to a new understanding. No self-localisation of positive charges in PEDOT is found, as predicted by the bipolaron model at the hybrid functional level. Instead, our results show distortions that exhibit a single or a double peak in bond length alternations and charge density. Either can occur at different oxidation or anion concentrations. Rather than representing bipolarons or polaron pairs in the original model, these are electron distributions driven by a range of factors. Distortions can span an arbitrary number of nearby anions. We also contribute a novel conductivity hypothesis. Conductivity in conducting polymers has been observed to reduce at anion concentrations above 0.5. We show that at high anion concentrations, the energy of the localised, non-bonding anionic orbitals approaches that of the system HOMO due to Coulombic repulsion between anions. We hypothesize that with nucleic motion in the macropolymer, these orbitals will interfere with the hopping of charge carriers between sites of similar energy, lowering conductivity. Full article
(This article belongs to the Special Issue Advanced Polymers for High-Performance Batteries)
Show Figures

Figure 1

9 pages, 1160 KiB  
Communication
Correlations in Hard- and Soft-Core Generic Polymer Models
by Qiang Wang
Polymers 2023, 15(5), 1180; https://doi.org/10.3390/polym15051180 - 26 Feb 2023
Cited by 4 | Viewed by 1977
Abstract
Generic polymer models capturing the chain connectivity and the non-bonded excluded-volume interactions between polymer segments can be classified into hard- and soft-core models depending on their non-bonded pair potential. Here we compared the correlation effects on the structural and thermodynamic properties of the [...] Read more.
Generic polymer models capturing the chain connectivity and the non-bonded excluded-volume interactions between polymer segments can be classified into hard- and soft-core models depending on their non-bonded pair potential. Here we compared the correlation effects on the structural and thermodynamic properties of the hard- and soft-core models given by the polymer reference interaction site model (PRISM) theory, and found different behaviors of the soft-core models at large invariant degree of polymerization (IDP) depending on how IDP is varied. We also proposed an efficient numerical approach, which enables us to accurately solve the PRISM theory for chain lengths as large as 106. Full article
(This article belongs to the Special Issue Research on Polymer Simulation, Modeling and Computation)
Show Figures

Figure 1

19 pages, 5477 KiB  
Article
Factors That Control the Force Needed to Unfold a Membrane Protein in Silico Depend on the Mode of Denaturation
by Nabil F. Faruk, Xiangda Peng and Tobin R. Sosnick
Int. J. Mol. Sci. 2023, 24(3), 2654; https://doi.org/10.3390/ijms24032654 - 31 Jan 2023
Viewed by 2089
Abstract
Single-molecule force spectroscopy methods, such as AFM and magnetic tweezers, have proved extremely beneficial in elucidating folding pathways for soluble and membrane proteins. To identify factors that determine the force rupture levels in force-induced membrane protein unfolding, we applied our near-atomic-level Upside molecular [...] Read more.
Single-molecule force spectroscopy methods, such as AFM and magnetic tweezers, have proved extremely beneficial in elucidating folding pathways for soluble and membrane proteins. To identify factors that determine the force rupture levels in force-induced membrane protein unfolding, we applied our near-atomic-level Upside molecular dynamics package to study the vertical and lateral pulling of bacteriorhodopsin (bR) and GlpG, respectively. With our algorithm, we were able to selectively alter the magnitudes of individual interaction terms and identify that, for vertical pulling, hydrogen bond strength had the strongest effect, whereas other non-bonded protein and membrane–protein interactions had only moderate influences, except for the extraction of the last helix where the membrane–protein interactions had a stronger influence. The up–down topology of the transmembrane helices caused helices to be pulled out as pairs. The rate-limiting rupture event often was the loss of H-bonds and the ejection of the first helix, which then propagated tension to the second helix, which rapidly exited the bilayer. The pulling of the charged linkers across the membrane had minimal influence, as did changing the bilayer thickness. For the lateral pulling of GlpG, the rate-limiting rupture corresponded to the separation of the helices within the membrane, with the H-bonds generally being broken only afterward. Beyond providing a detailed picture of the rupture events, our study emphasizes that the pulling mode greatly affects the factors that determine the forces needed to unfold a membrane protein. Full article
(This article belongs to the Special Issue Recent Advances in Single Molecule Studies)
Show Figures

