Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (156)

Search Parameters:
Keywords = non-protein thiols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1359 KiB  
Article
Dysregulation of Purinergic Signaling Sustains Chronic Inflammation and Oxidative Imbalance in Patients After PitNET Surgical Resection
by Geile Fistarol, Luiz A. de Oliveira, Gilnei B. da Silva, Daiane Manica, Marceli C. Hanauer, Paula Dallagnol, Rafael A. Narzetti, Maria L. Bergamini, Vitória C. de Melo, Tais Vidal, Micheli M. Pillat, Jussara de Lima, Marcelo L. V. da Cunha, Marielle L. Makiyama, Filomena Marafon, Aniela P. Kempka, Ariane Zamoner and Margarete D. Bagatini
Int. J. Mol. Sci. 2025, 26(14), 6890; https://doi.org/10.3390/ijms26146890 - 17 Jul 2025
Viewed by 234
Abstract
Pituitary neuroendocrine tumors (PitNETs) are the most common intracranial tumors. Evidence suggests that these types of tumors may have high recurrence rates. In this context, the purinergic system, oxidative stress, and inflammation are important signaling pathways involved in the cancer’s pathophysiology. This study [...] Read more.
Pituitary neuroendocrine tumors (PitNETs) are the most common intracranial tumors. Evidence suggests that these types of tumors may have high recurrence rates. In this context, the purinergic system, oxidative stress, and inflammation are important signaling pathways involved in the cancer’s pathophysiology. This study aimed to evaluate the sociodemographic and diagnostic profiles, as well as assess the purinergic signaling, immunological, and redox profiles, of patients after PitNET resection. We collected sociodemographic data and the patients’ diagnostic profiles. We also collected blood samples to analyze glycemia, triglycerides, albumin, and ATP levels. The ectonucleotidase activity was determined in peripheral blood mononuclear cells (PBMCs). In addition, we evaluated their redox and immunological profiles. There was a prevalence of gonadotropic macroadenoma derived from PIT-1 cells. We found that patients included in the PitNET group had increased glycemia, serum ATP levels, and ATP hydrolysis in PBMCs. Analyzing their immunological profiles, we found that patients had increased levels of IL-6, IL-10, and TNF, while the IL-27 level was decreased. Regarding their redox profiles, PitNET patients had increased levels of ROS and protein carbonylation. Unexpectedly, patients also showed increased levels of non-protein thiols (NPSHs), total thiols (PSHs), and ascorbic acid. Thus, the dysregulation of purinergic signaling sustained chronic inflammation and oxidative imbalance in PitNET patients for a long time after surgical resection. These data suggest that patients with PitNETs require long-term accompanying to prevent cancer recurrence prognosis. The biomarkers highlighted in this study may be good tools to help the medical approaches. Full article
(This article belongs to the Special Issue Advances in the Purinergic System)
Show Figures

Figure 1

24 pages, 2919 KiB  
Article
The Identification of Proteolytic Substrates of Calpain-5 with N-Terminomics
by Jozsef Gal, Antoine Dufour, Daniel Young, Eddy S. Yang and James W. Geddes
Int. J. Mol. Sci. 2025, 26(13), 6459; https://doi.org/10.3390/ijms26136459 - 4 Jul 2025
Viewed by 345
Abstract
Calpain-5/CAPN5 is a calcium-activated, non-lysosomal cysteine (thiol) protease. The substrate repertoire of CAPN5 is not known. Calpains catalyze limited proteolysis of their substrates, generating neo-N-termini that correspond to internal residues of their nascent substrate proteins. To identify such neo-N-termini generated by CAPN5, we [...] Read more.
Calpain-5/CAPN5 is a calcium-activated, non-lysosomal cysteine (thiol) protease. The substrate repertoire of CAPN5 is not known. Calpains catalyze limited proteolysis of their substrates, generating neo-N-termini that correspond to internal residues of their nascent substrate proteins. To identify such neo-N-termini generated by CAPN5, we employed an N-terminomics approach called TAILS (Terminal amine isotopic labeling of substrates) to quantitatively compare the N-terminal peptides detected in parental and CAPN5-deficient SH-SY5Y neuroblastoma cells. Thirty neo-N-termini corresponding to 29 protein groups and 24 unique proteins were detected to be depleted in the CAPN5−/− cells. A subset of the identified putative substrates was further studied with CAPN5 co-immunoprecipitation, in vitro calcium-induced CAPN5 proteolysis assay, and their cellular fragmentation patterns were compared in parental and CAPN5-deficient SH-SY5Y cells. Here, we provide evidence for CAPN5-mediated proteolysis of the synaptic proteins DLGAP4, IQSEC1 and MPDZ, the neurodegeneration-related EWS, hnRNPU, TFG and UGP2, the DNA replication regulator MCM3, and the neuronal differentiation regulator LMTK1. Our data provide new relevance for neovascular inflammatory vitreoretinopathy (NIV), a progressive eye disease caused by pathogenic mutations in CAPN5. Data are available via ProteomeXchange with identifier PXD064313. Full article
Show Figures

