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Abstract: Generic polymer models capturing the chain connectivity and the non-bonded excluded-
volume interactions between polymer segments can be classified into hard- and soft-core models
depending on their non-bonded pair potential. Here we compared the correlation effects on the
structural and thermodynamic properties of the hard- and soft-core models given by the polymer
reference interaction site model (PRISM) theory, and found different behaviors of the soft-core models
at large invariant degree of polymerization (IDP) depending on how IDP is varied. We also proposed
an efficient numerical approach, which enables us to accurately solve the PRISM theory for chain
lengths as large as 106.

Keywords: generic polymer models; soft potentials; polymer reference interaction site model theory;
invariant degree of polymerization

While they do not correspond to any chemically specific polymer, generic polymer
models are widely used in theoretical and simulation studies in the field of polymer physics
as they capture two essential features of all polymers: chain connectivity and non-bonded
excluded-volume interactions. Compared to atomistic models that can represent specific
polymers used in experiments, molecular simulations of generic models can reach much
larger length scales and much longer time scales, and theoretical studies of generic models
can also be performed. Depending on whether or not the excluded-volume interactions
in generic models prevent complete overlapping of polymer segments, they can be clas-
sified into hard-core models (such as those based on the hard-sphere chain model, the
Kremer–Grest model [1], and the various self- and mutual-avoiding walk models on a
lattice) and soft-core models (such as those used in the dissipative particle dynamics (DPD)
simulation [2], fast Monte Carlo simulations [3–7], field-theoretic simulation (FTS) [8], vari-
ants of FTS under the partial saddle-point approximation [9], single-chain-in-mean-field
simulation [10] and hybrid particle field molecular dynamics simulation [11] both under
the quasi-instantaneous field approximation [10]). Taking the study of polymer melts as an
example, while hard-core models have been used in conventional molecular simulations
for a long time, they have the disadvantage that their chain lengths N used in such simu-
lations (as limited by the computational cost) are too short compared to those in typical
experiments; in other words, such conventional simulations significantly exaggerate the
fluctuations in polymer melts compared to experiments [6,7,12]. In contrast, simulations of
the more recently proposed soft-core models can readily reach the extent of fluctuations in
typical experiments by increasing the chain number density (or equivalently the segment
number density ρ at finite N) instead of N [6,7,12].

In this Letter we focus on a simple but important class of generic models for compress-
ible homopolymer melts (or equivalently homopolymer solutions in an implicit solvent)
in the continuum, with the excluded-volume interaction between polymer segments de-
scribed by a short-range, isotropic and purely repulsive pair potential βunb(r), where
β ≡ 1/kBT with kB being the Boltzmann constant and T the thermodynamic temperature
of the system; this is the basis of more complicated polymer models having attractions
and/or more species. The hard- and soft-core models can then be classified according to
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whether
∫

drβunb(|r|) diverges or not. This classification becomes clear after we write the
total dimensionless non-bonded interaction energy for a system of n chains each having
N segments in volume V under the commonly used pairwise additivity as

βUnb = ∑i ∑j>i βunb(|ri − rj|) =
(

ρ2/2
)∫

drdr’φ(r)βunb(
∣∣∣r− r’

∣∣∣)φ(r’)− (nN/2)βunb(0),

where ri denotes the spatial position of the ith segment in the system, φ(r) ≡ ∑nN
i=1 δ(r− ri)/ρ

is the segment volume fraction at r, and the last term deducting the self-interaction of seg-
ments gives an unimportant constant; while molecular simulations of this system can be
performed at finite ρ ≡ nN/V for any βunb(r) (along with a chain-connectivity model),
for a homogeneous system (i.e., φ(r) = 1) the widely used polymer self-consistent field
(SCF) theory [13] gives the dimensionless internal energy per chain due to the non-bonded
interaction βUnb/n = (Nρ/2)

∫
drβunb(|r|) − (N/2)βunb(0) (due to its mean-field ap-

proximation that neglects the system fluctuations and correlations), which diverges if∫
drβunb(|r|) does (i.e., for the hard-core models). It is then clear that the SCF theory can

only be applied to soft-core models, where one can define the dimensionless excluded-
volume interaction parameter ε > 0 via unb(r) = εu0(r) with the normalized pair potential
u0(r) satisfying

