Advances in Dissolved Organic Carbon Remote Sensing Inversion in Inland Waters: Methodologies, Challenges, and Future Directions
Abstract
1. Introduction
- How can the application effectiveness of remote sensing data in DOC inversion for inland waters be improved?
- How can robust DOC/CDOM remote sensing inversion methods suitable for inland waters with complex optical properties be developed?
- How can the professional efficacy of traditional machine learning in water quality inversion be specifically enhanced?
2. Integration of Multi-Source Data and Uncertainty Provenance Analysis
2.1. Satellite–Air–Ground Synergistic Observation
2.2. Uncertainty Provenance
3. Optical Principles and Methods of DOC Remote Sensing Retrieval
3.1. Optical Foundations of DOC Remote Sensing Retrieval
3.2. Validation and Evaluation
3.3. Direct Inversion Methods for Remote Sensing of DOC and Physical Drivers of Their Accuracy
3.3.1. Direct Retrieval Method for DOC Remote Sensing: Spectral Matching and Concentration Quantification
3.3.2. Physically Driven Factors Governing the Accuracy of Direct Inversion Methods
3.4. DOC Remote Sensing Indirect Inversion Method: Cross-Media Inference via Robust CDOM–DOC Relationships
3.4.1. Semi-Empirical Method for CDOM: From Spectra to CDOM
- Error propagation: The “two-step” indirect inversion pathway (Rrs → aCDOM → CDOC) induces nonlinear amplification of errors. In the Kolyma River case [103], DOC inversion standard errors increased from ±0.92 mg L−1 at the CDOM stage to ±1.68 mg L−1, representing an 82.6% error escalation.
3.4.2. Analytical Method: From Spectra to CDOM
3.5. Enhanced Strategies for Nonstationary CDOM–DOC Relationships
3.6. Machine Learning-Driven DOC Retrieval
4. Optimizing DOC Retrieval: From Feature Engineering to Algorithmic Synergy
4.1. Synergistic Global Exploration of Domain-Specific Hyperparameter Space via Intelligent Optimization Algorithms
4.2. Data Optimization—Feature Engineering
5. Conclusions and Prospects
- Land-observing satellites (e.g., Landsat-8 and Sentinel-2) have proven to be effective and advantageous in replacing ocean-color remote sensing for monitoring small-scale inland water bodies. However, their standalone application remains constrained by insufficient spectral granularity and temporal coverage, necessitating synergistic integration with near-surface and UAV-mounted hyperspectral platforms.
- Uncertainty mitigation requires rethinking atmospheric correction paradigms. Legacy marine-oriented models (FLAASH, 6S) prove inadequate for optically complex inland waters. While neural networks show potential, bespoke atmospheric correction protocols tailored to terrestrial sensors and regional biogeochemical variability should be developed alongside next-generation sensors with enhanced radiometric sensitivity.
- Indirect DOC inversion via CDOM proxies remains viable in systems governed by salinity gradients or terrestrial carbon export via unidirectional runoff. However, the decoupling mechanism caused by the complex effects of biogeochemistry needs to be addressed using a framework of local driver optimization.
- Methodological evolution hinges on transcending the empirical–analytical dichotomy. Semi-analytical approaches coupling radiative transfer models with bio-optical mechanisms exhibit superior generalizability over their empirical counterparts, yet their inland water adaptations (QAA, GSM, and GIOP) require substantial refinement. Hybrid models integrating mechanistic constraints with data-driven calibration represent a critical frontier.
- Machine learning’s nonlinear mapping capacity offers promise in circumventing error propagation in traditional methods, but its black-box nature and data dependency necessitate physics-informed architectures. Future research may employ optimization algorithms as a coupling mechanism between ML methods and domain knowledge to resolve the single data-driven paradigm of general ML.
- Advancing spectral feature engineering demands transcending heuristic feature selection. Deep learning architectures with dual-branch networks could disentangle shortwave-longwave spectral interactions, enabling cross-band synergistic analysis while suppressing sensor-specific noise.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DOC | Dissolved Organic Carbon |
CDOM | Colored Dissolved Organic Matter |
TSM | Total Suspended Matter |
CZCS | Coastal Zone Color Scanner |
STARFM | Spatial and Temporal Adaptive Reflectance Fusion Model |
GEE | Google Earth Engine |
NAP | Non-Algal Particles |
NIR | Near Infrared |
FLAASH | Fast Line-of-sight Atmospheric Analysis of Spectral hHypercubes |
SRF | Spectral Response Function |
R2 | Coefficient of Determination |
MAE | Mean Absolute Error |
RMSE | Root Mean Square Error |
MAPE | Mean Absolute Percentage Error |
VIF | Variance Inflation Factor |
LSMA | Linear Spectral Mixture Analysis |
Rrs | Remote Sensing Reflectance |
MLR | Multiple Linear Regression |
SLR | Simple Linear Regression |
IOPs | Inherent Optical Properties |
aCDOM | Absorption Coefficient of CDOM |
QAA | Quasi-Analytical Algorithm |
GSM | Garver–Siegel–Maritorena |
GIOP | Generalized Inherent Optical Properties |
SPM | Suspended Particulate Matter |
bbp | Backscattering Coefficient of Suspended Particles |
aph | Phytoplankton Absorption Coefficient |
adg | Non-algal Particle Absorption Coefficient |