Figure 1

9 pages, 1807 KiB  
Article
Fluorine-Modulated Electronic Structure and Atomic Bonding of the Titanium Surface
by Lei Li and Haihua Huang
Materials 2022, 15(23), 8492; https://doi.org/10.3390/ma15238492 - 29 Nov 2022
Viewed by 1733
Abstract
The fluorine-adsorption-induced local bond relaxation and valence-energy-state evolution of the Ti(0001) surface were examined through density functional theory calculations. The predicted bond–band–barrier (3 B) correlation notation framework for the interaction of the fluorine adsorbate with Ti atoms formed a tetrahedral structure through the [...] Read more.
The fluorine-adsorption-induced local bond relaxation and valence-energy-state evolution of the Ti(0001) surface were examined through density functional theory calculations. The predicted bond–band–barrier (3 B) correlation notation framework for the interaction of the fluorine adsorbate with Ti atoms formed a tetrahedral structure through the creation of four valence density-of-state features, namely bonding electron pairs, nonbonding lone pairs, holes, and antibonding dipoles. The bonding states resulted in the passivation of metal Ti surfaces, the formation of Tip dipoles and Ti+/p H-like bonds modulated the work function of the Ti(0001) surface, and the conversion of metallic Ti to semiconducting titanium fluoride by the holes. The findings of this study confirm the universal applicability of the 3 B correlation notation in the dynamics of fluorine chemisorption and the associated valence electrons involved in fluorination. Full article
(This article belongs to the Special Issue Density Functional Theory Application on Chemical Calculation)
Show Figures

Figure 1

15 pages, 2399 KiB  
Article
Effects of Residual Composition and Distribution on the Structural Characteristics of the Protein
by Qiaoling Song, Zhenan Wu, Chenghao Jin, Zhichao Yu, Peng Xu and Zhouting Jiang
Int. J. Mol. Sci. 2022, 23(22), 14263; https://doi.org/10.3390/ijms232214263 - 17 Nov 2022
Cited by 2 | Viewed by 1676
Abstract
The effect of ratio and consecutive number of hydrophobic residues in the repeating unit of protein chains was investigated by MD simulation. The modified off-lattice HNP model was applied in this study. The protein chains constituted by different HNP ratios or different numbers [...] Read more.
The effect of ratio and consecutive number of hydrophobic residues in the repeating unit of protein chains was investigated by MD simulation. The modified off-lattice HNP model was applied in this study. The protein chains constituted by different HNP ratios or different numbers of consecutively hydrophobic residues with the same chain length were simulated under a broad temperature range. We concluded that the proteins with higher ratio or larger number of sequentially hydrophobic residues present more orientated and compact structure under a certain low temperature. It is attributed to the lower non-bonded potential energy between H-H residual pairs, especially more hydrophobic residues in a procession among the protein chain. Considering the microscopic structure of the protein, more residue contacts are achieved with the proteins with higher ratios and sequential H residues under the low temperature. Meanwhile, with the ratio and consecutive number of H residues increasing, the distribution of stem length showed a transition from exponential decline to unimodal and even multiple peaks, indicating the specific ordered structure formed. These results provide an insight into 3D structural properties of proteins from their residue sequences, which has a primary structure at molecular level and, ultimately, a practical possibility of applying in biotechnological applications. Full article
(This article belongs to the Special Issue Advances in Protein Dynamics)
Show Figures