Figure 1

13 pages, 1066 KiB  
Article
Comparative Study of Two Immunisation Protocols in Goats Using Thiol-Sepharose Chromatography-Enriched Extracts from Adult Haemonchus contortus Worms
by Magnolia M. Conde-Felipe, José Adrián Molina, Antonio Ruiz, Otilia Ferrer, Mª Cristina Del Rio, Emma Carmelo, Juan R. Hernández-Fernaud, Francisco Rodríguez and José Manuel Molina
Vaccines 2025, 13(7), 708; https://doi.org/10.3390/vaccines13070708 - 29 Jun 2025
Viewed by 374
Abstract
Background: A comparative analysis was conducted between two immunisation protocols using different amounts of protein extracts from adult Haemonchus contortus worms, purified by thiol-Sepharose chromatography (625 μg/animal vs. 200 μg/animal). These protocols involved either five or two inoculations of the immunogen, respectively. [...] Read more.
Background: A comparative analysis was conducted between two immunisation protocols using different amounts of protein extracts from adult Haemonchus contortus worms, purified by thiol-Sepharose chromatography (625 μg/animal vs. 200 μg/animal). These protocols involved either five or two inoculations of the immunogen, respectively. Methods: To evaluate the level of immunoprotection, animals were challenged with L3 of H. contortus two weeks after the last inoculation of the immunogen and humanely sacrificed at 8 weeks post-infection. Parasitological, biopathological, and serological parameters were monitored through the experiment. Parasite burden, abomasal-specific antibody responses, and histopathological changes were determined at the end of the trial. Results: The immunisation protocols resulted in similar reductions in cumulative faecal egg counts (60.5–64.9%) and the total worm burden (47.5–50%) compared to non-immunized (control) animals. Overall, these parasitological data showed an early recovery of the haematocrit (PCV) after challenge in the immunised groups relative to control. Similarly, levels of H. contortus-specific IgG and IgA antibodies increased in both the serum and gastric mucus of immunised groups. Conclusions: These findings represent a further step towards the potential application of this type of immunogen under field conditions, as protective responses (associated with a reduction in faecal egg output) were achieved using a simplified protocol, with lower immunogen doses and fewer inoculations required to induce immunoprotection, thereby mitigating the pathological effects of the parasite and reducing its ability to spread and infect susceptible hosts. Full article
(This article belongs to the Special Issue Infectious Diseases and Immunization in Animals)
Show Figures

Figure 1

22 pages, 2363 KiB  
Article
Modulation of the Antioxidant System of Caco-2 Cells in the Presence of Aflatoxin B1, Ochratoxin A, and Ferulic Acid
by Andreea-Luminița Rădulescu, Roua Gabriela Popescu, Mihaela Balas, George Cătălin Marinescu and Anca Dinischiotu
Toxins 2025, 17(6), 274; https://doi.org/10.3390/toxins17060274 - 30 May 2025
Viewed by 670
Abstract
Food security and food safety are major aspects for human and animal health, yet mycotoxins contaminate 60–80% of food crops before and after harvest, elevating the risk of chronic toxicity and cancer development. This study investigates the potential of ferulic acid (FA) as [...] Read more.
Food security and food safety are major aspects for human and animal health, yet mycotoxins contaminate 60–80% of food crops before and after harvest, elevating the risk of chronic toxicity and cancer development. This study investigates the potential of ferulic acid (FA) as an antioxidant against mycotoxin-induced oxidative stress in Caco-2 cells exposed to aflatoxin B1 (AFB1) and ochratoxin A (OTA) for 24 and 48 h. The effects on the degree of lipid peroxidation and non-enzymatic and enzymatic mechanisms against oxidative stress were evaluated. FA appears to mitigate oxidative stress by modulating lipid and protein oxidation, decreasing the level of 4-hydroxy-2-nonenal (4-HNE), increasing superoxide dismutase (SOD) activity, and preserving thiol groups by scavenging reactive oxygen species (ROS). Additionally, the reduction in polyubiquitinated Nrf2 level, and higher SOD activity, suggest that FA stabilizes Nrf2, delaying its degradation and reinforcing its antioxidant role. These findings indicate that FA partially counteracts mycotoxin-induced oxidative damage, highlighting the need for further investigation into its long-term effects. Full article
(This article belongs to the Special Issue Co-Occurrence of Mycotoxins and Their Combined Toxicity)
Show Figures

