Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,087)

Search Parameters:
Keywords = noise uncertainties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2797 KiB  
Article
Adaptive Integrated Navigation Algorithm Based on Interactive Filter
by Bin Zhao, Chunlei Gao, Hui Xia, Jinxia Han and Ying Zhu
Sensors 2025, 25(15), 4562; https://doi.org/10.3390/s25154562 - 23 Jul 2025
Abstract
To address the diverse requirements of accuracy and robustness in integrated navigation for unmanned aerial vehicles, an interactive robust filter algorithm that integrates the interactive multiple model concept and leverages the complementary applicability of the strong tracking filter and the smooth variable structure [...] Read more.
To address the diverse requirements of accuracy and robustness in integrated navigation for unmanned aerial vehicles, an interactive robust filter algorithm that integrates the interactive multiple model concept and leverages the complementary applicability of the strong tracking filter and the smooth variable structure filter is proposed. The algorithm operates as follows: the strong tracking filter, along with the smooth variable structure filter, operates side by side with distinct models. During the filter process, the likelihood function is utilized to update the filter probabilities and determine the weights for each one of the filters. Input interaction, coupled with output fusion, is then carried out. The results of the experiments validate that the presented interactive filter algorithm significantly reduces estimation errors. When confronted with complex, dynamic noise environments and system uncertainties, it retains high-precision state estimation while demonstrating markedly improved robustness. The proposed interactive robust filter algorithm is compared against the strong tracking filter, smooth variable structure filter, and strong tracking smooth filter. Taking the strong tracking smooth filter, which has the highest accuracy among the three, as the reference baseline, the presented interactive robust filter algorithm achieves over 16% improvement in velocity accuracy and over 40% improvement in position accuracy. Full article
Show Figures

Figure 1

27 pages, 5938 KiB  
Article
Noise-Adaptive GNSS/INS Fusion Positioning for Autonomous Driving in Complex Environments
by Xingyang Feng, Mianhao Qiu, Tao Wang, Xinmin Yao, Hua Cong and Yu Zhang
Vehicles 2025, 7(3), 77; https://doi.org/10.3390/vehicles7030077 - 22 Jul 2025
Abstract
Accurate and reliable multi-scene positioning remains a critical challenge in autonomous driving systems, as conventional fixed-noise fusion strategies struggle to handle the dynamic error characteristics of heterogeneous sensors in complex operational environments. This paper proposes a novel noise-adaptive fusion framework integrating Global Navigation [...] Read more.
Accurate and reliable multi-scene positioning remains a critical challenge in autonomous driving systems, as conventional fixed-noise fusion strategies struggle to handle the dynamic error characteristics of heterogeneous sensors in complex operational environments. This paper proposes a novel noise-adaptive fusion framework integrating Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS) measurements. Our key innovation lies in developing a dual noise estimation model that synergizes priori weighting with posterior variance compensation. Specifically, we establish an a priori weighting model for satellite pseudorange errors based on elevation angles and signal-to-noise ratios (SNRs), complemented by a Helmert variance component estimation for posterior refinement. For INS error modeling, we derive a bias instability noise accumulation model through Allan variance analysis. These adaptive noise estimates dynamically update both process and observation noise covariance matrices in our Error-State Kalman Filter (ESKF) implementation, enabling real-time calibration of GNSS and INS contributions. Comprehensive field experiments demonstrate two key advantages: (1) The proposed noise estimation model achieves 37.7% higher accuracy in quantifying GNSS single-point positioning uncertainties compared to conventional elevation-based weighting; (2) in unstructured environments with intermittent signal outages, the fusion system maintains an average absolute trajectory error (ATE) of less than 0.6 m, outperforming state-of-the-art fixed-weight fusion methods by 36.71% in positioning consistency. These results validate the framework’s capability to autonomously balance sensor reliability under dynamic environmental conditions, significantly enhancing positioning robustness for autonomous vehicles. Full article
Show Figures