Figure 1

12 pages, 4073 KiB  
Article
Magnussonite, Mn2+18 (As3+O3)6Mn1+x(H2O, Clx, ☐): Re-Examination of the Structure and the [Mn1+(As3+O3)6] Cluster
by Frank C. Hawthorne, John M. Hughes and Chi Ma
Crystals 2022, 12(9), 1221; https://doi.org/10.3390/cryst12091221 - 29 Aug 2022
Viewed by 2191
Abstract
The crystal structure of magnussonite, ideally Mn2+18[As3+6(Mn1+x)O18]2[(H2O, Clx, ☐) (H2O, ☐)]2, from Långban, Sweden, was refined to an R1-index of [...] Read more.
The crystal structure of magnussonite, ideally Mn2+18[As3+6(Mn1+x)O18]2[(H2O, Clx, ☐) (H2O, ☐)]2, from Långban, Sweden, was refined to an R1-index of 1.19% and the structure proposed by Moore and Araki (1979) is confirmed. Magnussonite has a densely packed structure of (Mnφn) polyhedra, φ = (O2−, H2O, Cl), and (As3+O3) triangular pyramids that is best envisaged as layers of polyhedra in the same way as many of the other manganese-arsenite-arsenate structures from Långban. There are two distinct layers in magnussonite; the two layers may be combined into a slab that stacks along the a-direction with rotations between adjacent slabs. A surprising feature of the dense-packed magnussonite atomic arrangement is an array of structural channels along [111] that contain much of the disorder that occurs in the magnussonite structure. The channels contain the partly occupied MX site on the central axis of the channel, and the CLW2 site (with extremely low occupancy), also on the central axis of the channel. The CLW2 site, previously unrecognized in the magnussonite structure, contains H2O, whereas the minor Cl in the structure resides in the CLW1 channel site, balancing the charge of the MX-site occupant. The MX site on the central axis of the channels displays a coordination known only in Långban minerals. In the local arrangement around the unoccupied MX site, the neighboring (As3+O3) groups project their associated stereoactive lone-pairs of electrons into the channel. Where the MX site is occupied by Mn, there are six lone-pairs of electrons pointing toward Mn; the 18-electron rule predicts/rationalizes formulae for this stable transition-metal cluster. The (As3+O3) groups and MX occupant form a [Mn+(As3+O3)6] arrangement in accord with the 18-electron rule where Mn+ contributes 6 3d electrons and the six lone-pairs of the [(As3+O3)6] arrangement contribute 12 electrons for a total of 18 electrons that form nine molecular orbitals that are metal-ligand bonds or non-bonding. Magnussonite and dixenite, another basic manganese-iron arsenate-arsenite-silicate mineral of the Långban-type deposits in Bergslagen, Sweden, are the only two minerals known with such local [M+(As3+O3)n] transition-metal clusters. The presence of these exotic clusters in structures containing densely packed Mn2+ octahedra is not understood at present. Full article
Show Figures

Figure 1

13 pages, 7105 KiB  
Article
Scaled in Cartesian Coordinates Ab Initio Molecular Force Fields of DNA Bases: Application to Canonical Pairs
by Igor Kochikov, Anna Stepanova and Gulnara Kuramshina
Molecules 2022, 27(2), 427; https://doi.org/10.3390/molecules27020427 - 10 Jan 2022
Viewed by 1783
Abstract
The model of Regularized Quantum Mechanical Force Field (RQMFF) was applied to the joint treatment of ab initio and experimental vibrational data of the four primary nucleobases using a new algorithm based on the scaling procedure in Cartesian coordinates. The matrix of scaling [...] Read more.
The model of Regularized Quantum Mechanical Force Field (RQMFF) was applied to the joint treatment of ab initio and experimental vibrational data of the four primary nucleobases using a new algorithm based on the scaling procedure in Cartesian coordinates. The matrix of scaling factors in Cartesian coordinates for the considered molecules includes diagonal elements for all atoms of the molecule and off-diagonal elements for bonded atoms and for some non-bonded atoms (1–3 and some 1–4 interactions). The choice of the model is based on the results of the second-order perturbation analysis of the Fock matrix for uncoupled interactions using the Natural Bond Orbital (NBO) analysis. The scaling factors obtained within this model as a result of solving the inverse problem (regularized Cartesian scale factors) of adenine, cytosine, guanine, and thymine molecules were used to correct the Hessians of the canonical base pairs: adenine–thymine and cytosine–guanine. The proposed procedure is based on the block structure of the scaling matrix for molecular entities with non-covalent interactions, as in the case of DNA base pairs. It allows avoiding introducing internal coordinates (or coordinates of symmetry, local symmetry, etc.) when scaling the force field of a compound of a complex structure with non-covalent H-bonds. Full article
Show Figures