Figure 1

12 pages, 2196 KiB  
Article
Effect of Glyoxal on Plasma Membrane and Cytosolic Proteins of Erythrocytes
by Michal Kopera, Malgorzata Adamkiewicz and Anna Pieniazek
Int. J. Mol. Sci. 2025, 26(9), 4328; https://doi.org/10.3390/ijms26094328 - 2 May 2025
Cited by 1 | Viewed by 456
Abstract
Glyoxal (GO) is a reactive dicarbonyl derived endogenously from sugars and other metabolic reactions within cells. Numerous exogenous sources of this compound include tobacco smoking, air pollution, and food processing. GO is toxic to cells mainly due to its high levels and reactivity [...] Read more.
Glyoxal (GO) is a reactive dicarbonyl derived endogenously from sugars and other metabolic reactions within cells. Numerous exogenous sources of this compound include tobacco smoking, air pollution, and food processing. GO is toxic to cells mainly due to its high levels and reactivity towards proteins, lipids, and nucleic acids. We speculate that glyoxal could be involved in erythrocyte protein damage and lead to cell dysfunction. The osmotic fragility and level of amino and carbonyl groups of membrane proteins of erythrocytes incubated for 24 h with GO were identified. The amount of thiol, amino, and carbonyl groups was also measured in hemolysate proteins after erythrocyte treatment with GO. In hemolysate, the level of glutathione, non-enzymatic antioxidant capacity (NEAC), TBARS, and activity of antioxidant enzymes was also determined. The study’s results indicated that GO increases erythrocyte osmotic sensitivity, alters the levels of glutathione and free functional groups in hemolysate proteins, and modifies the activity of antioxidant enzymes. Our findings indicate that GO is a highly toxic compound to human erythrocytes. Glyoxal at concentrations above 5 mM can cause functional changes in erythrocyte proteins and disrupt the oxidoreductive balance in cells. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 4857 KiB  
Review
A Review of Novel Antioxidant Ergothioneine: Biosynthesis Pathways, Production, Function and Food Applications
by Haijing Zhang, Zheng Liu, Zhong Wang, Ziteng Lei, Yan Jia, Wei Chen, Ruoyu Shi and Chengtao Wang
Foods 2025, 14(9), 1588; https://doi.org/10.3390/foods14091588 - 30 Apr 2025
Viewed by 2139
Abstract
Ergothioneine (EGT), a natural thiol compound with potent antioxidant properties, exhibits diverse biological functions, including anti-inflammatory, neuroprotective, and cardioprotective effects. Despite its promising health and food applications, current production methods, such as mushroom-based liquid fermentation, are hindered by low yields and complex processes. [...] Read more.
Ergothioneine (EGT), a natural thiol compound with potent antioxidant properties, exhibits diverse biological functions, including anti-inflammatory, neuroprotective, and cardioprotective effects. Despite its promising health and food applications, current production methods, such as mushroom-based liquid fermentation, are hindered by low yields and complex processes. Advances in biosynthetic fermentation, including heterologous expression of key pathway genes and optimization of cultivation conditions, offer promising solutions to these challenges. Recent discoveries, such as the catalytic efficiency of mononuclear non-heme iron enzymes like Egt1 and EgtB, have streamlined EGT biosynthetic pathways, reducing steps and increasing yield. The compound’s active transport via the OCTN1 protein facilitates its distribution across tissues, enhancing its therapeutic efficacy and potential in functional foods. Currently employed as an antioxidant and antimelanogenic agent in aquatic products, EGT holds vast potential for broader applications in food systems. This review explores the advancements in EGT production and biosynthesis while emphasizing its prospects as a safe, versatile, and effective natural ingredient for health and industrial applications. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