ap | Hybrid Absorption Coefficient: aph+adg |
MSIOPs | Mass-Specific Inherent Optical Properties |
a*CDOM | aCDOM/DOC |
b*bp | bbp/TSM |
EPS | Extracellular Products Secreted |
SZA | Solar Zenith Angles |
S | Spectral Slope Parameters |
PRE | Pearl River Estuary |
ML | Machine Learning |
RF | Random Forest |
BP | backpropagation Neural Networks |
XGBoost | Extreme Gradient Boosting |
NN | Neural Network |
SVM | Support Vector Machine |
KNN | K-Nearest Neighbors |
MLP | Multi-Layer Perceptron |
PLS | Partial Least Squares |
GBDT | Gradient Boosting Decision Tree |
SVR | Support Vector Machine |
RMSLD | Root Mean Square Logarithmic Deviation |
GANs | Generative Adversarial Networks |
CNN | Convolutional Neural Networks |
GA | Genetic Algorithms |
PCA | Principal Component Analysis |
Ph | Phytoplankton |
CBAM | Convolution Block Attention Module |
References
- Mendonça, R.; Müller, R.A.; Clow, D.; Verpoorter, C.; Raymond, P.; Tranvik, L.J.; Sobek, S. Organic carbon burial in global lakes and reservoirs. Nat. Commun. 2017, 8, 1694. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Pu, J.; Cao, J.; Li, J.; Zhang, T.; Jiang, F.; Li, L.; Wu, F.; Pan, M.; Bai, B. Origin and effect factors of sedimentary organic carbon in a karst groundwater-fed reservoir, South China. Environ. Sci. Pollut. Res. 2018, 25, 8497–8511. [Google Scholar] [CrossRef] [PubMed]
- Probst, J.; Mortatti, J.; Tardy, Y. Carbon river fluxes and weathering Co2 consumption in the Congo and Amazon river basins. Appl. Geochem. 1994, 9, 1–13. [Google Scholar] [CrossRef]
- Holgerson, M.A.; Raymond, P.A. Large contribution to inland water Co2 and ch4 emissions from very small ponds. Nat. Geosci. 2016, 9, 222–226. [Google Scholar] [CrossRef]
- Stanley, E.H.; Casson, N.J.; Christel, S.T.; Crawford, J.T.; Loken, L.C.; Oliver, S.K. The ecology of methane in streams and rivers: Patterns, controls, and global significance. Ecol. Monogr. 2016, 86, 146–171. [Google Scholar] [CrossRef]
- Tank, S.E.; Frey, K.E.; Striegl, R.G.; Raymond, P.A.; Holmes, R.M.; McClelland, J.W.; Peterson, B.J. Landscape-level controls on dissolved carbon flux from diverse catchments of the circumboreal. Glob. Biogeochem. Cycles 2012, 26, GB0E02. [Google Scholar] [CrossRef]
- Coble, P.G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 1996, 51, 325–346. [Google Scholar] [CrossRef]
- Tiwari, T.; Sponseller, R.A.; Laudon, H. Extreme climate effects on dissolved organic carbon concentrations during snowmelt. J. Geophys. Res. Biogeosci. 2018, 123, 1277–1288. [Google Scholar] [CrossRef]
- Fenner, N.; Meadham, J.; Jones, T.; Hayes, F.; Freeman, C. Effects of climate change on peatland reservoirs: A doc perspective. Glob. Biogeochem. Cycles 2021, 35, e2021GB006992. [Google Scholar] [CrossRef]
- Hampton, S.E.; Galloway, A.W.; Powers, S.M.; Ozersky, T.; Woo, K.H.; Batt, R.D.; Labou, S.G.; O’Reilly, C.M.; Sharma, S.; Lottig, N.R. Ecology under lake ice. Ecol. Lett. 2017, 20, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Wen, Z.; Jacinthe, P.-A.; Zhao, Y.; Du, J. Dissolved carbon and CDOM in lake ice and underlying waters along a salinity gradient in shallow lakes of northeast China. J. Hydrol. 2019, 571, 545–558. [Google Scholar] [CrossRef]
- Hao, R.; Ning, X.; Zhou, Y.; Ma, R.; Zhang, X.; Qiu, G.; Hu, R. Inputs of terrestrial dissolved organic matter in dam reservoirs during precipitation: Impact on water quality and management. Nat. Hazards 2024, 120, 4349–4366. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, L.; Pumpanen, J.; Ojala, A.; Zobitz, J.; Zhou, X.; Laudon, H.; Palviainen, M.; Neitola, K.; Berninger, F. The role of terrestrial productivity and hydrology in regulating aquatic dissolved organic carbon concentrations in boreal catchments. Glob. Chang. Biol. 2022, 28, 2764–2778. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Chen, X.; Xia, K.; Zhang, W.; Wang, Z.; Liu, D.; Li, S.; Zhang, W. Simulation of groundwater dissolved organic carbon in Yufu river basin during artificial recharge: Improving through the swat-modflow-rt3d reaction module. Sustainability 2024, 16, 6692. [Google Scholar] [CrossRef]
- Brailsford, F.L.; Glanville, H.C.; Golyshin, P.N.; Johnes, P.J.; Yates, C.A.; Jones, D.L. Microbial uptake kinetics of dissolved organic carbon (DOC) compound groups from river water and sediments. Sci. Rep. 2019, 9, 11229. [Google Scholar] [CrossRef] [PubMed]
- Regan, S.; Hynds, P.; Flynn, R. An overview of dissolved organic carbon in groundwater and implications for drinking water safety. Hydrogeol. J. 2017, 25, 959–967. [Google Scholar] [CrossRef]
- Brüsecke, J.; Muotka, T.; Huttunen, K.L.; Litjo, S.; Lepo, W.P.; Jyväsjärvi, J. Drainage-induced browning causes both loss and change of benthic biodiversity in headwater streams. Limnol. Oceanogr. Lett. 2023, 8, 620–627. [Google Scholar] [CrossRef]
- Sagan, V.; Peterson, K.T.; Maimaitijiang, M.; Sidike, P.; Sloan, J.; Greeling, B.A.; Maalouf, S.; Adams, C. Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Sci. Rev. 2020, 205, 103187. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, F.; Meng, W.; Wang, X.-Q. Water quality assessment and source identification of Daliao river basin using multivariate statistical methods. Environ. Monit. Assess. 2009, 152, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Lednicka, B.; Kubacka, M.; Freda, W.; Haule, K.; Ficek, D.; Sokólski, M. Multi-parameter algorithms of remote sensing reflectance, absorption and backscattering for coastal waters of the southern Baltic sea applied to Pomeranian lakes. Water 2023, 15, 2843. [Google Scholar] [CrossRef]