Figure 1

21 pages, 248827 KiB  
Article
High-Pressure Phases of SnO and PbO: A Density Functional Theory Combined with an Evolutionary Algorithm Approach
by Long Truong Nguyen and Guy Makov
Materials 2021, 14(21), 6552; https://doi.org/10.3390/ma14216552 - 1 Nov 2021
Cited by 5 | Viewed by 2490
Abstract
Tin monoxide, SnO, and its analog, lead monoxide, PbO, have the same tetragonal P4/nmm structure, shaped by nonbonding dispersion forces and lone pairs. The high-pressure phases of SnO and PbO have been explored in several experimental and theoretical studies, with conflicting results. In [...] Read more.
Tin monoxide, SnO, and its analog, lead monoxide, PbO, have the same tetragonal P4/nmm structure, shaped by nonbonding dispersion forces and lone pairs. The high-pressure phases of SnO and PbO have been explored in several experimental and theoretical studies, with conflicting results. In this study, the high-pressure structures of SnO and PbO are investigated using density functional theory calculations combined with an evolutionary algorithm to identify novel high-pressure phases. We propose that the monoclinic P21/m SnO and orthorhombic Pmmn PbO phases, which are metastable at 0 GPa, are a slight rearrangement of the tetragonal P4/nmm-layered structure. These orthorhombic (and their closely related monoclinic) phases become more favored than the tetragonal phase upon compression. In particular, the transition pressures to the orthorhombic γ-phase Pmn21 of SnO/PbO and the monoclinic phase P21/m of SnO are found to be consistent with experimental studies. Two new high-pressure SnO/PbO polymorphs are predicted: the orthorhombic Pbcm phase of SnO and the monoclinic C2/m of PbO. These phases are stabilized in our calculations when P > 65 GPa and P > 50 GPa, respectively. The weakening of the lone pair localization and elastic instability are the main drivers of pressure-induced phase transitions. Modulations of the SnO/PbO electronic structure due to structural transitions upon compression are also discussed. Full article
Show Figures

Graphical abstract

12 pages, 2436 KiB  
Article
Anisotropic to Isotropic Transition in Monolayer Group-IV Tellurides
by Qian Wang, Liyuan Wu, Alexander Urban, Huawei Cao and Pengfei Lu
Materials 2021, 14(16), 4495; https://doi.org/10.3390/ma14164495 - 11 Aug 2021
Cited by 9 | Viewed by 2961
Abstract
Monolayer group-IV tellurides with phosphorene-derived structures are attracting increasing research interest because of their unique properties. Here, we systematically studied the quasiparticle electronic and optical properties of two-dimensional group-IV tellurides (SiTe, GeTe, SnTe, PbTe) using the GW and Bethe–Salpeter equation method. The calculations [...] Read more.
Monolayer group-IV tellurides with phosphorene-derived structures are attracting increasing research interest because of their unique properties. Here, we systematically studied the quasiparticle electronic and optical properties of two-dimensional group-IV tellurides (SiTe, GeTe, SnTe, PbTe) using the GW and Bethe–Salpeter equation method. The calculations revealed that all group-IV tellurides are indirect bandgap semiconductors except for monolayer PbTe with a direct gap of 1.742 eV, while all of them are predicted to have prominent carrier transport ability. We further found that the excitonic effect has a significant impact on the optical properties for monolayer group-IV tellurides, and the predicted exciton binding energy is up to 0.598 eV for SiTe. Interestingly, the physical properties of monolayer group-IV tellurides were subject to an increasingly isotropic trend: from SiTe to PbTe, the differences of the calculated quasiparticle band gap, optical gap, and further exciton binding energy along different directions tended to decrease. We demonstrated that these anisotropic electronic and optical properties originate from the structural anisotropy, which in turn is the result of Coulomb repulsion between non-bonding electron pairs. Our theoretical results provide a deeper understanding of the anisotropic properties of group-IV telluride monolayers. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