20 pages, 979 KiB  
Article
Role of Microencapsulated Essential Oil and Pepper Resin in the Diet of Cows in the Third Lactation Phase on Immunological Pathways
by Karoline Wagner Leal, Marta Lizandra do Rego Leal, Gabriel S. Klein, Andrei Lucas R. Brunetto, Guilherme Luiz Deolindo, Camila Eduarda Justen, Matheus Dellaméa Baldissera, Tainara L. Santos, Daniela Zanini, Rafael C. de Araujo and Aleksandro Schafer da Silva
Vet. Sci. 2025, 12(4), 344; https://doi.org/10.3390/vetsci12040344 - 8 Apr 2025
Viewed by 756
Abstract
The objective was to determine whether dairy cows may activate traditional and alternative inflammatory pathways by consuming a combination of a phytogenic diet (essential oil and pepper resin). Twenty pregnant Jersey cows in the final (third) lactation phase (260 days in milk) were [...] Read more.
The objective was to determine whether dairy cows may activate traditional and alternative inflammatory pathways by consuming a combination of a phytogenic diet (essential oil and pepper resin). Twenty pregnant Jersey cows in the final (third) lactation phase (260 days in milk) were divided into two groups: control, with no additive consumption, and test, with the addition of the phytogenic to the concentrate portion of the diet (150 mg/day/kg dry matter). Blood samples were collected on experimental days 1, 7, 14, 21, 28, 35, and 42 by coccygeal vein puncture to assess the complete blood count, serum biochemistry of levels of total protein, albumin, and globulin, as well as carbohydrate metabolism (glucose), lipid metabolism (cholesterol and triglycerides), protein metabolism (urea), activities of hepatic enzymes (gamma-glutamyl transferase (GGT) and aspartate aminotransferase (AST)), cytokine levels (interleukins IL-1β, IL-6, and IL-10), antioxidant response [thiobarbituric acid reactive substances (TBARS), reactive oxygen species (ROS), total thiol (PSH), and non-protein thiol (NPSH), and glutathione S(GST)], cholinergic system [total cholinesterase (ChE) and acetylcholinesterase (AChE)], purinergic signaling [NTPDase, 5′ectonucleotidase and adenosine deaminase (ADA)], and energetic metabolism enzymes [creatine kinase (CK), pyruvate kinase (PK), and adenylate kinase (AK)]. Productive performance was assessed through feed intake and milk production. The results revealed that the use of phytogenic compounds significantly influenced the cholinergic system and purinergic signaling associated with immunology. The reduction in cholinesterase (ChE) activity and the increase in acetylcholinesterase (AChE) activity in lymphocytes suggest the modulation of the cholinergic system, enhancing the immune response. Furthermore, the elevated activity of adenosine deaminase (ADA) in lymphocytes and platelets, together with increased ATP and ADP hydrolysis in platelets, indicates the beneficial regulation of purinergic signaling, potentially contributing to inflammatory modulation. These effects were accompanied by a lower production of pro-inflammatory cytokines (IL-1β and IL-6) and a higher production of IL-10, reinforcing an anti-inflammatory profile. The reduced leukocyte and lymphocyte counts may reflect a lower inflammatory demand, while the increased levels of NPSH and GST antioxidants suggest cellular protection. Despite these physiological changes, productive performance and milk quality remained unaffected. In summary and practical terms, including this additive in the cows’ diet benefits the cow’s health in the final third of gestation when the animal already has a reduced immune response due to advanced gestation. Full article
(This article belongs to the Special Issue Advancing Ruminant Health and Production: Alternatives to Antibiotics)
Show Figures

