Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,097)

Search Parameters:
Keywords = non-CO2 effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4647 KB  
Article
Multi-Omics Analysis of the Co-Expression Features of Specific Neighboring Gene Pairs Suggests an Association with Catechin Regulation in Camellia sinensis
by Shuaibin Lian, Feixiang Ren, Shuanghui Cai, Zhong Wang, Youchao Tu, Ke Gong and Wei Zhang
Genes 2026, 17(1), 117; https://doi.org/10.3390/genes17010117 (registering DOI) - 22 Jan 2026
Abstract
Background/Objectives: The arrangement and positioning of genes on chromosomes are non-random in plant genomes. Adjacent gene pairs often exhibit similar co-expression patterns and regulatory mechanisms. However, the genomic and epigenetic features influencing such co-expression, particularly in perennial crops like tea (Camellia sinensis [...] Read more.
Background/Objectives: The arrangement and positioning of genes on chromosomes are non-random in plant genomes. Adjacent gene pairs often exhibit similar co-expression patterns and regulatory mechanisms. However, the genomic and epigenetic features influencing such co-expression, particularly in perennial crops like tea (Camellia sinensis), remain largely uncharacterized. Methods: Firstly, we identified 771 specific neighboring gene pairs (SNGs) in C. sinensis (YK10) and investigated the contributions of intergenic distance and gene length to SNGs’ co-expression. Secondly, we integrated multi-omics data including transcriptome, ATAC-seq, Hi-C and histone modification data to explore the factors influencing their co-expression. Thirdly, we employed logistic regression models to individually assess the contributions of nine factors—ATAC-seq, H3K27ac, Hi-C, GO, distance, length, promoter, enhancer, and expression level—to the co-expression of SNGs. Finally, by integrating co-expression networks with metabolic profiles, several transcription factors potentially involved in the regulation of catechin metabolic pathways were identified. Results: Intergenic distance was significantly negatively correlated with co-expression strength, while gene length showed a positive correlation. Furthermore, these two features exerted synergistic effects with threshold characteristics and functional significance. SNGs marked by either ATAC-seq or H3K27ac peaks displayed significantly higher expression levels, suggesting that epigenetic regulation promotes co-expression. In addition, correlation analysis revealed that the expression of certain SNGs was closely associated with catechin accumulation, particularly epicatechin gallate (EGC) and epigallocatechin gallate (EGCG), highlighting their potential role in modulating tissue-specific catechin levels. Conclusions: Collectively, this study reveals a multilayered regulatory framework governing SNG co-expression and provides theoretical insights and candidate regulators for understanding metabolic regulation in tea plants. Full article
(This article belongs to the Special Issue Genetics and Breeding of Tea Tree and Tea Plant)
Show Figures