∫
drβu0(|r|) = 1. Another necessary condition for applying the SCF theory

(i.e., having finite βUnb/n) is ε ∝ ρ−1.
Here we compare the correlation effects on the structural and thermodynamic proper-

ties of hard- and soft-core generic polymer models, which has rarely been reported [14], to
further reveal their differences. For this purpose we choose the polymer reference inter-
action site model (PRISM) theory proposed by Schweizer and Curro [15], which has been
applied to many polymeric systems, including homopolymer melts, solutions, blends, block
copolymers, nanocomposites, polyelectrolytes, etc. [16–19] It can be considered as the most
successful molecular-level theory to date for studying the correlations in homogeneous
polymeric systems.

For the above homopolymer melts, the PRISM equation is given by

ĥ = Nω̂ĉ
(

Nω̂ + ρĥ
)

, (1)

where h(r) is the interchain total segment pair correlation function (PCF) with r ≡ r/σ and σ
the segment diameter (i.e., the range of βunb(r)), ω(r) is the normalized
(i.e., 4π

∫ ∞
0 drr2ω(r) = 1) intrachain segment PCF, c(r) is the interchain direct segment PCF,

f̂ ≡ (4π/q)
∫ ∞

0 drr f (r) sin(qr) denotes the 3D Fourier transform of a radial function f (r)
with q being the wavenumber (in units of 1/σ), and ρ ≡ nNσ3/V is the dimensionless
segment number density. For given N, ρ and ω, to solve for both h and c, a closure provid-
ing an approximate relation between them is needed; here we take the commonly used
Percus–Yevick (PY) closure [20]

c(r) =
[
1− exp

(
βunb(r)

)]
(1 + h(r)), (2)

which works well for our class of generic models where βunb(r) is short-range and
purely repulsive.

To be more specific, we consider two commonly used generic polymer models: the
tangent hard-sphere chain (THSC) and the DPD models; the former is a hard-core model
that uses exp

(
−βub(r)

)
= δ(r− 1)/4π with βub(r) specifying the dimensionless bonded

potential between two adjacent segments on the same chain and the hard-sphere (HS)
potential βuHS(r)→ ∞ for r < 1 and 0 otherwise as βunb(r), and the latter is a soft-core
model that uses βub(r) = 2r2 and the DPD potential βuDPD(r) = (a/2)(1− r)2 for r < 1
and 0 otherwise as βunb(r) with the dimensionless interaction parameter a = 15ε/π = 75/ρ
chosen to mimic the compressibility of water [2]. In the thermodynamic limit, the structural
and thermodynamic properties of these two models are controlled only by N and ρ; typically,
molecular simulations of the DPD model uses ρ = 3 or 5.



Polymers 2023, 15, 1180 3 of 9

Finally, we note that ω̂ is needed as an input for PRISM calculations. While in general the
chain conformations characterized by ω̂ depend on ρ, for simplicity here we use the ideal-chain

conformations by setting ω̂ to ω̂id =
[

N − B̃(q)
(

2 + NB̃(q)− 2B̃N(q)
)]

/N2
(

1− B̃(q)
)2

with B̃(q) ≡
∫

dr exp(iq·r) exp
(
−βub(|r|)

)
/
∫

dr exp
(
−βub(|r|)

)
= sin q/q for the THSC

model and exp
(
−q2/8

)
for the DPD model, where r ≡ r/σ, q is the wave vector for the 3D

Fourier transform, and q=|q|.
For the two generic models that we consider here, the PY closure gives c(r ≥ 1) = 0.