- Song, K.; Zhao, Y.; Wen, Z.; Fang, C.; Shang, Y. A systematic examination of the relationships between CDOM and DOC in inland waters in China. Hydrol. Earth Syst. Sci. 2017, 21, 5127–5141. [Google Scholar] [CrossRef]
- Brezonik, P.L.; Olmanson, L.G.; Finlay, J.C.; Bauer, M.E. Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. Remote Sens. Environ. 2015, 157, 199–215. [Google Scholar] [CrossRef]
- Song, K.; Wen, Z.; Xu, Y.; Yang, H.; Lyu, L.; Zhao, Y.; Fang, C.; Shang, Y.; Du, J. Dissolved carbon in a large variety of lakes across five limnetic regions in china. J. Hydrol. 2018, 563, 143–154. [Google Scholar] [CrossRef]
- Cao, F.; Tzortziou, M.; Hu, C.; Mannino, A.; Fichot, C.G.; Del Vecchio, R.; Najjar, R.G.; Novak, M. Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins. Remote Sens. Environ. 2018, 205, 151–165. [Google Scholar] [CrossRef]
- Villota-González, F.H.; Sulbarán-Rangel, B.; Zurita-Martínez, F.; Gurubel-Tun, K.J.; Zúñiga-Grajeda, V. Assessment of machine learning models for remote sensing of water quality in lakes Cajititlán and Zapotlán, Jalisco—Mexico. Remote Sens. 2023, 15, 5505. [Google Scholar] [CrossRef]
- Arias-Rodriguez, L.F.; Duan, Z.; Díaz-Torres, J.d.J.; Basilio Hazas, M.; Huang, J.; Kumar, B.U.; Tuo, Y.; Disse, M. Integration of remote sensing and Mexican water quality monitoring system using an extreme learning machine. Sensors 2021, 21, 4118. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Song, K.; Liu, G.; Shang, Y.; Fang, C.; Du, J.; Lyu, L. Quantifying the trophic status of lakes using total light absorption of optically active components. Environ. Pollut. 2019, 245, 684–693. [Google Scholar] [CrossRef] [PubMed]
- Joshi, I.D.; D’Sa, E.J.; Osburn, C.L.; Bianchi, T.S.; Ko, D.S.; Oviedo-Vargas, D.; Arellano, A.R.; Ward, N.D. Assessing chromophoric dissolved organic matter (CDOM) distribution, stocks, and fluxes in Apalachicola bay using combined field, VIIRS ocean color, and model observations. Remote Sens. Environ. 2017, 191, 359–372. [Google Scholar] [CrossRef]
- Wang, W.; Guo, Q.; Du, C. Research advances in water environmental carbon cycle in the Yangtze river basin. Chin. J. Ecol. 2023, 42, 736. [Google Scholar]
- Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef]
- Dierssen, H.M. Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate. Proc. Natl. Acad. Sci. USA 2010, 107, 17073–17078. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, L.; Zhou, Y.; Zhang, L.; Yao, X.; Shi, K.; Jeppesen, E.; Yu, Q.; Zhu, W. Chromophoric dissolved organic matter in inland waters: Present knowledge and future challenges. Sci. Total Environ. 2021, 759, 143550. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, S.; Zhang, F.; Shen, Q.; Li, J.; Yang, F. Remote sensing-based analysis of spatial and temporal water colour variations in Baiyangdian lake after the establishment of the Xiong’an new area. Remote Sens. 2021, 13, 1729. [Google Scholar] [CrossRef]
- Zhou, G.; Tian, G.; Liu, Q.; Li, J.; Tang, J. Uncertainty analysis of inland water quality remote sensing: A review. Adv. Earth Sci. 2009, 24, 150–158. [Google Scholar]
- Mohseni, F.; Saba, F.; Mirmazloumi, S.M.; Amani, M.; Mokhtarzade, M.; Jamali, S.; Mahdavi, S. Ocean water quality monitoring using remote sensing techniques: A review. Mar. Environ. Res. 2022, 180, 105701. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, V.; Keck, T. Marine Optics and Ocean Color Remote Sensing. In YOUMARES 8–Oceans Across Boundaries: Learning from Each Other: Proceedings of the 2017 Conference for Young Marine Researchers in Kiel, Germany; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 41–54. [Google Scholar]
- Isada, T.; Hooker, S.B.; Taniuchi, Y.; Suzuki, K. Evaluation of retrieving chlorophyll a concentration and colored dissolved organic matter absorption from satellite ocean color remote sensing in the coastal waters of Hokkaido, Japan. J. Oceanogr. 2022, 78, 263–276. [Google Scholar] [CrossRef]
- Mouw, C.B.; Greb, S.; Aurin, D.; DiGiacomo, P.M.; Lee, Z.; Twardowski, M.; Binding, C.; Hu, C.; Ma, R.; Moore, T. Aquatic color radiometry remote sensing of coastal and inland waters: Challenges and recommendations for future satellite missions. Remote Sens. Environ. 2015, 160, 15–30. [Google Scholar] [CrossRef]
- Palmer, S.C.; Kutser, T.; Hunter, P.D. Remote Sensing of Inland Waters: Challenges, Progress and Future Directions; Elsevier: Amsterdam, The Netherlands, 2015; Volume 157, pp. 1–8. [Google Scholar]
- Lee, Z.; Hu, C.; Arnone, R.; Liu, Z. Impact of sub-pixel variations on ocean color remote sensing products. Opt. Express 2012, 20, 20844–20854. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.S.; Loisel, H.; Vantrepotte, V.; Mériaux, X.; Tran, D.L. An empirical algorithm for estimating the absorption of colored dissolved organic matter from sentinel-2 (MSI) and landsat-8 (OLI) observations of coastal waters. Remote Sens. 2024, 16, 4061. [Google Scholar] [CrossRef]
- Pahlevan, N.; Chittimalli, S.K.; Balasubramanian, S.V.; Vellucci, V. Sentinel-2/landsat-8 product consistency and implications for monitoring aquatic systems. Remote Sens. Environ. 2019, 220, 19–29. [Google Scholar] [CrossRef]