Figure 1

26 pages, 1567 KB  
Article
Targeting Skin Aging Hallmarks In Vitro: Antioxidant, Anti-Inflammatory, and Anti-Senescence Effects of Phenolic-Rich Extracts from Cistus L. Species
by Mário Pedro Marques, Euclides Landim, Carla Varela, Ricardo M. F. da Costa, Joana Marques, Luís A. E. Batista de Carvalho, Ana Silva, Maria Teresa Cruz, Rebeca André, Patrícia Rijo, Maria Inês Dias, Aida Carvalho, Paulo J. Oliveira and Célia Cabral
Antioxidants 2026, 15(1), 149; https://doi.org/10.3390/antiox15010149 (registering DOI) - 22 Jan 2026
Abstract
Plant-based extracts are rich sources of phenolic compounds, which may act as skin antiaging mediators. Herein, Cistus albidus L. (Ca), Cistus ladanifer L. subsp. ladanifer (Cl) and Cistus salviifolius L. (Cs) were selected to test whether their phytochemical profile and bioactive potential align [...] Read more.
Plant-based extracts are rich sources of phenolic compounds, which may act as skin antiaging mediators. Herein, Cistus albidus L. (Ca), Cistus ladanifer L. subsp. ladanifer (Cl) and Cistus salviifolius L. (Cs) were selected to test whether their phytochemical profile and bioactive potential align to target human skin aging. Hydroethanolic extracts (HEs) were prepared and characterized using infrared vibrational spectroscopy (FTIR-ATR) and liquid chromatography–mass spectrometry (LC-MS). Non-toxic concentrations were screened, and cytoprotective and antioxidant effects were studied in tert-butyl hydroperoxide-stimulated normal human dermal fibroblasts (NHDFs). Lipopolysaccharide-stimulated RAW 264.7 macrophages were used to assess anti-inflammatory activity, the Organization for Economic Co-operation and Development (OECD) Test Guideline No. 439 was used to assess irritant effects, and the anti-senescence potential was assessed in etoposide-stimulated NHDFs. A series of enzymatic inhibition assays was performed. All extracts comprised ellagic acid derivatives, as well as myricetin and quercetin derivatives in Cs and Ca. The HE of Cs was also markedly composed of ligstroside. At non-toxic concentrations, cytoprotective effects were observed in NHDFs. However, only Cs and Cl exhibited significant antioxidant activity in these cells (p < 0.001 and p < 0.0001, respectively). In addition to that, Cl demonstrated highly significant anti-inflammatory (p < 0.0001) and anti-senescence (p < 0.0001) effects. Cs and Cl showed a remarkable potential to inhibit elastase; in addition, Cs also showed anti-hyaluronidase and anti-tyrosinase activities. Meaningfully, Cs and Cl extracts did not exhibit skin irritant effects. The unveiled potential of Cl in skin aging offset highlights the need to elucidate the detailed mechanisms of action, paving the way for the development of skin anti-aging formulations. Full article
(This article belongs to the Special Issue Natural Antioxidants for Cosmetic Applications)
21 pages, 1482 KB  
Article
Advancing a Sustainable Human–AI Collaboration Ecosystem in Interface Design: A User-Centered Analysis of Interaction Processes and Design Opportunities Based on Participants from China
by Chang Xiong, Guangliang Sang and Ken Nah
Sustainability 2026, 18(2), 1139; https://doi.org/10.3390/su18021139 (registering DOI) - 22 Jan 2026
Abstract
The application of Generative Artificial Intelligence (GenAI)—defined as a class of AI systems capable of autonomously generating new content such as images, texts, and design solutions based on learned data patterns—has become increasingly widespread in creative design. By supporting ideation, rapid trial-and-error, and [...] Read more.
The application of Generative Artificial Intelligence (GenAI)—defined as a class of AI systems capable of autonomously generating new content such as images, texts, and design solutions based on learned data patterns—has become increasingly widespread in creative design. By supporting ideation, rapid trial-and-error, and data-driven decision-making, GenAI enables designers to explore design alternatives more efficiently and enhances human–computer interaction experiences. In design practice, GenAI functions not only as a productivity-enhancing tool but also as a collaborative partner that assists users in visual exploration, concept refinement, and iterative development. However, users still face a certain learning curve before effectively adopting these technologies. Within the framework of human-centered artificial intelligence, contemporary design practices place greater emphasis on inclusivity across diverse user groups and on enabling intuitive “what-you-think-is-what-you-get” interaction experiences. From a sustainable design perspective, GenAI’s capabilities in digital simulation, rapid iteration, and automated feedback contribute to more efficient design workflows, reduced collaboration costs, and broader access to creative participation for users with varying levels of expertise. These characteristics play a crucial role in enhancing the accessibility of design resources and supporting the long-term sustainability of creative processes. Focusing on the context of China’s digital design industry, this study investigates the application of GenAI in design workflows through an empirical case study of Zhitu AI, a generative design tool developed by Beijing Didi Infinity Technology Development Co., Ltd. The study conducts a literature review to outline the role of GenAI in visual design processes and employs observation-based experiments and semi-structured interviews with users of varying levels of design expertise. The findings reveal key pain points across stages such as prompt formulation, secondary editing, and asset generation. Drawing on the Kano model, the study further identifies potential design opportunities and discusses their value in improving efficiency, supporting non-expert users, and promoting more sustainable and inclusive design practices. Full article
(This article belongs to the Section Sustainable Products and Services)
Show Figures