Since all previously reported numerical methods for PRISM calculations [21–24] are not
optimal in this case, we first propose an efficient numerical approach as follows. We
uniformly discretize the real-space interval [0, 1] into m subintervals (thus [0, rc] into
M ≡ mrc subintervals) each of length ∆r ≡ 1/m, where rc � 1 denotes the real-space
cut-off, and take c(ri ≡ i∆r) (i = 0, . . . , m−1 for the DPD model and i = 0, . . . , m with
rm = 1− for the THSC model) as the independent variables to be solved. Our approach has
three steps:

I. Given the initial guess of the independent variables and c(r ≥ 1) = 0, for the DPD

model we calculate ĉ(qj ≡ j∆q) =
(
4π/qj

)∫ rc
0 drrc(r) sin

(
qjr
)

(j = 1, . . . , M−1)
via the discrete sine transform of type I (DST) [25], which has the computational
complexity of O(MlnM) and gives ∆q = mπ/M, the reciprocal-space cut-off
qc = qM = mπ and ĉ(qc) = 0; for the THSC model, due to the discontinuities
in both c(r) and its 1st-order derivative at r = 1, we use an auxiliary function
c̃(r) ≡ c(r)− c1 − c′1(r− 1) for r ≤ 1− and c(r) otherwise with c1 ≡ c(r = 1−) and
c′1 ≡ (dc/dr)(r = 1−) (calculated via the fourth-order backward finite-difference for-
mula [26]), which is continuous in both its value and 1st-order derivative, to calculate
ĉ
(
qj
)
=
(
4π/qj

)(∫ r̄c
0 drrc̃(r̄) sin

(
qj r̄
)
+
{

c1
(
sin qj − qj cos qj

)
+ c′1

[
2
(
cos qj − 1

)
/qj + sin qj

]}
/q2

j

)
(j = 1, . . . , M) via the DST, which gives ĉ(qc) = [8((−1)m − 1)c′1

−4(−1)mπ2m2c1]/π3m4. We also calculate ĉ0 ≡ ĉ(q0) = 4π
∫ 1

0 drr2c(r) for the

DPD model and ĉ0 = 4π
∫ 1−

0 drr2c(r) for the THSC model via the Romberg inte-
gration (RI) [27].

II. We calculate γ̂(qj) =
[

N2ω̂2(qj)/
(

1− Nρω̂(qj)ĉ(qj)
)
− 1
]
ĉ(qj) (j = 0, . . . , M) obtained

from Equation (1) with γ(r) ≡ h(r)− c(r) being the interchain indirect segment PCF (note
that γ̂c ≡ γ̂(qc) = 0 for the DPD model while γ̂c 6= 0 for the THSC model), then for the

DPD model γ(rj) =
(

1/2π2rj

)∫ qc
0 dqqγ̂ sin

(
qrj

)
(j = 1, . . . , M−1) via the DST (which gives

γ(rc) = 0); for the THSC model, we use another auxiliary function γ̃(q) ≡ γ̂− γ̂c to calcu-

late γ(rj) =
(

1/2π2rj

)[∫ qc
0 dqqγ̃(q) sin

(
qrj

)
− (−1)jπm2γ̂c/j

]
(j = 1, . . . , M) via the DST,

which gives γ(rc) = −(−1)jm3γ̂c/2πM2. We also calculate γ(r0) =
(
1/2π2)∫ qc

0 dqq2γ̂ for
both models via the RI.

III. We calculate h(ri) = γ(ri) + c(ri) (i = 0, . . . , m–1 for the DPD model and i = 0, . . . , m for
the THSC model), then use the residual errors of Equation (2) (which becomes h(ri) = −1
for the THSC model) to converge the independent variables via the Anderson mixing [28],
which has the computational complexity of O(m) and can quickly converge a large set of
nonlinear equations to a high accuracy.

We use the convergence criterion of εc < 10−10 with εc denoting the maximum absolute
value of the residual errors of the PY closure over all ri (i = 0, . . . , m–1 for the DPD model
and i = 0, . . . , m for the THSC model), and choose the values of m (=4096 for the THSC
model and 512 for the DPD model) and rc (≈ 10

√
N if N < 100 and 2

√
N otherwise, rounded

to the nearest integer, to capture the correlation-hole effect [29]) such that the discretization
errors are comparable to εc. Our numerical approach has the least number of independent
variables to be iteratively solved, greatly reduces m (thus M) both by analytically treating
the discontinuities in the THSC model and by taking the inverse Fourier transform only
for γ̂ (which decays toward 0 with increasing q much faster than both ĉ and ĥ), and is
essential for us to accurately solve the PRISM-PY theory for N as large as 106 (where for the
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THSC model M is about 8.2 × 106!). To the best of our knowledge, analytically treating the
discontinuities caused by the HS potential has not been reported in numerical calculations
of even the widely studied Ornstein–Zernike (OZ) equation [30] (to which Equation (1)
reduces for N = 1); in Supplemental Material we show that our numerical approach gives
several orders of magnitude more accurate results than pyPRISM [19], a recently developed
Python-based open-source framework for PRISM calculations.