Figure 1

20 pages, 35728 KiB  
Article
Prestack Depth Migration Imaging of Permafrost Zone with Low Seismic Signal–Noise Ratio Based on Common-Reflection-Surface (CRS) Stack
by Ruiqi Liu, Zhiwei Liu, Xiaogang Wen and Zhen Zhao
Geosciences 2025, 15(8), 276; https://doi.org/10.3390/geosciences15080276 - 22 Jul 2025
Viewed by 66
Abstract
The Qiangtang Basin (Tibetan Plateau) poses significant geophysical challenges for seismic exploration due to near-surface widespread permafrost and steeply dipping Mesozoic strata induced by the Cenozoic Indo-Eurasian collision. These seismic geological conditions considerably contribute to lower signal-to-noise ratios (SNRs) with complex wavefields, to [...] Read more.
The Qiangtang Basin (Tibetan Plateau) poses significant geophysical challenges for seismic exploration due to near-surface widespread permafrost and steeply dipping Mesozoic strata induced by the Cenozoic Indo-Eurasian collision. These seismic geological conditions considerably contribute to lower signal-to-noise ratios (SNRs) with complex wavefields, to some extent reducing the reliability of conventional seismic imaging and structural interpretation. To address this, the common-reflection-surface (CRS) stack method, derived from optical paraxial ray theory, is implemented to transcend horizontal layer model constraints, offering substantial improvements in high-SNR prestack gather generation and prestack depth migration (PSDM) imaging, notably for permafrost zones. Using 2D seismic data from the basin, we detailedly compare the CRS stack with conventional SNR enhancement techniques—common midpoint (CMP) FlexBinning, prestack random noise attenuation (PreRNA), and dip moveout (DMO)—evaluating both theoretical foundations and practical performance. The result reveals that CRS-processed prestack gathers yield superior SNR optimization and signal preservation, enabling more robust PSDM velocity model building, while comparative imaging demonstrates enhanced diffraction energy—particularly at medium (20–40%) and long (40–60%) offsets—critical for resolving faults and stratigraphic discontinuities in PSDM. This integrated validation establishes CRS stacking as an effective preprocessing foundation for the depth-domain imaging of complex permafrost geology, providing critical improvements in seismic structural resolution and reduced interpretation uncertainty for hydrocarbon exploration in permafrost-bearing basins. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

35 pages, 9965 KiB  
Review
Advances in Dissolved Organic Carbon Remote Sensing Inversion in Inland Waters: Methodologies, Challenges, and Future Directions
by Dandan Xu, Rui Xue, Mengyuan Luo, Wenhuan Wang, Wei Zhang and Yinghui Wang
Sustainability 2025, 17(14), 6652; https://doi.org/10.3390/su17146652 - 21 Jul 2025
Viewed by 129
Abstract
Inland waters, serving as crucial carbon sinks and pivotal conduits within the global carbon cycle, are essential targets for carbon assessment under global warming and carbon neutrality initiatives. However, the extensive spatial distribution and inherent sampling challenges pose fundamental difficulties for monitoring dissolved [...] Read more.
Inland waters, serving as crucial carbon sinks and pivotal conduits within the global carbon cycle, are essential targets for carbon assessment under global warming and carbon neutrality initiatives. However, the extensive spatial distribution and inherent sampling challenges pose fundamental difficulties for monitoring dissolved organic carbon (DOC) in these systems. Since 2010, remote sensing has catalyzed a technological revolution in inland water DOC monitoring, leveraging its advantages for rapid, cost-effective long-term observation. In this critical review, we systematically evaluate research progress over the past two decades to assess the performance of remote sensing products and existing methodologies in DOC retrieval. We provide a detailed examination of diverse remote sensing data sources, outlining their application characteristics and limitations. By tracing uncertainties in retrieval outcomes, we identify atmospheric correction, spatial heterogeneity, and model and data deficiencies as primary sources of uncertainty. Current retrieval approaches—direct, indirect, and machine learning (ML) methods—are thoroughly scrutinized for their features, effectiveness, and application contexts. While ML offers novel solutions, its application remains nascent, constrained by limited waterbody-specific samples and model constraints. Furthermore, we discuss current challenges and future directions, focusing on data optimization, feature engineering, and model refinement. We propose that future research should (1) employ integrated satellite–air–ground observations and develop tailored atmospheric correction for inland waters to reduce data noise; (2) develop deep learning architectures with branch networks to extract DOC’s intrinsic shortwave absorption and longwave anti-interference features; and (3) incorporate dynamic biogeochemical processes within study regions to refine retrieval frameworks using biogeochemical indicators. We also advocate for multi-algorithm collaborative prediction to overcome the spectral paradox and unphysical solutions arising from the single data-driven paradigm of traditional ML, thereby enhancing retrieval reliability and interpretability. Full article
Show Figures