29 pages, 4011 KiB  
Article
Are Superconductivity Mechanisms a Matter for Chemists?
by Michel Pouchard and Antoine Villesuzanne
Condens. Matter 2020, 5(4), 67; https://doi.org/10.3390/condmat5040067 - 27 Oct 2020
Cited by 3 | Viewed by 3089
Abstract
From a tight-binding approach to the instability of nonbonding electronic states, along a double-well potential, we consider here how the coupling of these states with a phonon mode can open a superconducting gap at the Fermi level. The alternation of broken- and unbroken-symmetry [...] Read more.
From a tight-binding approach to the instability of nonbonding electronic states, along a double-well potential, we consider here how the coupling of these states with a phonon mode can open a superconducting gap at the Fermi level. The alternation of broken- and unbroken-symmetry states, along the phonon breathing distortion, induces the mixing of band-edge states on a very short timescale, according to the noncrossing rule of chemists. We show that this mixing may generate cationic and anionic disproportionation. The negative U mechanism is thus justified here, leading to the mixing of occupied and unoccupied pair states, for the opening of a 2Δ superconducting gap. The closeness of broad σ* and narrow π* bands in the vicinity of the Fermi level should favor the superconducting phase over the insulating or metallic state, in agreement with Micnas et al.’s studies. We applied this approach to several families of superconducting materials, i.e., doped strontium titanate, high-TC cuprates and iron selenide. Full article
(This article belongs to the Section Superconductivity)
Show Figures

Graphical abstract

14 pages, 3329 KiB  
Article
Non-Covalent Interactions Involving Alkaline-Earth Atoms and Lewis Bases B: An ab Initio Investigation of Beryllium and Magnesium Bonds, B···MR2 (M = Be or Mg, and R = H, F or CH3)
by Ibon Alkorta and Anthony C. Legon
Inorganics 2019, 7(3), 35; https://doi.org/10.3390/inorganics7030035 - 5 Mar 2019
Cited by 21 | Viewed by 4075
Abstract
Geometries, equilibrium dissociation energies (De), intermolecular stretching, and quadratic force constants (kσ) determined by ab initio calculations conducted at the CCSD(T)/aug-cc-pVTZ level of theory, with De obtained by using the complete basis set (CBS) extrapolation [CCSD(T)/CBS [...] Read more.
Geometries, equilibrium dissociation energies (De), intermolecular stretching, and quadratic force constants (kσ) determined by ab initio calculations conducted at the CCSD(T)/aug-cc-pVTZ level of theory, with De obtained by using the complete basis set (CBS) extrapolation [CCSD(T)/CBS energy], are presented for the B···BeR2 and B···MgR2 complexes, where B is one of the following Lewis bases: CO, H2S, PH3, HCN, H2O or NH3, and R is H, F or CH3. The BeR2 and MgR2 precursor molecules were shown to be linear and non-dipolar. The non-covalent intermolecular bond in the B···BeR2 complexes is shown to result from the interaction of the electrophilic band around the Be atom of BeR2 (as indicated by the molecular electrostatic potential surface) with non-bonding electron pairs of the base, B, and may be described as a beryllium bond by analogy with complexes such as B···CO2, which contain a tetrel bond. The conclusions for the B···MgR2 series are similar and a magnesium bond can be correspondingly invoked. The geometries established for B···BeR2 and B···MgR2 can be rationalized by a simple rule previously enunciated for tetrel-bonded complexes of the type B···CO2. It is also shown that the dissociation energy, De, is directly proportional to the force constant, kσ, in each B···MR2 series, but with a constant of proportionality different from that established for many hydrogen-bonded B···HX complexes and halogen-bonded B···XY complexes. The values of the electrophilicity, EA, determined from the De for B···BeR2 complexes for the individual Lewis acids, A, reveal the order A = BeF2 > BeH2 > Be(CH3)2—a result that is consistent with the −I and +I effects of F and CH3 relative to H. The conclusions for the MgR2 series are similar but, for a given R, they have smaller electrophilicities than those of the BeR2 series. A definition of alkaline-earth non-covalent bonds is presented. Full article
(This article belongs to the Special Issue Halogen Bonding: Fundamentals and Applications)
Show Figures