In the limit of N→∞ and σ→0 at finite root-mean-square end-to-end distance of the
ideal chain Re,0 ≡

√
N − 1σ, the THSC model becomes the hard-core Gaussian thread

model [31] (HC CGC-δ, where Re,0 is taken as the unit of length); to compare the PRISM-PY
results of these two models, we define two dimensionless parameters: C0 ≡ N2 ĉ0σ3/Re,0

3

and the invariant degree of polymerization [32] N ≡
(
nRe,0

3/V
)2 ; N controls the fluctu-

ations in polymer melts, and for the THSC model it is easy to show that N ∝ N at large
N. Figure 1a shows how C0 varies with N for the THSC and HC CGC-δ models; for the
latter model, N is the only parameter, the PRISM-PY equation is given by Equation (18) in
our previous work [14] and the corresponding numerical results for N ≥ 100 are shown
in figure 8b there. We see that, while −C0 increases monotonically with increasing N for
the HC CGC-δ model, it exhibits a minimum for the THSC model. At given N due to its
N→∞ the HC CGC-δ model corresponds to the limit of ρ =

√
NN/(N − 1)3/2 → 0 of the

THSC model as implied in Figure 1a. At large N , we see that −C0 ∝
√
N in all cases. This

is in accordance with an asymptotic value of ĉ0 < 0 at given ρ for the THSC model, while
ĉ0 → 0 for the HC CGC-δ model. Figure 1a also shows that the DPD model at ρ = 3 gives
qualitatively the same behavior of C0 vs. N as that for the THSC model.
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With the normalized isothermal compressibility κT ≡ ρcκT/β = 1/
(

1−
√
NC0

)
given

by the compressibility equation, where ρc ≡ n/V is the chain number density and
κT ≡ −(∂V/∂P)n,β/V is the isothermal compressibility with P denoting the system pres-
sure, Figure 1b presents essentially the same data as in Figure 1a, but in a way that can be
compared with real polymers used in experiments. As shown in figure 2 of our previous
work [14], κTN ≈ 1.38 for polyethylene (at 180 ◦C) and 0.119 for polystyrene (at 280 ◦C),
independent of their N ≥103; this is consistent with −C0 ∝

√
N at large N shown in

Figure 1a. On the other hand, while κTN ∝ N is expected for very small N , the smallest
N (given by N = 2) is about 0.0025, 0.090 and 0.95, respectively, for the THSC model at
ρ = 0.1 and 0.6 and the DPD model at ρ = 3. Clearly, both hard- and soft-core models can
be used to describe the excluded-volume interactions in real polymers, and experimental
values of κT can be achieved by adjusting ρ, for example, in the THSC and DPD models.
We attribute the largest κT at the same N given by the HC CGC-δ model to its σ→0, and
note that the DPD model at ρ = 3 is actually “harder” (i.e., more difficult to compress) than
the hard-core models studied here.
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Figure 2. (a) Semi-logarithmic plot of the normalized isothermal compressibility κT and logarithmic
plot of the difference between (b) the excess (virial) pressure Pex and (c) the excess internal energy
per chain uc,ex due to the interchain interactions given by the PRISM-PY calculations and that by the
PRISM-RPA calculations of the DPD model at various chain lengths N. The k-value gives the slope of
the corresponding straight line. See the main text for more details.