Figure 1

16 pages, 1383 KiB  
Article
Probabilistic Demand Forecasting in the Southeast Region of the Mexican Power System Using Machine Learning Methods
by Ivan Itai Bernal Lara, Roberto Jair Lorenzo Diaz, María de los Ángeles Sánchez Galván, Jaime Robles García, Mohamed Badaoui, David Romero Romero and Rodolfo Alfonso Moreno Flores
Forecasting 2025, 7(3), 39; https://doi.org/10.3390/forecast7030039 - 18 Jul 2025
Viewed by 269
Abstract
This paper focuses on electricity demand forecasting and its uncertainty representation using a hybrid machine learning (ML) model in the eastern control area of southeastern Mexico. In this case, different sources of uncertainty are integrated by applying the Bootstrap method, which adds the [...] Read more.
This paper focuses on electricity demand forecasting and its uncertainty representation using a hybrid machine learning (ML) model in the eastern control area of southeastern Mexico. In this case, different sources of uncertainty are integrated by applying the Bootstrap method, which adds the characteristics of stochastic noise, resulting in a hybrid probabilistic and ML model in the form of a time series. The proposed methodology addresses a function density probability, which is the generalized of extreme values obtained from the errors of the ML model; however, it is adaptable and independent and simulates the variability that may arise due to unforeseen events. Results indicate that for a five-day forecast using only demand data, the proposed model achieves a Mean Absolute Percentage Error (MAPE) of 4.358%; however, incorporating temperature increases the MAPE to 5.123% due to growing uncertainty. In contrast, a day-ahead forecast, including temperature, improves accuracy, reducing MAPE to 1.644%. The stochastic noise component enhances probabilistic modeling, yielding a MAPE of 3.042% with and 2.073% without temperature in five-day forecasts. Therefore, the proposed model proves useful for regions with high demand variability, such as southeastern Mexico, while maintaining accuracy over longer time horizons. Full article
(This article belongs to the Section Power and Energy Forecasting)
Show Figures

Figure 1

18 pages, 1438 KiB  
Article
Maximum Entropy Estimates of Hubble Constant from Planck Measurements
by David P. Knobles and Mark F. Westling
Entropy 2025, 27(7), 760; https://doi.org/10.3390/e27070760 - 16 Jul 2025
Viewed by 310
Abstract
A maximum entropy (ME) methodology was used to infer the Hubble constant from the temperature anisotropies in cosmic microwave background (CMB) measurements, as measured by the Planck satellite. A simple cosmological model provided physical insight and afforded robust statistical sampling of a parameter [...] Read more.
A maximum entropy (ME) methodology was used to infer the Hubble constant from the temperature anisotropies in cosmic microwave background (CMB) measurements, as measured by the Planck satellite. A simple cosmological model provided physical insight and afforded robust statistical sampling of a parameter space. The parameter space included the spectral tilt and amplitude of adiabatic density fluctuations of the early universe and the present-day ratios of dark energy, matter, and baryonic matter density. A statistical temperature was estimated by applying the equipartition theorem, which uniquely specifies a posterior probability distribution. The ME analysis inferred the mean value of the Hubble constant to be about 67 km/sec/Mpc with a conservative standard deviation of approximately 4.4 km/sec/Mpc. Unlike standard Bayesian analyses that incorporate specific noise models, the ME approach treats the model error generically, thereby producing broader, but less assumption-dependent, uncertainty bounds. The inferred ME value lies within 1σ of both early-universe estimates (Planck, Dark Energy Signal Instrument (DESI)) and late-universe measurements (e.g., the Chicago Carnegie Hubble Program (CCHP)) using redshift data collected from the James Webb Space Telescope (JWST). Thus, the ME analysis does not appear to support the existence of the Hubble tension. Full article
(This article belongs to the Special Issue Insight into Entropy)
Show Figures