Figure 1

17 pages, 2407 KB  
Article
Solid Microneedles from Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate): A Solvent-Free, Biodegradable Platform for Drug Delivery
by Diana Araújo, Francisco Santos, Rui Igreja and Filomena Freitas
Pharmaceutics 2026, 18(1), 139; https://doi.org/10.3390/pharmaceutics18010139 (registering DOI) - 22 Jan 2026
Abstract
Background: Solid microneedles (MNs) are effective transdermal delivery devices but are commonly fabricated from metallic or non-biodegradable materials, raising concerns related to sustainability, waste management, and processing constraints. This study aimed to evaluate the suitability of the biodegradable biopolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PHBHVHHx) as [...] Read more.
Background: Solid microneedles (MNs) are effective transdermal delivery devices but are commonly fabricated from metallic or non-biodegradable materials, raising concerns related to sustainability, waste management, and processing constraints. This study aimed to evaluate the suitability of the biodegradable biopolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PHBHVHHx) as a structuring material for solvent-free fabrication of solid MN arrays and to assess their mechanical performance, insertion capability, and drug delivery potential. Methods: PHBHVHHx MN arrays were fabricated by solvent-free micromolding at 200 °C. The resulting MNs were morphologically characterized by scanning electron microscopy. Mechanical properties were assessed by axial compression testing, and insertion performance was evaluated using a multilayer Parafilm skin simulant model. Diclofenac sodium was used as a model drug and applied via surface coating using a FucoPol-based formulation. In vitro drug release was assessed in phosphate-buffered saline under sink conditions and quantified by UV–Vis spectroscopy. Results: PHBHVHHx MN arrays consisted of sharp, well-defined conical needles (681 ± 45 µm length; 330 µm base diameter) with micro-textured surfaces. The MNs withstood compressive forces up to 0.25 ± 0.03 N/needle and achieved insertion depths of approximately 396 µm in the Parafilm model. Drug-coated MNs retained adequate mechanical integrity and exhibited a rapid release profile, with approximately 73% of diclofenac sodium released within 10 min. Conclusions: The results demonstrate that PHBHVHHx is a suitable biodegradable thermoplastic for the fabrication of solid MN arrays via a solvent-free process. PHBHVHHx MNs combine adequate mechanical performance, reliable insertion capability, and compatibility with coated drug delivery, supporting their potential as sustainable alternatives to conventional solid MN systems. Full article
(This article belongs to the Special Issue Biomaterials for Skin Drug Delivery)
21 pages, 1022 KB  
Article
The Regulatory Role of Biochar in the Fate of Potassium Fertilizer and Potassium Uptake in Soybean Grown in Diverse Soils
by Liqun Xiu, Junqi Zhang, Lidan Wang, Sijia Wu, Yanan Chang, Xu Yang and Kai Guo
Agronomy 2026, 16(2), 267; https://doi.org/10.3390/agronomy16020267 (registering DOI) - 22 Jan 2026
Abstract
Biochar is known to enhance soil potassium (K) availability and promote plant K uptake; however, its influence on the transformation pathways of fertilizer potassium and the mechanisms regulating crop potassium accumulation remains insufficiently understood. This study conducted a pot experiment using three soil [...] Read more.
Biochar is known to enhance soil potassium (K) availability and promote plant K uptake; however, its influence on the transformation pathways of fertilizer potassium and the mechanisms regulating crop potassium accumulation remains insufficiently understood. This study conducted a pot experiment using three soil types—Albic, Brown, and Sandy soils—with different biochar application rates (0, 10, and 20 g·kg−1) in combination with potassium fertilizer, to systematically evaluate the regulation of soil K forms, K fertilizer transformation rates, K use efficiency, and K uptake and accumulation in soybeans. The results demonstrated that the combined application of biochar and K fertilizer significantly increased the contents of available, water-soluble, exchangeable, and non-exchangeable K across all three soils. At the highest biochar application rate (20 g·kg−1), available K increased by 15.37%, 16.78%, and 11.77% in the Albic, Sandy, and Brown soils, respectively, compared to the control. Furthermore, biochar altered the transformation pathways of fertilizer K; it consistently reduced the conversion rate of fertilizer K into exchangeable K across all soils, redirecting it toward the water-soluble and non-exchangeable K pools, thus functioning as a potassium “scheduling center”. Adsorption–desorption experiments revealed that biochar exhibits a strong multilayer adsorption capacity for K ions, with most of the adsorbed K not easily desorbed, providing mechanistic support for the observed shift in transformation pathways. In terms of K use efficiency, biochar reduced the K of agronomic efficiency (KAE) due to a “dilution effect” from its inherent K content. Under the high application rate (20 g·kg−1), the KAE decreased by 11.79% in Albic soil, 88.48% in Sandy soil, and 71.73% in Brown soil, while significantly increasing the partial factor productivity of K (PFPK) and apparent recovery efficiency of K (AREK). Ultimately, the co-application of biochar and K fertilizer significantly enhanced total K accumulation and seed yield in soybeans by increasing K concentrations in various plant parts and promoting dry matter accumulation. At the biochar application rate of 20 g·kg−1, the potassium accumulation and soybean yield under biochar treatment reached maximum increases of 70.77% (in Brown soil) and 42.63% (in Albic soil), respectively. This study demonstrates that biochar can synergistically reduce potassium (K) leaching and improve fertilizer use efficiency by regulating K transformation pathways. This provides a practical guideline for utilizing biochar as a dual-function amendment, which acts as both a supplemental K source and a soil conditioner, thereby supporting the development of more sustainable potassium management practices in diverse cropping systems. Full article
22 pages, 5497 KB  
Article
Numerical Study of Combustion in a Methane–Hydrogen Co-Fired W-Shaped Radiant Tube Burner
by Daun Jeong, Seongbong Ha, Jeongwon Seo, Jinyeol Ahn, Dongkyu Lee, Byeongyun Bae, Jongseo Kwon and Gwang G. Lee
Energies 2026, 19(2), 557; https://doi.org/10.3390/en19020557 (registering DOI) - 22 Jan 2026
Abstract
Three-dimensional computational fluid dynamics (CFD) simulation was performed using the eddy-dissipation concept coupled with detailed hydrogen oxidation kinetics and a reduced two-step methane mechanism for a newly proposed W-shaped radiant tube burner (RTB). The effects of the hydrogen volume fraction (0–100%) and excess [...] Read more.
Three-dimensional computational fluid dynamics (CFD) simulation was performed using the eddy-dissipation concept coupled with detailed hydrogen oxidation kinetics and a reduced two-step methane mechanism for a newly proposed W-shaped radiant tube burner (RTB). The effects of the hydrogen volume fraction (0–100%) and excess air ratio (0%, 10%, 20%) on the flame morphology, temperature distribution, and NOX emissions are systematically analyzed. The results deliver three main points. First, a flame-shape transformation was identified in which the near-injector flame changes from a triangular attached mode to a splitting mode as the mixture reactivity increases with the transition occurring at a characteristic laminar flame speed window of about 0.33 to 0.36 m/s. Second, NOX shows non-monotonic behavior with dilution, and 10% excess air can produce higher NOX than 0% or 20% because OH radical enhancement locally promotes thermal NO pathways despite partial cooling. Third, a multi-parameter coupling strategy was established showing that hydrogen enrichment raises the maximum gas temperature by roughly 100 to 200 K from 0% to 100% H2, while higher excess air improves axial temperature uniformity and can suppress NOX if over-dilution is avoided. These findings provide a quantitative operating map for balancing stability, uniform heating, and NOX–CO trade-offs in hydrogen-enriched industrial RTBs. Full article
Show Figures