Figure 1

12 pages, 3402 KiB  
Article
DNA-Engineered Coating for Protecting the Catalytic Activity of Platinum Nanozymes in Biological Systems
by Lei Ren, Xia Liu, Shuai Tang, Yue Wang, Miao Yang, Linjie Guo, Jiang Li, Kai Jiao and Lihua Wang
Biosensors 2025, 15(4), 205; https://doi.org/10.3390/bios15040205 - 21 Mar 2025
Cited by 1 | Viewed by 635
Abstract
Nanozymes, exemplified by metal nanoparticles, have shown promise in the fields of biological diagnostics and therapeutics. However, their practical application is often hindered by aggregation or deactivation in complex biological systems. Here, we develop a DNA-engineered nanozyme coating to preserve the peroxidase-like catalytic [...] Read more.
Nanozymes, exemplified by metal nanoparticles, have shown promise in the fields of biological diagnostics and therapeutics. However, their practical application is often hindered by aggregation or deactivation in complex biological systems. Here, we develop a DNA-engineered nanozyme coating to preserve the peroxidase-like catalytic activity of platinum nanoparticles in complex biological environments. We employed thiol-modified single-stranded DNA to coat the platinum nanoparticles through metal–sulfur interaction. We found that the negatively charged DNA coating prevents the aggregation of platinum nanoparticles in high-salt environments. Moreover, the DNA coating functions as a molecular sieve, inhibiting non-specific protein adsorption while preserving substrate access to the catalytic interface, thus sustaining high peroxidase-like catalytic activity in serum. As a proof of concept, we demonstrate miRNA detection in serum samples with a detection limit of 1 fM. This approach offers a versatile strategy for molecular diagnostics of nanozymes in complex biological environments. Full article
(This article belongs to the Section Nano- and Micro-Technologies in Biosensors)
Show Figures

Figure 1

22 pages, 5612 KiB  
Article
The Effect of Disulfiram and N-Acetylcysteine, Potential Compensators for Sulfur Disorders, on Lipopolysaccharide-Induced Neuroinflammation Leading to Memory Impairment and the Metabolism of L-Cysteine Disturbance
by Małgorzata Iciek, Anna Bilska-Wilkosz, Magdalena Górny, Marek Bednarski, Małgorzata Zygmunt, Anthea Miller, Noemi Nicosia, Giorgia Pia Lombardo, Paula Zammit and Magdalena Kotańska
Molecules 2025, 30(3), 578; https://doi.org/10.3390/molecules30030578 - 27 Jan 2025
Viewed by 1219
Abstract
Background: The role of sulfur-containing drugs, disulfiram (DSF) and N-acetylcysteine (NAC), in alleviating neuroinflammation is poorly understood. The objective of this study was to examine the effect of DSF and NAC on memory and on the metabolism of L-cysteine and inflammation-related parameters in [...] Read more.
Background: The role of sulfur-containing drugs, disulfiram (DSF) and N-acetylcysteine (NAC), in alleviating neuroinflammation is poorly understood. The objective of this study was to examine the effect of DSF and NAC on memory and on the metabolism of L-cysteine and inflammation-related parameters in the cerebral cortex of rats in a model of neuroinflammation induced by the administration of lipopolysaccharide (LPS). Methods: All the treatments were administered intraperitoneally for 10 days (LPS at a dose of 0.5 mg/kg b.w., DSF at a dose of 100 mg/kg b.w, and NAC at a dose of 100 mg/kg b.w.). Behavior was evaluated by the novel object recognition (NOR) test and object location (OL) test, and the level of brain-derived neurotrophic factor (BDNF) was assayed to evaluate neuronal functioning. Cerebral cortex homogenates were tested for hydrogen sulfide (H2S), sulfane sulfur, sulfates, non-protein sulfhydryl groups (NPSH), nitric oxide (NO), and reactive oxygen species (ROS) by biochemical analysis. Results: Neither DSF nor NAC alleviated LPS-induced memory disorders estimated by the NOR test and OL test. The studied compounds also did not affect significantly the levels of BDNF, ROS, NO, H2S, and sulfane sulfur in the cerebral cortex. However, we observed an increase in sulfate concentration in brain tissues after LPS treatment, while DSF and NAC caused an additional increase in sulfate concentration. On the other hand, our study showed that the administration of DSF or NAC together with LPS significantly enhanced the cortical level of NPSH, of which glutathione is the main component. Conclusions: Our study did not confirm the suggested potential of DSF and NAC to correct memory disorders; however, it corroborated the notion that they reduced oxidative stress induced by LPS by increasing the NPSH level. Additionally, our study showed an increase in sulfate concentration in the brain tissues after LPS treatment, which means the upregulation of sulfite and sulfate production in inflammatory conditions. Full article
Show Figures