Figure 1

22 pages, 13424 KiB  
Article
Measurement of Fracture Networks in Rock Sample by X-Ray Tomography, Convolutional Filtering and Deep Learning
by Alessia Caputo, Maria Teresa Calcagni, Giovanni Salerno, Elisa Mammoliti and Paolo Castellini
Sensors 2025, 25(14), 4409; https://doi.org/10.3390/s25144409 - 15 Jul 2025
Viewed by 239
Abstract
This study presents a comprehensive methodology for the detection and characterization of fractures in geological samples using X-ray computed tomography (CT). By combining convolution-based image processing techniques with advanced neural network-based segmentation, the proposed approach achieves high precision in identifying complex fracture networks. [...] Read more.
This study presents a comprehensive methodology for the detection and characterization of fractures in geological samples using X-ray computed tomography (CT). By combining convolution-based image processing techniques with advanced neural network-based segmentation, the proposed approach achieves high precision in identifying complex fracture networks. The method was applied to a marly limestone sample from the Maiolica Formation, part of the Umbria–Marche stratigraphic succession (Northern Apennines, Italy), a geological context where fractures often vary in size and contrast and are frequently filled with minerals such as calcite or clays, making their detection challenging. A critical part of the work involved addressing multiple sources of uncertainty that can impact fracture identification and measurement. These included the inherent spatial resolution limit of the CT system (voxel size of 70.69 μm), low contrast between fractures and the surrounding matrix, artifacts introduced by the tomographic reconstruction process (specifically the Radon transform), and noise from both the imaging system and environmental factors. To mitigate these challenges, we employed a series of preprocessing steps such as Gaussian and median filtering to enhance image quality and reduce noise, scanning from multiple angles to improve data redundancy, and intensity normalization to compensate for shading artifacts. The neural network segmentation demonstrated superior capability in distinguishing fractures filled with various materials from the host rock, overcoming the limitations observed in traditional convolution-based methods. Overall, this integrated workflow significantly improves the reliability and accuracy of fracture quantification in CT data, providing a robust and reproducible framework for the analysis of discontinuities in heterogeneous and complex geological materials. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

23 pages, 1603 KiB  
Article
Uncertainty-Based Fusion Method for Structural Modal Parameter Identification
by Xiaoteng Liu, Zirui Dong, Hongxia Ji, Zhenjiang Yue and Jie Kang
Sensors 2025, 25(14), 4397; https://doi.org/10.3390/s25144397 - 14 Jul 2025
Viewed by 257
Abstract
The structural modal parameter identification method can be classified into time-domain and frequency-domain methods. Practically, two types of methods are characterized by different advantages, and the estimated modal parameters are always subjected to statistical uncertainties due to measurement noise. In this work, an [...] Read more.
The structural modal parameter identification method can be classified into time-domain and frequency-domain methods. Practically, two types of methods are characterized by different advantages, and the estimated modal parameters are always subjected to statistical uncertainties due to measurement noise. In this work, an uncertainty-based fusion method for structural mode identification is proposed to merge the advantages of different methods. The extensively applied time-domain AutoRegressive (AR) and frequency-domain Left-Matrix Fraction (LMF) models are expressed in a unified parametric model. With this unified model, a generalized framework is developed to identify the modal parameters of structures and compute variances associated with modal parameter estimates. The final modal parameter estimates are computed as the inverse-variance weighted sum of the results identified from different methods. A numerical and an experimental example demonstrate that the proposed method can obtain reliable modal parameter estimates, substantially mitigating the occurrence of extremely large estimation errors. Furthermore, the fusion method demonstrates enhanced identification capabilities, effectively reducing the likelihood of missing structural modes. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