Figure 1

12 pages, 680 KB  
Article
Clinical Audit of Autologous Platelet-Rich Fibrin Matrix with Local Antibiotic Therapy for Refractory Diabetic Foot Ulcers: 12-Month Outcomes from a Single Centre
by Upamanyu Nath, Iulia Valeria Rusu and Anand Pillai
BioMed 2026, 6(1), 5; https://doi.org/10.3390/biomed6010005 - 21 Jan 2026
Abstract
Background/Objectives: Diabetic Foot Ulceration (DFU) is one of the most debilitating and costly complications of diabetes mellitus, representing a significant cause of morbidity, disability, and healthcare burden worldwide. Refractory non-healing ulcers that fail to respond to conventional therapies require novel adjuvant treatment modalities. [...] Read more.
Background/Objectives: Diabetic Foot Ulceration (DFU) is one of the most debilitating and costly complications of diabetes mellitus, representing a significant cause of morbidity, disability, and healthcare burden worldwide. Refractory non-healing ulcers that fail to respond to conventional therapies require novel adjuvant treatment modalities. This clinical audit aimed to evaluate the long-term clinical outcomes of an autologous, bioactive platelet-rich fibrin (PRF) matrix combined with topical gentamicin in patients with chronic, non-healing DFUs. Methods: A retrospective observational audit was conducted, involving eleven patients with refractory DFUs who underwent adjunctive treatment with a PRF matrix (Arthrozheal®) and co-applied gentamicin. Patients were followed at three-week intervals using standardised wound imaging (Silhouette® 3D) to assess healing parameters. Long-term follow-up data, evaluating healing durability and complications, is presented. Results: All patients completed the treatment protocol, with significant reductions in mean wound area (87.9%), perimeter, depth, and volume (all p < 0.05). Epithelialised tissue increased from 24.7% to 82.8%. At 12 months, 81.8% of patients maintained complete ulcer healing. Two patients experienced complications: one ulcer recurrence requiring surgical debridement and one unrelated amputation due to osteomyelitis. Conclusions: The combination of autologous PRF matrix and gentamicin demonstrated promising results in promoting sustained healing of refractory DFUs with minimal complications. These findings support further investigation in larger, controlled studies to validate this biologic-antimicrobial approach as a safe, effective, and durable therapy for complex diabetic wounds. Full article
20 pages, 2026 KB  
Article
Temporal Urinary Metabolomic Profiling in ICU Patients with Critical COVID-19: A Pilot Study Providing Insights into Prognostic Biomarkers via 1H-NMR Spectroscopy
by Emir Matpan, Ahmet Tarik Baykal, Lütfi Telci, Türker Kundak and Mustafa Serteser
Curr. Issues Mol. Biol. 2026, 48(1), 112; https://doi.org/10.3390/cimb48010112 - 21 Jan 2026
Abstract
Although the impact of COVID-19, caused by SARS-CoV-2, may appear to have diminished in recent years, the emergence of new variants still continues to cause significant global health and economic challenges. While numerous metabolomic studies have explored serum-based alterations linked to the infection, [...] Read more.
Although the impact of COVID-19, caused by SARS-CoV-2, may appear to have diminished in recent years, the emergence of new variants still continues to cause significant global health and economic challenges. While numerous metabolomic studies have explored serum-based alterations linked to the infection, investigations utilizing urine as a biological matrix remain notably limited. This gap is especially significant given the potential advantages of urine, a non-invasive and easily obtainable biofluid, in clinical settings. In the context of patients in intensive care units (ICUs), temporal monitoring through such non-invasive samples may offer a practical and effective approach for tracking disease progression and tailoring therapeutic interventions. This study retrospectively explored the longitudinal metabolomic alterations in COVID-19 patients admitted to the ICU, stratified into three prognostic outcome groups: healthy discharged (HD), polyneuropathic syndrome (PS), and Exitus. A total of 32 urine samples, collected at four distinct time points per patient during April 2020 and preserved at −80 °C, were analyzed by proton nuclear magnetic resonance (1H-NMR) spectroscopy for comprehensive metabolic profiling. Statistical evaluation using two-way ANOVA and ANOVA–Simultaneous Component Analysis (ASCA) identified significant prognostic variations (p < 0.05) in the levels of taurine, 3-hydroxyvaleric acid and formic acid. Complementary supervised classification via random forest modeling yielded moderate predictive performance with out-of-bag error rate of 40.6% based on prognostic categories. Particularly, taurine, 3-hydroxyvaleric acid and formic acid levels were highest in the PS group. However, no significant temporal changes were observed for any metabolite in analyses. Additionally, metabolic pathway analysis conducted using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database highlighted the “taurine and hypotaurine metabolism” pathway as the most significantly affected (p < 0.05) across prognostic classifications. Harnessing urinary metabolomics, as indicated in our preliminary study, could offer valuable insights into the dynamic metabolic responses of ICU patients, thereby facilitating more personalized and responsive critical care strategies in COVID-19 patients. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