Figure 1

11 pages, 1502 KiB  
Article
Rapid and Efficient Synthesis of Succinated Thiol Compounds via Maleic Anhydride Derivatization
by Hiroshi Yamaguchi, Hikari Sugawa, Himeno Takahashi and Ryoji Nagai
Molecules 2025, 30(3), 571; https://doi.org/10.3390/molecules30030571 - 27 Jan 2025
Viewed by 1541
Abstract
Succination is a non-enzymatic post-translational modification of cysteine (Cys) residues, resulting in the formation of S-(2-succino)cysteine (2SC). While hundreds of 2SC-modified proteins have been identified and are associated with the dysfunction of proteins, the underlying molecular mechanisms remain poorly understood. Conventional methods [...] Read more.
Succination is a non-enzymatic post-translational modification of cysteine (Cys) residues, resulting in the formation of S-(2-succino)cysteine (2SC). While hundreds of 2SC-modified proteins have been identified and are associated with the dysfunction of proteins, the underlying molecular mechanisms remain poorly understood. Conventional methods for synthesizing succinated compounds, such as 2SC, often require prolonged reaction times and/or HCl hydrolysis. In this study, we present a rapid and efficient synthesis method for succinated compounds using maleic anhydride, enabling more effective in vivo studies of succination mechanisms. This method was tested on thiol compounds with varying molecular weights, including Cys derivatives, Cys-containing peptides, and reduced bovine serum albumin. By incubating these compounds in an aqueous buffer with maleic anhydride dissolved in an organic solvent like diethyl ether, we achieved significantly improved succination efficiency compared to conventional methods. The succination efficiency using maleic anhydride surpassed that of fumaric acid or maleic acid. Notably, this approach facilitated the succination of amino acids, peptides, and proteins within minutes at 25 °C, without requiring acid hydrolysis. Our findings provide a straightforward, time-efficient strategy for synthesizing succinated thiol compounds, offering a valuable tool to enhance the understanding of succination’s molecular mechanisms and its role in protein function and dysfunction. Full article
(This article belongs to the Special Issue 10th Anniversary of the Bioorganic Chemistry Section of Molecules)
Show Figures

Figure 1

18 pages, 2114 KiB  
Article
Antioxidant and Anti-Inflammatory Effects of Vanillic Acid in Human Plasma, Human Neutrophils, and Non-Cellular Models In Vitro
by Anna Magiera, Joanna Kołodziejczyk-Czepas and Monika Anna Olszewska
Molecules 2025, 30(3), 467; https://doi.org/10.3390/molecules30030467 - 22 Jan 2025
Cited by 9 | Viewed by 1998
Abstract
Vanillic acid (VA) is a dietary benzoic acid derivative, flavoring agent, and food stabilizer. In this study, the antioxidant and anti-inflammatory potential of VA was explored in vitro and ex vivo in human immune cells and non-cellular models. In neutrophils, VA significantly downregulated [...] Read more.
Vanillic acid (VA) is a dietary benzoic acid derivative, flavoring agent, and food stabilizer. In this study, the antioxidant and anti-inflammatory potential of VA was explored in vitro and ex vivo in human immune cells and non-cellular models. In neutrophils, VA significantly downregulated the fMLP-induced oxidative burst and the generation of reactive oxygen species (ROS); it also suppressed the release of pro-inflammatory cytokines (TNF-α, IL-8) and the tissue-remodeling enzyme elastase-2 (ELA-2) in cells stimulated with LPS and fMLP+cytochalasin B. Additionally, VA showed good biocompatibility with human neutrophils and peripheral blood mononuclear cells (PBMCs) across the tested concentrations of 1–50 µg/mL. Furthermore, VA at 1–5 μg/mL enhanced the non-enzymatic antioxidant capacity of human plasma (NEAC) and prevented oxidative and nitrative damage to plasma proteins by protecting tyrosine moieties and thiols from peroxynitrite. VA also inhibited lipid peroxidation and the formation of thiobarbituric acid-reactive substances (at 50 μg/mL) and protein-bound carbonyls (at 5–50 μg/mL) in peroxynitrite-treated plasma. In non-cellular tests, VA acted as a hypochlorous acid and hydrogen peroxide scavenger and inhibited non-enzymatic protein glycation, outperforming the references Trolox and aminoguanidine. Along with existing data from animal models and studies on polyphenol intake, these results might support the synergic role of VA in dietary protection against chronic diseases related to oxidative stress and inflammation. Full article
(This article belongs to the Special Issue Bioactive Compounds from Foods for Health Benefits)
Show Figures