18 pages, 54426 KiB  
Article
Artificial Intelligence-Driven Identification of Favorable Geothermal Sites Based on Radioactive Heat Production: Case Study from Western Türkiye
by Elif Meriç İlkimen, Cihan Çolak, Mahrad Pisheh Var, Hakan Başağaoğlu, Debaditya Chakraborty and Ali Aydın
Appl. Sci. 2025, 15(14), 7842; https://doi.org/10.3390/app15147842 - 13 Jul 2025
Viewed by 239
Abstract
In recent years, the exploration and utilization of geothermal energy have received growing attention as a sustainable alternative to conventional energy sources. Reliable, data-driven identification of geothermal reservoirs, particularly in crystalline basement terrains, is crucial for reducing exploration uncertainties and costs. In such [...] Read more.
In recent years, the exploration and utilization of geothermal energy have received growing attention as a sustainable alternative to conventional energy sources. Reliable, data-driven identification of geothermal reservoirs, particularly in crystalline basement terrains, is crucial for reducing exploration uncertainties and costs. In such geological settings, magnetic susceptibility, radioactive heat production, and seismic wave characteristics play a vital role in evaluating geothermal energy potential. Building on this foundation, our study integrates in situ and laboratory measurements, collected using advanced sensors from spatially diverse locations, with statistical and unsupervised artificial intelligence (AI) clustering models. This integrated framework improves the effectiveness and reliability of identifying clusters of potential geothermal sites. We applied this methodology to the migmatitic gneisses within the Simav Basin in western Türkiye. Among the statistical and AI-based models evaluated, Density-Based Spatial Clustering of Applications with Noise and Autoencoder-Based Deep Clustering identified the most promising and spatially confined subregions with high geothermal production potential. The potential geothermal sites identified by the AI models align closely with those identified by statistical models and show strong agreement with independent datasets, including existing drilling locations, thermal springs, and the distribution of major earthquake epicenters in the region. Full article
(This article belongs to the Special Issue Applications of Machine Learning in Earth Sciences—2nd Edition)
Show Figures

Figure 1

24 pages, 3798 KiB  
Article
A Robust Tracking Method for Aerial Extended Targets with Space-Based Wideband Radar
by Linlin Fang, Yuxin Hu, Lihua Zhong and Lijia Huang
Remote Sens. 2025, 17(14), 2360; https://doi.org/10.3390/rs17142360 - 9 Jul 2025
Viewed by 175
Abstract
Space-based radar systems offer significant advantages for air surveillance, including wide-area coverage and extended early-warning capabilities. The integrated design of detection and imaging in space-based wideband radar further enhances its accuracy. However, in the wideband tracking mode, large aircraft targets exhibit extended characteristics. [...] Read more.
Space-based radar systems offer significant advantages for air surveillance, including wide-area coverage and extended early-warning capabilities. The integrated design of detection and imaging in space-based wideband radar further enhances its accuracy. However, in the wideband tracking mode, large aircraft targets exhibit extended characteristics. Measurements from the same target cross multiple range resolution cells. Additionally, the nonlinear observation model and uncertain measurement noise characteristics under space-based long-distance observation substantially increase the tracking complexity. To address these challenges, we propose a robust aerial target tracking method for space-based wideband radar applications. First, we extend the observation model of the gamma Gaussian inverse Wishart probability hypothesis density filter to three-dimensional space by incorporating a spherical–radial cubature rule for improved nonlinear filtering. Second, variational Bayesian processing is integrated to enable the joint estimation of the target state and measurement noise parameters, and a recursive process is derived for both Gaussian and Student’s t-distributed measurement noise, enhancing the method’s robustness against noise uncertainty. Comprehensive simulations evaluating varying target extension parameters and noise conditions demonstrate that the proposed method achieves superior tracking accuracy and robustness. Full article
Show Figures

Graphical abstract

25 pages, 3106 KiB  
Article
Multifractal-Aware Convolutional Attention Synergistic Network for Carbon Market Price Forecasting
by Liran Wei, Mingzhu Tang, Na Li, Jingwen Deng, Xinpeng Zhou and Haijun Hu
Fractal Fract. 2025, 9(7), 449; https://doi.org/10.3390/fractalfract9070449 - 7 Jul 2025
Viewed by 315
Abstract
Accurate carbon market price prediction is crucial for promoting a low-carbon economy and sustainable engineering. Traditional models often face challenges in effectively capturing the multifractality inherent in carbon market prices. Inspired by the self-similarity and scale invariance inherent in fractal structures, this study [...] Read more.
Accurate carbon market price prediction is crucial for promoting a low-carbon economy and sustainable engineering. Traditional models often face challenges in effectively capturing the multifractality inherent in carbon market prices. Inspired by the self-similarity and scale invariance inherent in fractal structures, this study proposes a novel multifractal-aware model, MF-Transformer-DEC, for carbon market price prediction. The multi-scale convolution (MSC) module employs multi-layer dilated convolutions constrained by shared convolution kernel weights to construct a scale-invariant convolutional network. By projecting and reconstructing time series data within a multi-scale fractal space, MSC enhances the model’s ability to adapt to complex nonlinear fluctuations while significantly suppressing noise interference. The fractal attention (FA) module calculates similarity matrices within a multi-scale feature space through multi-head attention, adaptively integrating multifractal market dynamics and implicit associations. The dynamic error correction (DEC) module models error commonality through variational autoencoder (VAE), and uncertainty-guided dynamic weighting achieves robust error correction. The proposed model achieved an average R2 of 0.9777 and 0.9942 for 7-step ahead predictions on the Shanghai and Guangdong carbon price datasets, respectively. This study pioneers the interdisciplinary integration of fractal theory and artificial intelligence methods for complex engineering analysis, enhancing the accuracy of carbon market price prediction. The proposed technical pathway of “multi-scale deconstruction and similarity mining” offers a valuable reference for AI-driven fractal modeling. Full article
Show Figures