44 pages, 5917 KB  
Article
Post-Collisional Cu-Au Porphyry and Associated Epithermal Mineralisation in the Eastern Mount Isa Block: A New Exploration Paradigm for NW Queensland
by Kenneth D. Collerson and David Wilson
Geosciences 2026, 16(1), 46; https://doi.org/10.3390/geosciences16010046 - 20 Jan 2026
Abstract
Post-collisional Cu-Au-Ni-Co-Pt-Pd-Sc porphyry [Duck Creek porphyry system (DCPS)] with overlying Au-Te-Bi-W-HRE epithermal mineralisation [Highway epithermal system (HES)] has been discovered in the core of the Mitakoodi anticline, southwest of Cloncurry. Xenotime and monazite geochronology indicate mineralisation occurred between ~1490 and 1530 Ma. Host [...] Read more.
Post-collisional Cu-Au-Ni-Co-Pt-Pd-Sc porphyry [Duck Creek porphyry system (DCPS)] with overlying Au-Te-Bi-W-HRE epithermal mineralisation [Highway epithermal system (HES)] has been discovered in the core of the Mitakoodi anticline, southwest of Cloncurry. Xenotime and monazite geochronology indicate mineralisation occurred between ~1490 and 1530 Ma. Host rock lithologies show widespread potassic and/or propylitic to phyllic alteration. Paragenesis of porphyry sulphides indicates early crystallisation of pyrite, followed by chalcopyrite, with bornite forming by hydrothermal alteration of chalcopyrite. Cu sulphides also show the effect of supergene oxidation alteration with rims of covellite, digenite and chalcocite. Redox conditions deduced from the V/Sc systematics indicate that the DCPS contains both highly oxidised (typical of porphyries) and reduced lithologies, typical of plume-generated tholeiitic and alkaline suites. Ni/Te and Cu/Te systematics plot within the fields defined by epithermal and porphyry deposits. Duck Creek chalcophile and highly siderophile element (Cu, MgO and Pd) systematics resemble data from porphyry mineral systems, at Cadia, Bingham Canyon, Grasberg, Skouries, Kalmakyr, Elaisite, Assarel and Medet. SAM geophysical inversion models suggest the presence of an extensive porphyry system below the HES. A progressive increase in molar Cu/Au ratios with depth from the HES to the DCPS supports this conclusion. Three metal sources contributed to the linked DCPS-HES viz., tholeiitic ferrogabbro, potassic ultramafic to mafic system and an Fe and Ca-rich alkaline system. The latter two imparted non-crustal superchondritic Nb/Ta ratios that are characteristic of many deposits in the eastern Mount Isa Block. The associated tholeiite and alkaline magmatism reflect mantle plume upwelling through a palaeo-slab window that had accreted below the eastern flank of the North Australian craton following west-verging collision by the Numil Terrane. Discovery of this linked mineral system provides a new paradigm for mineral exploration in the region. Full article
(This article belongs to the Section Structural Geology and Tectonics)
15 pages, 9470 KB  
Article
Effect of Kombucha Exposure on Corrosion Resistance of MIM Orthodontic Brackets: Geometry–Electrochemistry Coupling and Oral Health Implications (MIM-316L vs. Commercial)
by Anna Ziębowicz, Wiktoria Groelich, Klaudiusz Gołombek and Karolina Wilk
Materials 2026, 19(2), 400; https://doi.org/10.3390/ma19020400 - 19 Jan 2026
Viewed by 33
Abstract
Metal Injection Molding (MIM) enables complex orthodontic-bracket geometries but can introduce surface and geometric discontinuities that act as initiation sites for crevice and pitting corrosion. The effect of acidic, kombucha-like exposure on corrosion and repassivation was assessed for MIM-316L brackets relative to a [...] Read more.
Metal Injection Molding (MIM) enables complex orthodontic-bracket geometries but can introduce surface and geometric discontinuities that act as initiation sites for crevice and pitting corrosion. The effect of acidic, kombucha-like exposure on corrosion and repassivation was assessed for MIM-316L brackets relative to a commercial comparator, and the coupling between surface quality (roughness and wettability) and localized damage at scanning electron microscopy (SEM)-identified hot-spots was examined. Kombucha was characterized by pH and titratable acidity. Surfaces were characterized by SEM, areal roughness metrics (R_a, S_a, S_z, and A2), and wettability by sessile-drop goniometry. Electrochemical behavior in artificial saliva was measured using open-circuit potential and cyclic potentiodynamic polarization (ASTM F2129/G59), and a qualitative magnetic check was included as a pragmatic quality-assurance screen. Exposure in kombucha reduced breakdown and repassivation potentials and increased passive current density, with the strongest effects co-localizing geometric discontinuities. Commercial brackets exhibited markedly poorer surface quality (notably higher S_z), amplifying acidity-driven susceptibility. These findings indicate that, under acidic challenges, surface/geometry quality dominates corrosion behavior; non-magnetic-phase compliance and simple chairside screening (e.g., magnet test), alongside tighter manufacturing controls on roughness and edge finish, should be incorporated into clinical and industrial quality assurance (QA). Full article
(This article belongs to the Special Issue Orthodontic Materials: Properties and Effectiveness of Use)
Show Figures