Graphical abstract

17 pages, 1665 KiB  
Article
Crystallographic and Computational Characterization of Methyl Tetrel Bonding in S-Adenosylmethionine-Dependent Methyltransferases
by Raymond C. Trievel and Steve Scheiner
Molecules 2018, 23(11), 2965; https://doi.org/10.3390/molecules23112965 - 13 Nov 2018
Cited by 38 | Viewed by 4583
Abstract
Tetrel bonds represent a category of non-bonding interaction wherein an electronegative atom donates a lone pair of electrons into the sigma antibonding orbital of an atom in the carbon group of the periodic table. Prior computational studies have implicated tetrel bonding in the [...] Read more.
Tetrel bonds represent a category of non-bonding interaction wherein an electronegative atom donates a lone pair of electrons into the sigma antibonding orbital of an atom in the carbon group of the periodic table. Prior computational studies have implicated tetrel bonding in the stabilization of a preliminary state that precedes the transition state in SN2 reactions, including methyl transfer. Notably, the angles between the tetrel bond donor and acceptor atoms coincide with the prerequisite geometry for the SN2 reaction. Prompted by these findings, we surveyed crystal structures of methyltransferases in the Protein Data Bank and discovered multiple instances of carbon tetrel bonding between the methyl group of the substrate S-adenosylmethionine (AdoMet) and electronegative atoms of small molecule inhibitors, ions, and solvent molecules. The majority of these interactions involve oxygen atoms as the Lewis base, with the exception of one structure in which a chlorine atom of an inhibitor functions as the electron donor. Quantum mechanical analyses of a representative subset of the methyltransferase structures from the survey revealed that the calculated interaction energies and spectral properties are consistent with the values for bona fide carbon tetrel bonds. The discovery of methyl tetrel bonding offers new insights into the mechanism underlying the SN2 reaction catalyzed by AdoMet-dependent methyltransferases. These findings highlight the potential of exploiting these interactions in developing new methyltransferase inhibitors. Full article
(This article belongs to the Special Issue Tetrel Bonds)
Show Figures