Figure 1

23 pages, 4005 KiB  
Article
A Ship Underwater Radiated Noise Prediction Method Based on Semi-Supervised Ensemble Learning
by Xin Huang, Rongwu Xu and Ruibiao Li
J. Mar. Sci. Eng. 2025, 13(7), 1303; https://doi.org/10.3390/jmse13071303 - 3 Jul 2025
Viewed by 226
Abstract
Accurate prediction of ship underwater radiated noise (URN) during navigation is critical for evaluating acoustic stealth performance and analyzing detection risks. However, the labeled data available for the training of URN prediction model is limited. Semi-supervised learning (SSL) can improve the model performance [...] Read more.
Accurate prediction of ship underwater radiated noise (URN) during navigation is critical for evaluating acoustic stealth performance and analyzing detection risks. However, the labeled data available for the training of URN prediction model is limited. Semi-supervised learning (SSL) can improve the model performance by using unlabeled data in the case of a lack of labeled data. Therefore, this paper proposes an SSL method for URN prediction. First, an anti-perturbation regularization is constructed using unlabeled data to optimize the objective function of EL, which is then used in the Genetic algorithm to adaptively optimize base learner weights, to enhance pseudo-label quality. Second, a semi-supervised ensemble (ESS) framework integrating dynamic pseudo-label screening and uncertainty bias correction (UBC) is established, which can dynamically select pseudo-labels based on local prediction performance improvement and reduce the influence of pseudo-labels’ uncertainty on the model. Experimental results of the cabin model and sea trials of the ship demonstrate that the proposed method reduces prediction errors by up to 65.5% and 62.1% compared to baseline supervised and semi-supervised regression models, significantly improving prediction accuracy. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 4637 KiB  
Article
Estimating Subsurface Geostatistical Properties from GPR Reflection Data Using a Supervised Deep Learning Approach
by Yu Liu, James Irving and Klaus Holliger
Remote Sens. 2025, 17(13), 2284; https://doi.org/10.3390/rs17132284 - 3 Jul 2025
Viewed by 277
Abstract
The quantitative characterization of near-surface heterogeneity using ground-penetrating radar (GPR) is an important but challenging task. The estimation of subsurface geostatistical parameters from surface-based common-offset GPR reflection data has so far relied upon a Monte-Carlo-type inversion approach. This allows for a comprehensive exploration [...] Read more.
The quantitative characterization of near-surface heterogeneity using ground-penetrating radar (GPR) is an important but challenging task. The estimation of subsurface geostatistical parameters from surface-based common-offset GPR reflection data has so far relied upon a Monte-Carlo-type inversion approach. This allows for a comprehensive exploration of the parameter space and provides some measure of uncertainty with regard to the inferred results. However, the associated computational costs are inherently high. To alleviate this problem, we present an alternative deep-learning-based technique, that, once trained in a supervised context, allows us to perform the same task in a highly efficient manner. The proposed approach uses a convolutional neural network (CNN), which is trained on a vast database of autocorrelations obtained from synthetic GPR images for a comprehensive range of stochastic subsurface models. An important aspect of the training process is that the synthetic GPR data are generated using a computationally efficient approximate solution of the underlying physical problem. This strategy effectively addresses the notorious challenge of insufficient training data, which frequently impedes the application of deep-learning-based methods in applied geophysics. Tests on a wide range of realistic synthetic GPR data generated using a finite-difference time-domain (FDTD) solution of Maxwell’s equations, as well as a comparison with the results of the traditional Monte Carlo approach on a pertinent field dataset, confirm the viability of the proposed method, even in the presence of significant levels of data noise. Our results also demonstrate that typical mismatches between the dominant frequencies of the analyzed and training data can be readily alleviated through simple spectral shifting. Full article
(This article belongs to the Special Issue Advanced Ground-Penetrating Radar (GPR) Technologies and Applications)
Show Figures