Graphical abstract

21 pages, 1794 KB  
Article
Assessing the Early Impact of InvestEU on Romanian SME Financial Performance
by Emanuel Ciobanu, Ana-Maria Torjescu, Ioana Polec and Carmen Păunescu
Sustainability 2026, 18(2), 982; https://doi.org/10.3390/su18020982 - 18 Jan 2026
Viewed by 176
Abstract
This article examines how European funding enhances the financial performance of Romanian SMEs, a sector facing growing regulatory pressure, market volatility, and resource constraints. The study combines a thematic analysis of InvestEU indicators and national SME financing data (2021–2023) with a firm-level difference-in-differences [...] Read more.
This article examines how European funding enhances the financial performance of Romanian SMEs, a sector facing growing regulatory pressure, market volatility, and resource constraints. The study combines a thematic analysis of InvestEU indicators and national SME financing data (2021–2023) with a firm-level difference-in-differences model comparing InvestEU-funded SMEs to a matched control group over 2023–2024. The qualitative evidence shows that InvestEU operates at the EU level as a multidimensional policy instrument fostering competitiveness, social inclusion, and long-term economic and environmental development, while Romanian SMEs continue to rely predominantly on their own funds and national co-financing, a conservative pattern that ensures stability but limits access to external capital and transformative investments. Econometric results indicate that funded SMEs record, on average, higher turnover and net profit growth than comparable non-funded firms and confirm a strong positive association between firm size and financial performance; however, the interaction term capturing the specific InvestEU effect is positive but not statistically significant at the 95% confidence level. The findings suggest that InvestEU has the potential to act as a catalyst for structural change but also highlight the need for longer observation periods, larger samples, and more comprehensive development indicators to assess its medium-and long-term impact on SME competitiveness. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