Graphical abstract

15 pages, 2496 KiB  
Article
An Ab Initio Investigation of the Geometries and Binding Strengths of Tetrel-, Pnictogen-, and Chalcogen-Bonded Complexes of CO2, N2O, and CS2 with Simple Lewis Bases: Some Generalizations
by Ibon Alkorta and Anthony C. Legon
Molecules 2018, 23(9), 2250; https://doi.org/10.3390/molecules23092250 - 4 Sep 2018
Cited by 49 | Viewed by 4942
Abstract
Geometries, equilibrium dissociation energies (De), and intermolecular stretching, quadratic force constants (kσ) are presented for the complexes B⋯CO2, B⋯N2O, and B⋯CS2, where B is one of the following Lewis bases: CO, [...] Read more.
Geometries, equilibrium dissociation energies (De), and intermolecular stretching, quadratic force constants (kσ) are presented for the complexes B⋯CO2, B⋯N2O, and B⋯CS2, where B is one of the following Lewis bases: CO, HCCH, H2S, HCN, H2O, PH3, and NH3. The geometries and force constants were calculated at the CCSD(T)/aug-cc-pVTZ level of theory, while generation of De employed the CCSD(T)/CBS complete basis-set extrapolation. The non-covalent, intermolecular bond in the B⋯CO2 complexes involves the interaction of the electrophilic region around the C atom of CO2 (as revealed by the molecular electrostatic surface potential (MESP) of CO2) with non-bonding or π-bonding electron pairs of B. The conclusions for the B⋯N2O series are similar, but with small geometrical distortions that can be rationalized in terms of secondary interactions. The B⋯CS2 series exhibits a different type of geometry that can be interpreted in terms of the interaction of the electrophilic region near one of the S atoms and centered on the C axis of CS2 (as revealed by the MESP) with the n-pairs or π-pairs of B. The tetrel, pnictogen, and chalcogen bonds so established in B⋯CO2, B⋯N2O, and B⋯CS2, respectively, are rationalized in terms of some simple, electrostatically based rules previously enunciated for hydrogen- and halogen-bonded complexes, B⋯HX and B⋯XY. It is also shown that the dissociation energy De is directly proportional to the force constant kσ, with a constant of proportionality identical within experimental error to that found previously for many B⋯HX and B⋯XY complexes. Full article
(This article belongs to the Special Issue Tetrel Bonds)
Show Figures

Graphical abstract

13 pages, 3104 KiB  
Article
Electrostatic Potential and a Simple Extended Electric Dipole Model of Hydrogen Fluoride as Probes of Non-Bonding Electron Pairs in the Cyclic Ethers 2,5-Dihydrofuran, Oxetane and Oxirane
by J. Grant Hill and Anthony C. Legon
Crystals 2017, 7(9), 261; https://doi.org/10.3390/cryst7090261 - 25 Aug 2017
Cited by 1 | Viewed by 4951
Abstract
The electrostatic potential near to the oxygen atom in each of the cyclic ethers 2,5-dihydrofuran, oxetane and oxirane has been calculated by using a distributed multipole analysis (DMA) of each molecule. The electrostatic potential energy V(φ) of a unit non-perturbing [...] Read more.
The electrostatic potential near to the oxygen atom in each of the cyclic ethers 2,5-dihydrofuran, oxetane and oxirane has been calculated by using a distributed multipole analysis (DMA) of each molecule. The electrostatic potential energy V(φ) of a unit non-perturbing positive charge was calculated (via the DMA of the cyclic ether molecule) as a function of the angle φ between the C2 axis of the cyclic ether and a vector of length r from the O atom to the unit charge. The resulting potential energy functions each has two equivalent minima. The angles φmin at the minima are compared with the angles φ0 and φe made by the O⋯H bond with the C2 axes in the cyclic ether⋯HF complexes, as determined by rotational spectroscopy and ab initio calculations at the CCSD(T)-F12c/cc-pVTZ-F12 level of theory, respectively. An electrostatic model of cyclic ether⋯HF complexes in which the DMA of the cyclic ether interacts with a simple extended electric dipole representation of HF is also used to calculate the variation of the potential energy VHF(φ) of the HF molecule with φ. The angles φmin generated by this model are also compared with φ0 and φe. The extent to which the electrostatic potential and the extended electric dipole HF model can be used as probes for the directions of non-bonding electron pairs carried by O in these cyclic ethers is discussed. Full article
(This article belongs to the Special Issue Analysis of Halogen and Other σ-Hole Bonds in Crystals)
Show Figures

Figure 1

Back to TopTop