- Coelho, C.; Heim, B.; Foerster, S.; Brosinsky, A.; De Araújo, J.C. In situ and satellite observation of CDOM and chlorophyll-a dynamics in small water surface reservoirs in the Brazilian semiarid region. Water 2017, 9, 913. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W.; Tian, Y.Q.; Yu, Q. Monitoring dissolved organic carbon by combining landsat-8 and sentinel-2 satellites: Case study in saginaw river estuary, lake huron. Sci. Total Environ. 2020, 718, 137374. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, Q.; Tian, Y.Q.; Becker, B.L.; Siqueira, P.; Torbick, N. Spatio-temporal variations of CDOM in shallow inland waters from a semi-analytical inversion of landsat-8. Remote Sens. Environ. 2018, 218, 189–200. [Google Scholar] [CrossRef]
- Griffin, C.; McClelland, J.; Frey, K.; Fiske, G.; Holmes, R. Quantifying CDOM and doc in major arctic rivers during ice-free conditions using landsat tm and ETM+ data. Remote Sens. Environ. 2018, 209, 395–409. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W.-N.; Tian, Y.Q.; Yu, Q. Estimation of colored dissolved organic matter from landsat-8 imagery for complex inland water: Case study of lake Huron. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2201–2212. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W.; Tian, Y.Q.; Yu, Q.; Zheng, Y.; Huang, L. Remote estimation of colored dissolved organic matter and chlorophyll-a in lake Huron using sentinel-2 measurements. J. Appl. Remote Sens. 2017, 11, 036007. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S.; Fu, R.; Li, D.; Jiang, H.; Wang, C.; Peng, Y.; Jia, K.; Hicks, B.J. Remote sensing big data for water environment monitoring: Current status, challenges, and future prospects. Earth’s Future 2022, 10, e2021EF002289. [Google Scholar] [CrossRef]
- Cao, Z.; Ma, R.; Duan, H.; Xue, K. Effects of broad bandwidth on the remote sensing of inland waters: Implications for high spatial resolution satellite data applications. ISPRS J. Photogramm. Remote Sens. 2019, 153, 110–122. [Google Scholar] [CrossRef]
- Kumar, A.; Mehta, M. Investigating the effect of relative spectral response on the estimation of atmospheric parameters: A case study of landsat 8 (OLI) and sentinel 2 (MSI). J. Indian Soc. Remote Sens. 2024, 52, 2115–2122. [Google Scholar] [CrossRef]
- Chen, L.; Tian, L.; Qiu, F.; Chen, X. Water color constituents remote sensing in Wuhan Donghu lake using hj-1a/b ccd imagery. Geomat. Inf. Sci. Wuhan Univ. 2011, 36, 1280–1283. [Google Scholar]
- Han, X.; Zhang, H.; Xue, J.-H.; Sun, W. A spectral–spatial jointed spectral super-resolution and its application to hj-1a satellite images. IEEE Geosci. Remote Sens. Lett. 2021, 19, 5505905. [Google Scholar] [CrossRef]
- Zhou, L.; Roberts, D.A.; Ma, W.; Zhang, H.; Tang, L. Estimation of higher Chlorophylla concentrations using field spectral measurement and hj-1a hyperspectral satellite data in Dianshan lake, China. ISPRS J. Photogramm. Remote Sens. 2014, 88, 41–47. [Google Scholar] [CrossRef]
- Cooley, S.W.; Smith, L.C.; Stepan, L.; Mascaro, J. Tracking dynamic northern surface water changes with high-frequency planet cubesat imagery. Remote Sens. 2017, 9, 1306. [Google Scholar] [CrossRef]
- ChunHock, S.; Cherukuru, N.; Mujahid, A.; Martin, P.; Sanwlani, N.; Warneke, T.; Rixen, T.; Notholt, J.; Müller, M. A new remote sensing method to estimate river to ocean doc flux in peatland dominated Sarawak coastal regions, Borneo. Remote Sens. 2020, 12, 3380. [Google Scholar] [CrossRef]
- Zhang, H.; Yao, B.; Wang, S.; Wang, G. Remote sensing estimation of the concentration and sources of coloured dissolved organic matter based on MODIS: A case study of Erhai lake. Ecol. Indic. 2021, 131, 108180. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Liu, Q.; Xiao, Q.; Che, T.; Ma, M.; Jin, R.; Ran, Y.; Wen, J.; Xu, Z. Heihe remote sensing experiments: Retrospect and prospect. Natl. Remote Sens. Bull. 2023, 27, 224–248. [Google Scholar] [CrossRef]
- Wang, S.; Qin, B. Application of optical remote sensing in harmful algal blooms in lakes: A review. Remote Sens. 2025, 17, 1381. [Google Scholar] [CrossRef]
- Hou, Y.; Hu, N.; Teng, C.; Zheng, L.; Zhang, J.; Gong, Y. Monitoring and evaluation of ecological restoration effectiveness: A case study of the Liaohe river estuary wetland. Sustainability 2025, 17, 2973. [Google Scholar] [CrossRef]
- Guo, X.; Liu, H.; Zhong, P.; Hu, Z.; Cao, Z.; Shen, M.; Tan, Z.; Liu, W.; Liu, C.; Li, D. Remote retrieval of dissolved organic carbon in rivers using a hyperspectral drone system. Int. J. Digit. Earth 2024, 17, 2358863. [Google Scholar] [CrossRef]
- Yang, Z.; Gong, C.; Ji, T.; Hu, Y.; Li, L. Water quality retrieval from zy1-02d hyperspectral imagery in urban water bodies and comparison with sentinel-2. Remote Sens. 2022, 14, 5029. [Google Scholar] [CrossRef]
- Zeng, C.; Richardson, M.; King, D.J. The impacts of environmental variables on water reflectance measured using a lightweight unmanned aerial vehicle (uav)-based spectrometer system. ISPRS J. Photogramm. Remote Sens. 2017, 130, 217–230. [Google Scholar] [CrossRef]
- Xiang, T.-Z.; Xia, G.-S.; Zhang, L. Mini-unmanned aerial vehicle-based remote sensing: Techniques, applications, and prospects. IEEE Geosci. Remote Sens. Mag. 2019, 7, 29–63. [Google Scholar] [CrossRef]
- Yao, H.; Qin, R.; Chen, X. Unmanned aerial vehicle for remote sensing applications—A review. Remote Sens. 2019, 11, 1443. [Google Scholar] [CrossRef]