Figure 1

13 pages, 854 KiB  
Article
Impact of Ovarian Suspensory Ligament Rupture on Surgical Stress in Elective Ovariohysterectomy in Bitches
by Pauline Silva dos Santos, Victor Mendes de Oliveira, Keli Cristina Corbellini Oltramari, Vitória Santos Guimarães, Sarah Fernandes, Carla Eduarda dos Santos Ferreira, Agatha Costa Malinski, Vinícius Cardoso de Oliveira, Jéssica Corrêa, Izabelle Moutinho, Dalila Moter Benvegnú, Camila Dalmolin, Gabrielle Coelho Freitas and Fabíola Dalmolin
Vet. Sci. 2024, 11(12), 658; https://doi.org/10.3390/vetsci11120658 - 16 Dec 2024
Viewed by 1694
Abstract
Ovariohysterectomy (OVH) is a common procedure in bitches, where ovarian suspensory ligament (OSL) rupture facilitates hemostasis but may also have adverse effects. Given the importance of minimizing the surgical stress response, this study aimed to evaluate the impact of OSL rupture in 20 [...] Read more.
Ovariohysterectomy (OVH) is a common procedure in bitches, where ovarian suspensory ligament (OSL) rupture facilitates hemostasis but may also have adverse effects. Given the importance of minimizing the surgical stress response, this study aimed to evaluate the impact of OSL rupture in 20 healthy bitches undergoing elective open OVH; a celiotomy via the ventral midline was performed, and hemostasis achieved using bipolar coagulation, either with OSL rupture (OSL-R) or without (OSL-NR). Pain was assessed over 24 h post-surgery using the Visual Analogue Scale and the Short Form of the Glasgow Composite Measure Pain Scale. The physical parameters, complete blood count, glucose levels, erythrocyte sedimentation rate, and neutrophil oxidative and phagocytic functions were evaluated pre-surgery and at 6, 12, 24, and 48 h, as well as 10 days after. Oxidative metabolism was assessed through vitamin C and protein thiols, reduced glutathione, and thiobarbituric acid reactive substances. No differences in trans- and postoperative pain were observed between techniques, except for analgesic rescue rates. Differences were noted in the heart rate, total leukocyte count, segmented neutrophils, eosinophils, and monocytes. Both techniques resulted in low oxidative and phagocytic changes. Overall, OSL rupture appears to elicit a slightly more intense surgical stress response than the non-rupture technique. Full article
(This article belongs to the Section Veterinary Surgery)
Show Figures

Figure 1

22 pages, 2344 KiB  
Article
LncRNAs Involved in Antioxidant Response Regulation as Biomarkers of Gestational Diabetes: A Study on H19, MALAT1 and MEG3
by Jovana Stevanović, Uroš Petrović, Ana Penezić, Ognjen Radojičić, Daniela Ardalić, Milica Mandić, Vesna Mandić-Marković, Željko Miković, Miloš Brkušanin, Olgica Nedić and Zorana Dobrijević
Antioxidants 2024, 13(12), 1503; https://doi.org/10.3390/antiox13121503 - 10 Dec 2024
Cited by 1 | Viewed by 1087
Abstract
Recent findings highlighted the potential of long non-coding RNAs (lncRNAs) as novel indicators of gestational diabetes mellitus (GDM), as they demonstrate altered expression in metabolic disorders, oxidative stress (OS) and inflammation (IFM). The aim of this study was to evaluate the diagnostic potential [...] Read more.
Recent findings highlighted the potential of long non-coding RNAs (lncRNAs) as novel indicators of gestational diabetes mellitus (GDM), as they demonstrate altered expression in metabolic disorders, oxidative stress (OS) and inflammation (IFM). The aim of this study was to evaluate the diagnostic potential and prognostic significance of the OS/IFM-related lncRNAs H19, MALAT1 and MEG3 in GDM and their correlations with redox status-related parameters. The relative quantification of selected lncRNAs from peripheral blood mononuclear cells (PBMCs) of GDM patients and controls (n = 50 each) was performed by qPCR. The expression levels were tested for correlations with metal ion concentrations, NRF2 expression, activities of glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), serum thiol content, protein carbonyl level and thiobarbituric acid reactive substances. MALAT1 and H19 were significantly downregulated in GDM patients (p = 0.0095 and p = 0.012, respectively). A correlation was observed between H19 expression and zinc levels in both GDM patients and controls. MALAT1 expression positively correlated with NFE2L2 levels in GDM patients (p = 0.026), while H19 exhibited a positive correlation with GR activity in controls (p = 0.018) and an inverse correlation with SOD activity (p = 0.048). Our data show the disturbance of OS/IFM-lncRNAs in GDM pathogenesis and illustrate the biomarker potential of the analyzed lncRNAs, as well as of certain redox status parameters. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