Figure 1

18 pages, 2791 KiB  
Article
Deterministic Data Assimilation in Thermal-Hydraulic Analysis: Application to Natural Circulation Loops
by Lanxin Gong, Changhong Peng and Qingyu Huang
J. Nucl. Eng. 2025, 6(3), 23; https://doi.org/10.3390/jne6030023 - 3 Jul 2025
Viewed by 255
Abstract
Recent advances in high-fidelity modeling, numerical computing, and data science have spurred interest in model-data integration for nuclear reactor applications. While machine learning often prioritizes data-driven predictions, this study focuses on data assimilation (DA) to synergize physical models with measured data, aiming to [...] Read more.
Recent advances in high-fidelity modeling, numerical computing, and data science have spurred interest in model-data integration for nuclear reactor applications. While machine learning often prioritizes data-driven predictions, this study focuses on data assimilation (DA) to synergize physical models with measured data, aiming to enhance predictive accuracy and reduce uncertainties. We implemented deterministic DA methods—Kalman filter (KF) and three-dimensional variational (3D-VAR)—in a one-dimensional single-phase natural circulation loop and extended 3D-VAR to RELAP5, a system code for two-phase loop analysis. Unlike surrogate-based or model-reduction strategies, our approach leverages full-model propagation without relying on computationally intensive sampling. The results demonstrate that KF and 3D-VAR exhibit robustness against varied noise types, intensities, and distributions, achieving significant uncertainty reduction in state variables and parameter estimation. The framework’s adaptability is further validated under oceanic conditions, suggesting its potential to augment baseline models beyond conventional extrapolation boundaries. These findings highlight DA’s capacity to improve model calibration, safety margin quantification, and reactor field reconstruction. By integrating high-fidelity simulations with real-world data corrections, the study establishes a scalable pathway to enhance the reliability of nuclear system predictions, emphasizing DA’s role in bridging theoretical models and operational demands without compromising computational efficiency. Full article
(This article belongs to the Special Issue Advances in Thermal Hydraulics of Nuclear Power Plants)
Show Figures

Figure 1

24 pages, 7981 KiB  
Article
Robust Forward-Looking Sonar-Image Mosaicking Without External Sensors for Autonomous Deep-Sea Mining
by Xinran Liu, Jianmin Yang, Changyu Lu, Enhua Zhang and Wenhao Xu
J. Mar. Sci. Eng. 2025, 13(7), 1291; https://doi.org/10.3390/jmse13071291 - 30 Jun 2025
Viewed by 222
Abstract
With the increasing significance of deep-sea resource development, Forward-Looking Sonar (FLS) has become an essential technology for real-time environmental mapping and navigation in deep-sea mining vehicles (DSMV). However, FLS images often suffer from a limited field of view, uneven imaging, and complex noise [...] Read more.
With the increasing significance of deep-sea resource development, Forward-Looking Sonar (FLS) has become an essential technology for real-time environmental mapping and navigation in deep-sea mining vehicles (DSMV). However, FLS images often suffer from a limited field of view, uneven imaging, and complex noise sources, making single-frame images insufficient for providing continuous and complete environmental awareness. Existing mosaicking methods typically rely on external sensors or controlled laboratory conditions, often failing to account for the high levels of uncertainty and error inherent in real deep-sea environments. Consequently, their performance during sea trials tends to be unsatisfactory. To address these challenges, this study introduces a robust FLS image mosaicking framework that functions without additional sensor input. The framework explicitly models the noise characteristics of sonar images captured in deep-sea environments and integrates bidirectional cyclic consistency filtering with a soft-weighted feature refinement strategy during the feature-matching stage. For image fusion, a radial adaptive fusion algorithm with a protective frame is proposed to improve edge transitions and preserve structural consistency in the resulting panoramic image. The experimental results demonstrate that the proposed framework achieves high robustness and accuracy under real deep-sea conditions, effectively supporting DSMV tasks such as path planning, obstacle avoidance, and simultaneous localization and mapping (SLAM), thus enabling reliable perceptual capabilities for intelligent underwater operations. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

Back to TopTop