48 pages, 8652 KB  
Review
Advances in Alkaline Water Electrolysis—The Role of In Situ Ionic Activation in Green Hydrogen Production
by Vladimir M. Nikolić, Katarina M. Dimić-Mišić, Slađana Lj. Maslovara, Dejana P. Popović, Mihajlo N. Gigov, Sanja S. Krstić and Milica P. Marčeta Kaninski
Catalysts 2026, 16(1), 98; https://doi.org/10.3390/catal16010098 - 18 Jan 2026
Viewed by 87
Abstract
Alkaline water electrolysis remains one of the leading and most mature technologies for large-scale hydrogen production. Its advantages stem from the use of inexpensive, earth-abundant materials and well-established industrial deployment, yet the technology continues to face challenges, including sluggish hydrogen evolution reaction (HER) [...] Read more.
Alkaline water electrolysis remains one of the leading and most mature technologies for large-scale hydrogen production. Its advantages stem from the use of inexpensive, earth-abundant materials and well-established industrial deployment, yet the technology continues to face challenges, including sluggish hydrogen evolution reaction (HER) kinetics and energy-efficiency limitations compared with acidic electrolysis systems. This review provides a comprehensive overview of the fundamental principles governing alkaline electrolysis, encompassing electrolyte chemistry, electrode materials, electrochemical mechanisms, and the roles of overpotentials, cell resistances, and surface morphology in determining system performance. Key developments in catalytic materials are discussed, highlighting both noble-metal and non-noble-metal electrocatalysts, as well as advanced approaches to surface modification and nanostructuring designed to enhance catalytic activity and long-term stability. Particular emphasis is placed on the emerging strategy of in situ ionic activation, wherein transition-metal ions and oxyanions are introduced directly into the operating electrolyte. These species dynamically interact with electrode surfaces under polarization, inducing real-time surface reconstruction, improving water dissociation kinetics, tuning hydrogen adsorption energies, and extending electrode durability. Results derived from polarization measurements, electrochemical impedance spectroscopy, and surface morphology analyses consistently demonstrate that ionic activators, such as Ni–Co–Mo systems, significantly increase the HER performance through substantial increase in surface roughness and increased intrinsic electrocatalytic activity through synergy of d-metals. By integrating both historical context and recent research findings, this review underscores the potential of ionic activation as a scalable and cost-effective way toward improving the efficiency of alkaline water electrolysis and accelerating progress toward sustainable, large-scale green hydrogen production. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

20 pages, 427 KB  
Article
The U-Shaped Impact of Manufacturing-Services Co-Agglomeration on Urban Green Efficiency: Evidence from the Yangtze River Delta
by Jun Ma and Xingxing Yu
Sustainability 2026, 18(2), 967; https://doi.org/10.3390/su18020967 - 17 Jan 2026
Viewed by 121
Abstract
Against the escalating challenges of global climate change and intensifying resource-environment constraints, exploring the green effects of industrial spatial organization has become crucial. Utilizing panel data from the Yangtze River Delta cities spanning 2011–2023, this study empirically examines the nonlinear impact of manufacturing-producer [...] Read more.
Against the escalating challenges of global climate change and intensifying resource-environment constraints, exploring the green effects of industrial spatial organization has become crucial. Utilizing panel data from the Yangtze River Delta cities spanning 2011–2023, this study empirically examines the nonlinear impact of manufacturing-producer services co-agglomeration on urban green efficiency. The results reveal a significant U-shaped relationship: co-agglomeration initially suppresses efficiency due to coordination costs and congestion effects, but after crossing a specific threshold, the resulting scale economies and knowledge spillovers dominate and begin to promote green enhancement. Mechanism tests indicate that industrial upgrading serves as a direct mediating channel, while the mediating effect of green technological innovation exhibits a time lag. Further heterogeneity analysis shows that this U-shaped pattern is particularly pronounced in cities with low agglomeration levels, those not designated as low-carbon pilots, and non-resource-based cities. This study uncovers the nonlinear dynamics and key boundary conditions of the green effects arising from industrial co-agglomeration, providing an empirical basis for implementing differentiated regional spatial coordination policies. Full article
(This article belongs to the Special Issue Development Economics and Sustainable Economic Growth)
Show Figures