Figure 1c shows that at large N , the dimensionless excess (virial) pressure due to
the interchain repulsion βRe,0

3Pex = (2π/3)
[
NN2/(Re,0/σ)3

]
(h(r = 1) + 1) scales with

N 3/2
for the THSC model; this is due to the same scaling of Re,0

3 with N and also found
for the HC CGC-δ model (where βRe,0

3Pex = −C0N/2). We also see that the HC CGC-δ
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model gives a much smaller βRe,0
3Pex than the THSC model at the same N , again due to

its σ→0. Figure 1c further shows that at large N , the DPD model at ρ = 3 gives the same
scaling of βRe,0

3Pex = −(2π/3)
[
NN2/(Re,0/σ)3

] ∫ 1
0 drr3(h(r) + 1)(dβuDPD(r)/dr) with

N as the hard-core models; at the same N , it has even the largest βRe,0
3Pex, in accordance

with its smallest κT shown in Figure 1b.
Note that for both the THSC and DPD models, N is varied by changing N at fixed

ρ in Figure 1, which makes N and N to be approximately on the same order; it is there-
fore very difficult, if possible at all, to reach via this way in molecular simulations even
a relatively small N -value of 104 used in experiments. As aforementioned, molecular
simulations of soft-core models can readily reach N -values used in experiments by increas-
ing ρ at fixed N [6,7,12]. For the DPD model at large ρ, βuDPD(r) = (75/2ρ)(1− r)2 ≈ 0
and the PY closure approaches the random-phase approximation (RPA) closure [33,34]
cRPA(r) = −βuDPD(r), which gives cRPA

0 = −75/2ρ and ĉRPA
0 = −5π/ρ independent of N.

We then obtain κRPA
T = 1/(1 + 5πN) from the compressibility equation. Figure 2a shows

κT vs. 1/ρ obtained via the compressibility equation from our PRISM-PY calculations of the
DPD model at various N, where each curve exhibits a minimum with its location shifting
to smaller 1/ρ with increasing N and the intercept of each (extrapolated) curve with the
left axis (i.e., in the limit of ρ→ ∞ ) gives the corresponding κRPA

T . Clearly, the difference
between κT and κRPA

T is entirely due to that between the PY and RPA closures.
A C0 vs. N plot (not shown) can be obtained from Figure 2a for the DPD model.

In particular, the RPA closure gives −CRPA
0 = 5πN/

√
N , indicating that −C0 ∝ N−1/2

at large N ; this is in clear contrast to −C0 ∝ N 1/2
for the hard-core models and the

DPD model at ρ = 3 shown in Figure 1a, but consistent with the soft-core Gaussian
thread (SC CGC-δ) model (which is equivalent to the well-known Edwards model [35])
shown in figure 8a of our previous work [14], where N→∞ and σ→0 at finite Re,0 and
βunb(r) =

(
κ/N2ρc

)
δ(r) is used with a finite dimensionless parameter κ > 0 controlling

the repulsion strength between polymer segments. The behavior of soft-core models at
large N , therefore, depends on how N is varied, i.e., whether by changing N at fixed ρ
(thus the excluded-volume interaction parameter ε is fixed) or by changing ρ at fixed N
(thus ε is also varied as ∝ ρ−1); in the former case correlations exist even in the limit of
N→∞, while in the latter case the SCF theory becomes exact in the limit of ρ→ ∞ (at finite
N) where neither fluctuations nor correlations exist.

As aforementioned, with increasing ρ at fixed N, the PY closure approaches the RPA closure,
which gives ĉRPA = −(5π/ρ)βû0 thus ĥRPA = −5πN2(ω̂DPD

id
)2

βû0/ρ
(
1 + 5πNω̂DPD

id βû0
)

according to Equation (1). In the limit of ρ→ ∞ , we have cRPA(r)→ 0 and hRPA(r)→ 0 ,
thus the SCF results of βσ3PSCF

ex /ρ = 5π/2 and βuSCF
c,ex /N = 5π/2 independent of N, where

βuc,ex = 75πN
∫ 1

0 drr2(h(r) + 1)(1− r)2 denotes the dimensionless excess internal energy
per chain due to the interchain repulsion. On the other hand, the differences between the
SCF and RPA results as given by βσ3(PSCF

ex − PRPA
ex

)
/aρ = −(2π/3)ρ

∫ 1
0 drr3hRPA(r)(1− r)

and β
(
uSCF

c,ex − uRPA
c,ex
)
/aN = −πρ

∫ 1
0 drr2hRPA(r)(1− r)2 are independent of ρ.