18 pages, 5535 KiB  
Article
An In Vitro Strategy to Evaluate Ketoprofen Phototoxicity at the Molecular and Cellular Levels
by Klaudia Banach, Justyna Kowalska, Mateusz Maszczyk, Zuzanna Rzepka, Jakub Rok and Dorota Wrześniok
Int. J. Mol. Sci. 2024, 25(23), 12647; https://doi.org/10.3390/ijms252312647 - 25 Nov 2024
Cited by 1 | Viewed by 1204
Abstract
Phototoxicity is a significant problem that occurs in a large part of the population and is often caused by commonly used pharmaceuticals, including over-the-counter drugs. Therefore, testing drugs with photosensitizing potential is very important. The aim of this study is to analyze the [...] Read more.
Phototoxicity is a significant problem that occurs in a large part of the population and is often caused by commonly used pharmaceuticals, including over-the-counter drugs. Therefore, testing drugs with photosensitizing potential is very important. The aim of this study is to analyze the cytotoxicity and phototoxicity of ketoprofen towards human melanocytes and fibroblasts in three different treatment schemes in order to optimize the study. Cytometric tests (studies of viability, proliferation, intracellular thiol levels, mitochondrial potential, cell cycle, and DNA fragmentation), Western blot analysis (cytochrome c and p44/p42 protein levels), and confocal microscopy imaging were performed to assess the impact of the developed treatments on skin cells. Research on experimental schemes may help reduce or eliminate the risk of phototoxic reactions. In the case of ketoprofen, we found that the strongest phototoxic potential was exhibited in the treatment where the drug was present in the solution during the irradiation of cells, both pigmented and non-pigmented cells. These results indicate that the greatest risk of photosensitivity reactions related to ketoprofen occurs after direct contact with the drug and UV exposure. Full article
(This article belongs to the Special Issue Cutaneous Biology, Molecular Dermatology and Dermatopathology)
Show Figures

Figure 1

19 pages, 1264 KiB  
Review
Cysteine Thiol-Based Oxidative Post-Translational Modifications Fine-Tune Protein Functions in Plants
by Hongxin Li, Xiaoyun Wang, Ying Liu, Peiyang Zhang, Fuyuan Chen, Na Zhang, Bing Zhao and Yang-Dong Guo
Agronomy 2024, 14(12), 2757; https://doi.org/10.3390/agronomy14122757 - 21 Nov 2024
Viewed by 1417
Abstract
Post-translational modification is a prerequisite for the functions of intracellular proteins. Thiol-based oxidative post-translational modifications (OxiPTMs) mainly include S-sulfenylation, S-nitrosation, persulfidation, and S-glutathionylation. Reactive electrophilic species can reversibly or irreversibly oxidize redox-sensitive proteins, thereby exerting dual effects on plant growth, development, and environmental [...] Read more.
Post-translational modification is a prerequisite for the functions of intracellular proteins. Thiol-based oxidative post-translational modifications (OxiPTMs) mainly include S-sulfenylation, S-nitrosation, persulfidation, and S-glutathionylation. Reactive electrophilic species can reversibly or irreversibly oxidize redox-sensitive proteins, thereby exerting dual effects on plant growth, development, and environmental stress. Recent studies have shown that transcription factors (TFs) are main targets of OxiPTMs. The majority of TFs transmit redox signals by altering their transcriptional activity, while some non-transcription factors can also accept post-translational redox modifications. Here, we provide an overview of the known types of OxiPTMs, the reactive electrophilic species that induce OxiPTMs, and the significance of OxiPTMs in fine-tuning TF and non-TF proteins. This review will provide a more comprehensive understanding of the dynamic regulation of protein functions in response to stress. Full article
(This article belongs to the Special Issue Vegetable Adaptation and Mitigation of Abiotic Stress)
Show Figures

Figure 1

Back to TopTop