- Chabot, D. Trends in drone research and applications as the journal of unmanned vehicle systems turns five. J. Unmanned Veh. Syst. 2018, 6, vi–xv. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Shi, K.; Zhang, Y.; Li, N.; Wang, W.; Huang, X.; Qin, B. Monitoring water quality using proximal remote sensing technology. Sci. Total Environ. 2022, 803, 149805. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Zhou, Y.; Fan, L.; Li, J.; Huang, Y. Research on remote sensing identification model of urban malodorous black water in pearl river estuary based on high-resolution image. Pol. J. Environ. Stud. 2023, 32, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Li, S.; Song, K.; Wang, X.; Wen, Z.; Kutser, T.; Jacinthe, P.-A.; Shang, Y.; Lyu, L.; Fang, C. Remote sensing of CDOM and DOC in alpine lakes across the Qinghai-Tibet plateau using sentinel-2a imagery data. J. Environ. Manag. 2021, 286, 112231. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Dhillon, M.S.; Dahms, T.; Kübert-Flock, C.; Steffan-Dewenter, I.; Zhang, J.; Ullmann, T. Spatiotemporal fusion modelling using starfm: Examples of Landsat 8 and sentinel-2 NDVI in Bavaria. Remote Sens. 2022, 14, 677. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S. Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Zhu, W.; Yu, Q.; Tian, Y.Q. Uncertainty analysis of remote sensing of colored dissolved organic matter: Evaluations and comparisons for three rivers in North America. ISPRS J. Photogramm. Remote Sens. 2013, 84, 12–22. [Google Scholar] [CrossRef]
- Povey, A.; Grainger, R. Known and unknown unknowns: Uncertainty estimation in satellite remote sensing. Atmos. Meas. Tech. 2015, 8, 4699–4718. [Google Scholar] [CrossRef]
- Ilori, C.O.; Pahlevan, N.; Knudby, A. Analyzing performances of different atmospheric correction techniques for Landsat 8: Application for coastal remote sensing. Remote Sens. 2019, 11, 469. [Google Scholar] [CrossRef]
- Gilerson, A.; Herrera-Estrella, E.; Foster, R.; Agagliate, J.; Hu, C.; Ibrahim, A.; Franz, B. Determining the primary sources of uncertainty in retrieval of marine remote sensing reflectance from satellite ocean color sensors. Front. Remote Sens. 2022, 3, 857530. [Google Scholar] [CrossRef]
- Zhao, D.; Feng, L.; He, X. Global gridded aerosol models established for atmospheric correction over inland and nearshore coastal waters. J. Geophys. Res. Atmos. 2023, 128, e2023JD038815. [Google Scholar] [CrossRef]
- Zheng, K.; Shao, T.; Ning, J.; Zhuang, D.; Liang, X.; Ding, X. Water quality, basin characteristics, and discharge greatly affect cdom in highly turbid rivers in the yellow river Basin, China. J. Clean. Prod. 2023, 404, 136995. [Google Scholar] [CrossRef]
- Wang, D.; Ma, R.; Xue, K.; Loiselle, S.A. The assessment of landsat-8 Oli atmospheric correction algorithms for inland waters. Remote Sens. 2019, 11, 169. [Google Scholar] [CrossRef]
- Hirtle, H.; Rencz, A. The relation between spectral reflectance and dissolved organic carbon in lake water: Kejimkujik national park, Nova Scotia, Canada. Int. J. Remote Sens. 2003, 24, 953–967. [Google Scholar] [CrossRef]
- Zhu, W.; Pang, S.; Chen, J.; Sun, N.; Huang, L.; Zhang, Y.; Zhang, Z.; He, S.; Cheng, Q. Spatiotemporal variations of total suspended matter in complex archipelagic regions using a sigmoid model and landsat-8 imagery. Reg. Stud. Mar. Sci. 2020, 36, 101308. [Google Scholar] [CrossRef]
- Tan, K.; Wang, X.; Niu, C.; Wang, F.; Du, P.; Sun, D.-X.; Yuan, J.; Zhang, J. Vicarious calibration for the AHSI instrument of gaofen-5 with reference to the CRCS Dunhuang test site. IEEE Trans. Geosci. Remote Sens. 2020, 59, 3409–3419. [Google Scholar] [CrossRef]
- Fan, Y.; Li, W.; Gatebe, C.K.; Jamet, C.; Zibordi, G.; Schroeder, T.; Stamnes, K. Atmospheric correction over coastal waters using multilayer neural networks. Remote Sens. Environ. 2017, 199, 218–240. [Google Scholar] [CrossRef]
- Wang, D.; Ronghua, M.; Xue, K.; Li, J. Improved atmospheric correction algorithm for Landsat 8–Oli data in turbid waters: A case study for the lake Taihu, China. Opt. Express 2019, 27, A1400–A1418. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yu, Z.; Shum, C.; Man, Q.; Wang, B. A new hierarchical multiplication and spectral mixing method for quantification of forest coverage changes using GAOFEN (gf)-1 imagery in Zhejiang Province, China. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4407210. [Google Scholar] [CrossRef]
- Mélin, F.; Sclep, G.; Jackson, T.; Sathyendranath, S. Uncertainty estimates of remote sensing reflectance derived from comparison of ocean color satellite data sets. Remote Sens. Environ. 2016, 177, 107–124. [Google Scholar] [CrossRef]
- Sayer, A.M.; Govaerts, Y.; Kolmonen, P.; Lipponen, A.; Luffarelli, M.; Mielonen, T.; Patadia, F.; Popp, T.; Povey, A.C.; Stebel, K. A review and framework for the evaluation of pixel-level uncertainty estimates in satellite aerosol remote sensing. Atmos. Meas. Tech. 2020, 13, 373–404. [Google Scholar] [CrossRef]
- Cairns, S.H.; Dickson, K.L.; Atkinson, S.F. An examination of measuring selected water quality trophic indicators with spot satellite HRV data. Photogramm. Eng. Remote Sens. 1997, 63, 263–265. [Google Scholar]
- Zheng, Y.; Wang, J.; Kondratenko, Y.; Wu, J. Research progress in surface water quality monitoring based on remote sensing technology. Int. J. Remote Sens. 2024, 45, 2337–2373. [Google Scholar] [CrossRef]