Figure 1

23 pages, 2620 KB  
Article
Secretome Profiling of Lactiplantibacillus plantarum CRL681 Predicts Potential Molecular Mechanisms Involved in the Antimicrobial Activity Against Escherichia coli O157:H7
by Ayelen Antonella Baillo, Leonardo Albarracín, Eliana Heredia Ojeda, Mariano Elean, Weichen Gong, Haruki Kitazawa, Julio Villena and Silvina Fadda
Antibiotics 2026, 15(1), 96; https://doi.org/10.3390/antibiotics15010096 - 17 Jan 2026
Viewed by 203
Abstract
Background/Objectives. Lactiplantibacillus plantarum CRL681 has previously demonstrated a strong antagonistic effect against Escherichia coli O157:H7 in food matrices; however, the molecular mechanisms underlying this activity remain poorly understood. Since initial interactions between beneficial bacteria and pathogens occur mainly at the cell surface [...] Read more.
Background/Objectives. Lactiplantibacillus plantarum CRL681 has previously demonstrated a strong antagonistic effect against Escherichia coli O157:H7 in food matrices; however, the molecular mechanisms underlying this activity remain poorly understood. Since initial interactions between beneficial bacteria and pathogens occur mainly at the cell surface and in the extracellular environment, the characterization of the bacterial secretome is essential for elucidating these mechanisms. In this study, the secretome of L. plantarum CRL681 was comprehensively characterized using an integrated in silico and in vitro approach. Methods. The exoproteome and surfaceome were analyzed by LC-MS/MS under pure culture conditions and during co-culture with E. coli O157:H7. Identified proteins were functionally annotated, classified according to subcellular localization and secretion pathways, and evaluated through protein–protein interaction network analysis. Results. A total of 275 proteins were proposed as components of the CRL681 secretome, including proteins involved in cell surface remodeling, metabolism and nutrient transport, stress response, adhesion, and genetic information processing. Co-culture with EHEC induced significant changes in the expression of proteins associated with energy metabolism, transport systems, and redox homeostasis, indicating a metabolic and physiological adaptation of L. plantarum CRL681 under competitive conditions. Notably, several peptidoglycan hydrolases, ribosomal proteins with reported antimicrobial activity, and moonlighting proteins related to adhesion were identified. Conclusions. Overall, these findings suggest that the antagonistic activity of L. plantarum CRL681 against E. coli O157:H7 would be mediated by synergistic mechanisms involving metabolic adaptation, stress resistance, surface adhesion, and the production of non-bacteriocin antimicrobial proteins, supporting its potential application as a bioprotective and functional probiotic strain. Full article
Show Figures

Figure 1

24 pages, 2225 KB  
Article
Differential Regulatory Effects of Cannabinoids and Vitamin E Analogs on Cellular Lipid Homeostasis and Inflammation in Human Macrophages
by Mengrui Li, Sapna Deo, Sylvia Daunert and Jean-Marc Zingg
Antioxidants 2026, 15(1), 119; https://doi.org/10.3390/antiox15010119 - 16 Jan 2026
Viewed by 143
Abstract
Cannabinoids can bind to several cannabinoid receptors and modulate cellular signaling and gene expression relevant to inflammation and lipid homeostasis. Likewise, several vitamin E analogs can modulate inflammatory signaling and foam cell formation in macrophages by antioxidant and non-antioxidant mechanisms. We analyzed the [...] Read more.
Cannabinoids can bind to several cannabinoid receptors and modulate cellular signaling and gene expression relevant to inflammation and lipid homeostasis. Likewise, several vitamin E analogs can modulate inflammatory signaling and foam cell formation in macrophages by antioxidant and non-antioxidant mechanisms. We analyzed the regulatory effects on the expression of genes involved in cellular lipid homeostasis (e.g., CD36/FAT cluster of differentiation/fatty acid transporter and scavenger receptor SR-B1) and inflammation (e.g., inflammatory cytokines, TNFα, IL1β) by cannabinoids (cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC)) in human THP-1 macrophages with/without co-treatment with natural alpha-tocopherol (RRR-αT), natural RRR-αTA (αTAn), and synthetic racemic all-rac-αTA (αTAr). In general, αTAr inhibited both lipid accumulation and the inflammatory response (TNFα, IL6, IL1β) more efficiently compared to αTAn. Our results suggest that induction of CD36/FAT mRNA expression after treatment with THC can be prevented, albeit incompletely, by αTA (either αTAn or αTAr) or CBD. A similar response pattern was observed with genes involved in lipid efflux (ABCA1, less with SR-B1), suggesting an imbalance between uptake, metabolism, and efflux of lipids/αTA, increasing macrophage foam cell formation. THC increased reactive oxygen species (ROS), and co-treatment with αTAn or αTAr only partially prevented this. To study the mechanisms by which inflammatory and lipid-related genes are modulated, HEK293 cells overexpressing cannabinoid receptors (CB1 or TRPV-1) were transfected with luciferase reporter plasmids containing the human CD36 promoter or response elements for transcription factors involved in its regulation (e.g., LXR and NFκB). In cells overexpressing CB1, we observed activation of NFκB by THC that was inhibited by αTAr. Full article
(This article belongs to the Special Issue Health Implications of Vitamin E and Its Analogues and Metabolites)
Show Figures

Graphical abstract

Back to TopTop