Finally, Figure 2b shows that βσ3(Pex − PRPA
ex

)
/aρ ∝ ρ−1 at large ρ; note that Pex > PRPA

ex
at large ρ while Pex < PRPA

ex at small ρ, which leads to the cusp of each curve shown in the
figure with its location (i.e., the ρ-value at which Pex = PRPA

ex ) increasing with increasing
N (the cusp at N = 1 is located around ρ = 2.6). We also note that βσ3(PSCF

ex − PRPA
ex

)
/aρ

≈ 0.0327, 0.119 and 0.182 for N = 1, 10 and 100. Therefore, with increasing ρ, both βσ3Pex/ρ
and βσ3PRPA

ex /ρ approach βσ3PSCF
ex /ρ. Similar results are found for β

(
uc,ex − uRPA

c,ex
)
/aN

as shown in Figure 2c, where uc,ex < uRPA
c,ex at large ρ while uc,ex > uRPA

c,ex at small ρ (with
the cusp at N = 1 located around ρ = 2.2); also note that β

(
uSCF

c,ex − uRPA
c,ex
)
/aN ≈ 0.144,

0.253 and 0.322 for N=1, 10 and 100. In particular, the PRISM-RPA theory with ω̂DPD
id is

equivalent to the Gaussian-fluctuation theory neglecting non-Gaussian fluctuations in the
system and gives a correction ∝ ρ−1 to the SCF result, while the PRISM-PY theory captures
non-Gaussian fluctuations in an approximate way and gives a leading-order correction
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∝ ρ−2 to the Gaussian-fluctuation result. These are consistent with our previous study of
compressible [36] and incompressible [37] homopolymer melts using fast lattice Monte
Carlo simulations [6,7]. Given this and the agreement of our Figure 1b with experimental
results at large N , we do not expect that the use of more accurate ω̂ can qualitatively
change our PRISM-PY results here.

To summarize, we have compared the correlation effects on the structural and ther-
modynamic properties of hard-core models (i.e., the THSC model and its limit of N→∞ at
finite Re,0 (or equivalently ρ→ 0 at given N ), the HC CGC-δ model [31]) and soft-core
models (i.e., the DPD model and its limit of N→∞ at finite Re,0, the Edwards model [35])
for compressible homopolymer melts (or equivalently homopolymer solutions in an im-
plicit solvent) given by the PRISM-PY theory. The behavior of soft-core models at large
N depends on how N is varied, i.e., whether by changing N at fixed ρ (thus ε is fixed)
or by changing ρ at fixed N (thus ε is also varied as being inversely proportional to ρ).
In the former case, correlations exist even in the limit of N→∞, and both the hard-core
and the DPD models give −C0 ∝ N 1/2

at large N , consistent with real polymers used in
experiments; it is, however, very difficult to reach via this way in molecular simulations
even a relatively small N -value of 104 used in experiments. This problem is solved in
the latter case, where the widely used polymer SCF theory becomes exact in the limit of
ρ→ ∞ (at finite N), the Gaussian-fluctuation theory gives a correction ∝ ρ−1 to the SCF
result, and the PRISM-PY theory captures non-Gaussian fluctuations in the system in an
approximate way and gives a leading-order correction ∝ ρ−2 to the Gaussian-fluctuation
result, consistent with our previous simulations [36,37]. The soft-core models, however,

give−C0 ∝ N−1/2
at largeN , suggesting that it would be difficult, if possible at all, for the

various recently proposed simulation methods [3–11] to capture both the fluctuations and
correlations in experimental systems. We also proposed an efficient numerical approach,
which enables us to accurately solve the PRISM-PY theory for N as large as 106; numerical
calculations of such theories can, therefore, capture both the fluctuations and correlations
in experimental systems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15051180/s1, Figure S1: Logarithmic plot of the numerical
errors given by pyPRISM and our approach for the HS model; Table S1: List of variables used in the
main text.
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