- Shen, F.; Zhao, H.; Zhu, Q.; Sun, X.; Liu, Y. Chinese Hyperspectral satellite missions and preliminary applications of aquatic environment. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; IEEE: New York, NY, USA, 2021; pp. 1233–1236. [Google Scholar]
- Zhang, Z.; Zhang, H.; Jin, Y.; Guo, H.; Tian, S.; Huang, J.J.; Zhu, X. Analysing the spatiotemporal variation and influencing factors of lake Chaohu’s CDOM over the past 40 years using machine learning. Ecohydrology 2024, 17, e2639. [Google Scholar] [CrossRef]
- Chen, C.; Shi, P. Application of ocean color satellite remote sensing data for estimation of doc concentration. Acta Sci. Circumstantiae 2001, 21, 5. [Google Scholar]
- Kutser, T.; Pierson, D.C.; Tranvik, L.; Reinart, A.; Sobek, S.; Kallio, K. Using satellite remote sensing to estimate the colored dissolved organic matter absorption coefficient in lakes. Ecosystems 2005, 8, 709–720. [Google Scholar] [CrossRef]
- Lai, F.; Yang, Q.; Song, K.; Shang, Y. Remote sensing estimation of doc concentration of reservoirs in Northeast China based on cdom absorption. J. Lake Sci. 2023, 35, 224–235. [Google Scholar]
- Song, K.; Zang, S.; Zhao, Y.; Li, L.; Du, J.; Zhang, N.; Wang, X.; Shao, T.; Guan, Y.; Liu, L. Spatiotemporal characterization of dissolved carbon for inland waters in semi-humid/semi-arid region, China. Hydrol. Earth Syst. Sci. 2013, 17, 4269–4281. [Google Scholar] [CrossRef]
- Granskog, M.A.; Macdonald, R.W.; Mundy, C.-J.; Barber, D.G. Distribution, characteristics and potential impacts of chromophoric dissolved organic matter (CDOM) in Hudson strait and Hudson bay, Canada. Cont. Shelf Res. 2007, 27, 2032–2050. [Google Scholar] [CrossRef]
- Al-Rubaay, H.I.A. Optical Remote Sensing of Coloured Dissolved Organic Matter (CDOM) for Better Estimation of Dissolved Organic Carbon (DOC) in South-East Queensland Water Reservoirs. Ph.D. Thesis, University of Southern Queensland, Toowoomba, Australia, 2021. [Google Scholar]
- Jiang, X.; Liu, D.; Li, J.; Duan, H. Eutrophication and salinization elevate the dissolved organic matter content in arid lakes. Environ. Res. 2023, 233, 116471. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Pan, D.; Bai, Y.; Wu, K.; Chen, C.-T.A.; Sun, J.; Zhang, L. The satellite reversion of dissolved organic carbon (DOC) based on the analysis of the mixing behavior of doc and colored dissolved organic matter: The east China sea as an example. Acta Oceanol. Sin. 2013, 32, 1–11. [Google Scholar] [CrossRef]
- Wang, J.-J.; Lafreniere, M.J.; Lamoureux, S.F.; Simpson, A.J.; Gelinas, Y.; Simpson, M.J. Differences in riverine and pond water dissolved organic matter composition and sources in Canadian high arctic watersheds affected by active layer detachments. Environ. Sci. Technol. 2018, 52, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Stedmon, C.; Amon, R.; Rinehart, A.; Walker, S. The supply and characteristics of colored dissolved organic matter (CDOM) in the arctic ocean: Pan arctic trends and differences. Mar. Chem. 2011, 124, 108–118. [Google Scholar] [CrossRef]
- Hessen, D.O.; Carroll, J.; Kjeldstad, B.; Korosov, A.A.; Pettersson, L.H.; Pozdnyakov, D.; Sørensen, K. Input of organic carbon as determinant of nutrient fluxes, light climate and productivity in the Ob and Yenisey estuaries. Estuar. Coast. Shelf Sci. 2010, 88, 53–62. [Google Scholar] [CrossRef]
- Griffin, C.G.; Frey, K.E.; Rogan, J.; Holmes, R.M. Spatial and interannual variability of dissolved organic matter in the Kolyma river, east Siberia, observed using satellite imagery. J. Geophys. Res. Biogeosci. 2011, 116, G03018. [Google Scholar] [CrossRef]
- Fichot, C.G.; Benner, R. A novel method to estimate doc concentrations from CDOM absorption coefficients in coastal waters. Geophys. Res. Lett. 2011, 38, L03610. [Google Scholar] [CrossRef]
- Matsuoka, A.; Bricaud, A.; Benner, R.; Para, J.; Sempéré, R.; Prieur, L.; Bélanger, S.; Babin, M. Tracing the transport of colored dissolved organic matter in water masses of the southern Beaufort sea: Relationship with hydrographic characteristics. Biogeosciences 2012, 9, 925–940. [Google Scholar] [CrossRef]
- Walker, S.A.; Amon, R.M.; Stedmon, C.A. Variations in high-latitude riverine fluorescent dissolved organic matter: A comparison of large arctic rivers. J. Geophys. Res. Biogeosci. 2013, 118, 1689–1702. [Google Scholar] [CrossRef]
- Zhu, W.; Yu, Q.; Tian, Y.Q.; Becker, B.L.; Zheng, T.; Carrick, H.J. An assessment of remote sensing algorithms for colored dissolved organic matter in complex freshwater environments. Remote Sens. Environ. 2014, 140, 766–778. [Google Scholar] [CrossRef]
- Vantrepotte, V.; Danhiez, F.-P.; Loisel, H.; Ouillon, S.; Mériaux, X.; Cauvin, A.; Dessailly, D. CDOM-doc relationship in contrasted coastal waters: Implication for doc retrieval from ocean color remote sensing observation. Opt. Express 2015, 23, 33–54. [Google Scholar] [CrossRef] [PubMed]
- Herrault, P.-A.; Gandois, L.; Gascoin, S.; Tananaev, N.; Le Dantec, T.; Teisserenc, R. Using high spatio-temporal optical remote sensing to monitor dissolved organic carbon in the Arctic River Yenisei. Remote Sens. 2016, 8, 803. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Bai, Y.; Yang, C.; Wang, J.; Zhou, Q.; Hu, S.; Shi, T.; Liao, X.; Wu, G. Improving satellite retrieval of oceanic particulate organic carbon concentrations using machine learning methods. Remote Sens. Environ. 2021, 256, 112316. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, D.; Zhong, P.; Duan, H. Estimation of doc concentration in the surface water of lake Bosten using CDOM absorption coefficient. China Environ. Sci. 2022, 42, 5824–5835. [Google Scholar]
- Cao, N.; Lin, X.; Liu, C.; Tan, M.L.; Shi, J.; Jim, C.-Y.; Hu, G.; Ma, X.; Zhang, F. Estimation of dissolved organic carbon using sentinel-2 in the eutrophic lake Ebinur, China. Remote Sens. 2024, 16, 252. [Google Scholar] [CrossRef]
- Feng, P.; Song, K.; Wen, Z.; Tao, H.; Yu, X.; Shang, Y. Remote sensing estimation of CDOM for Songhua river of China: Distributions and implications. Remote Sens. 2024, 16, 4608. [Google Scholar] [CrossRef]
- Li, J.; Yu, Q.; Tian, Y.Q.; Boutt, D.F. Effects of landcover, soil property, and temperature on covariations of doc and cdom in inland waters. J. Geophys. Res. Biogeosci. 2018, 123, 1352–1365. [Google Scholar] [CrossRef]
- Liao, Z.; Wang, Y.; Xie, K.; Xie, N.; Cai, X.; Zhou, L.; Yuan, Y. Photochemistry of dissolved organic matter in water from the Pearl river (China): Seasonal patterns and predictive modelling. Water Res. 2022, 208, 117875. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-L.; Zhang, H.; Yi, Y.; Zhang, Y.; Qi, Y.; Mostofa, K.M.; Guo, L.; He, D.; Fu, P.; Liu, C.-Q. Potential impacts of climate and anthropogenic-induced changes on DOM dynamics among the major Chinese rivers. Geogr. Sustain. 2023, 4, 329–339. [Google Scholar] [CrossRef]
- Li, Y.; Song, G.; Massicotte, P.; Yang, F.; Li, R.; Xie, H. Distribution, seasonality, and fluxes of dissolved organic matter in the pearl river (Zhujiang) estuary, China. Biogeosciences 2019, 16, 2751–2770. [Google Scholar] [CrossRef]
- Zhao, L.; Gao, L.; Guo, L. Seasonal variations in molecular size of Chromophoric dissolved organic matter from the lower Changjiang (Yangtze) river. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006160. [Google Scholar] [CrossRef]
- Badr, E.-S.A. Spatio-temporal variability of dissolved organic nitrogen (don), carbon (doc), and nutrients in the Nile river, Egypt. Environ. Monit. Assess. 2016, 188, 580. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Liang, S.; Wang, X.; Pan, X. Distribution and dynamics of dissolved organic matter in the Changjiang estuary and Adjacent sea. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006161. [Google Scholar] [CrossRef]
- Motard-Côté, J.; Kieber, D.J.; Rellinger, A.; Kiene, R.P. Influence of the mississippi river plume and non-bioavailable DMSP on dissolved DMSP Turnover in the Northern Gulf of Mexico. Environ. Chem. 2015, 13, 280–292. [Google Scholar] [CrossRef]
- Nielsen, D.L.; Cook, R.A.; Ning, N.; Gawne, B.; Petrie, R. Carbon and nutrient subsidies to a lowland river following floodplain inundation. Mar. Freshw. Res. 2015, 67, 1302–1312. [Google Scholar] [CrossRef]
- Gibbs, M.S.; Wallace, T.; Mosley, L.M. Constraining organic matter composition and dynamics as a dominant driver of hypoxic blackwater risk during river Murray floodplain inundation. Hydrol. Process. 2022, 36, e14529. [Google Scholar] [CrossRef]
- Amaral, V.; Romera-Castillo, C.; García-Delgado, M.; Gómez-Parra, A.; Forja, J. Distribution of dissolved organic matter in estuaries of the southern Iberian Atlantic basin: Sources, behavior and export to the coastal zone. Mar. Chem. 2020, 226, 103857. [Google Scholar] [CrossRef]
- Tan, L.-S.; Ge, Z.-M.; Fei, B.-L.; Xie, L.-N.; Li, Y.-L.; Li, S.-H.; Li, X.-Z.; Ysebaert, T. The roles of vegetation, tide and sediment in the variability of carbon in the salt marsh dominated tidal creeks. Estuar. Coast. Shelf Sci. 2020, 239, 106752. [Google Scholar] [CrossRef]
- Lynch, L.M.; Sutfin, N.A.; Fegel, T.S.; Boot, C.M.; Covino, T.P.; Wallenstein, M.D. River channel connectivity shifts metabolite composition and dissolved organic matter chemistry. Nat. Commun. 2019, 10, 459. [Google Scholar] [CrossRef] [PubMed]
- Letourneau, M.L.; Medeiros, P.M. Dissolved organic matter composition in a marsh-dominated estuary: Response to seasonal forcing and to the passage of a hurricane. J. Geophys. Res. Biogeosci. 2019, 124, 1545–1559. [Google Scholar] [CrossRef]
- Ye, L.; Wu, X.; Liu, B.; Yan, D. Tidal and seasonal variation in the concentrations of the organic carbons in the tidal freshwater reach of Changjiang river. Acta Sci. Circumstantiae 2022, 42, 338–346. [Google Scholar]
- Hansell, D.A.; Carlson, C.A. Biogeochemistry of Marine Dissolved Organic Matter; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Asmala, E.; Stedmon, C.A.; Thomas, D.N. Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries. Estuar. Coast. Shelf Sci. 2012, 111, 107–117. [Google Scholar] [CrossRef]
- Jégou, F.; Jallais, G.; Salmon, E.; Guenet, B.; Herrault, P.-A.; Gogo, S.; Gandois, L.; Guimbaud, C.; Laggoun-Defarge, F.; Moulard, N. Variability of Dissolved Organic Carbon (DOC) in the 6 Largest Arctic Rivers Estimated Using High Resolution Sentinel-2 and Landsat-8 Imageries Over the 2013–2021 Period; EGU General Assembly: Munich, Germany, 2022; p. EGU22-9645. [Google Scholar]
- Yang, H.; Kong, J.; Hu, H.; Du, Y.; Gao, M.; Chen, F. A review of remote sensing for water quality retrieval: Progress and challenges. Remote Sens. 2022, 14, 1770. [Google Scholar] [CrossRef]
- Zhu, W.; Yu, Q. Inversion of chromophoric dissolved organic matter from eo-1 hyperion imagery for turbid estuarine and coastal waters. IEEE Trans. Geosci. Remote Sens. 2012, 51, 3286–3298. [Google Scholar] [CrossRef]
- Keller, P.A. Comparison of two inversion techniques of a semi-analytical model for the determination of lake water constituents using imaging spectrometry data. Sci. Total Environ. 2001, 268, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755–5772. [Google Scholar] [CrossRef] [PubMed]
- Garver, S.A.; Siegel, D.A. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso sea. J. Geophys. Res. Ocean. 1997, 102, 18607–18625. [Google Scholar] [CrossRef]
- Yang, C.; Ye, H. A new semianalytical model for retrieving chlorophyll a concentration and magnitude of fluorescence in the South China sea. Bull. Mar. Sci. 2022, 98, 165–184. [Google Scholar] [CrossRef]
- Werdell, P.J.; Franz, B.A.; Bailey, S.W.; Feldman, G.C.; Boss, E.; Brando, V.E.; Dowell, M.; Hirata, T.; Lavender, S.J.; Lee, Z. Generalized ocean color inversion model for retrieving marine inherent optical properties. Appl. Opt. 2013, 52, 2019–2037. [Google Scholar] [CrossRef] [PubMed]
- Erickson, Z.K.; McKinna, L.; Werdell, P.J.; Cetinić, I. Bayesian approach to a generalized inherent optical property model. Opt. Express 2023, 31, 22790–22801. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Zhang, D.; Tan, L.; Zhang, G.; Župan, R. Performance analysis of inverting optical properties based on quasi-analytical algorithms. Multimed. Tools Appl. 2022, 81, 4693–4709. [Google Scholar] [CrossRef]
- Zhu, W.; Yu, Q.; Tian, Y.Q.; Chen, R.F.; Gardner, G.B. Estimation of chromophoric dissolved organic matter in the Mississippi and Atchafalaya river plume regions using above-surface hyperspectral remote sensing. J. Geophys. Res. Ocean. 2011, 116, C02011. [Google Scholar] [CrossRef]
- Najah, A.; Al-Shehhi, M.R. Performance of the ocean color algorithms: Qaa, Gsm, and Giop in inland and coastal waters. Remote Sens. Earth Syst. Sci. 2021, 4, 235–248. [Google Scholar] [CrossRef]
- Pan, H.; Lyu, H.; Wang, Y.; Jin, Q.; Wang, Q.; Li, Y.; Fu, Q. An improved approach to retrieve IOPS based on a quasi-analytical algorithm (QAA) for turbid eutrophic inland water. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 5177–5189. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, F.; Sokoletsky, L.; Sun, X. Validation and calibration of QAA algorithm for CDOM absorption retrieval in the changjiang (Yangtze) estuarine and coastal waters. Remote Sens. 2017, 9, 1192. [Google Scholar] [CrossRef]
- Le Chengfeng, L.Y.; Yong, Z. Study on partitioning of phytoplankton absorption coefficient from total spectral absorption in Taihu lake. Acta Opt. Sin. 2010, 30, 3090–3096. [Google Scholar] [CrossRef]
- Lu, S.; Jiang, J.; Zhu, W. Remote sensing inversion and daily variation of CDOM based on GOCI in the Changjiang estuary and adjacent waters. Haiyang Xuebao 2017, 39, 133–145. [Google Scholar]
- Rodrigues, T.W.P. From Oligo to Eutrophic Inland Waters: Advancements and Challenges for Bio-Optical Modeling. 2017. Available online: http://hdl.handle.net/11449/150315 (accessed on 27 May 2025).
- Watanabe, F.; Mishra, D.R.; Astuti, I.; Rodrigues, T.; Alcântara, E.; Imai, N.N.; Barbosa, C. Parametrization and calibration of a quasi-analytical algorithm for tropical eutrophic waters. ISPRS J. Photogramm. Remote Sens. 2016, 121, 28–47. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R.; Lee, Z. Bio-optical inversion in highly turbid and cyanobacteria-dominated waters. IEEE Trans. Geosci. Remote Sens. 2013, 52, 375–388. [Google Scholar] [CrossRef]
- Li, L.; Li, L.; Song, K. Remote sensing of freshwater cyanobacteria: An extended IOP inversion model of inland waters (iimiw) for partitioning absorption coefficient and estimating phycocyanin. Remote Sens. Environ. 2015, 157, 9–23. [Google Scholar] [CrossRef]
- Ogashawara, I.; Li, L.; Druschel, G.K. Retrieval of inherent optical properties from multiple aquatic systems using a quasi-analytical algorithm for several water types. Remote Sens. Appl. Soc. Environ. 2022, 27, 100807. [Google Scholar] [CrossRef]
- Shi, L.; Mao, Z.; Zhang, Y.; Wang, Z.; Tu, Q. An extended quasi− analytical algorithm for retrieving absorption coefficient using 510–620 nm bands from OLCI and meris satellite data. Water 2024, 16, 67. [Google Scholar] [CrossRef]
- Zeng, Z.; Tang, B.-H.; Wang, D.; Huang, L.; Chen, G.; Ge, Z. Estimation of chromophpric dissolved organic matter concentration in Erhai lake using the quasi-analytical algorithm from sentinel-3 satellite data. IEEE Access 2024, 12, 44586–44597. [Google Scholar] [CrossRef]
- Li, S.; Song, K.; Mu, G.; Zhao, Y.; Ma, J.; Ren, J. Evaluation of the quasi-analytical algorithm (QAA) for estimating total absorption coefficient of turbid inland waters in northeast China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4022–4036. [Google Scholar] [CrossRef]
- Le, C.F.; Li, Y.M.; Zha, Y.; Sun, D.; Yin, B. Validation of a quasi-analytical algorithm for highly turbid eutrophic water of Meiliang bay in Taihu lake, China. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2492–2500. [Google Scholar]
- Chu, Q.; Zhang, Y.; Ma, R.; Hu, M.; Jing, Y. Modis-based remote estimation of absorption coefficients of an inland turbid lake in China. Remote Sens. 2020, 12, 1940. [Google Scholar] [CrossRef]
- Matsuoka, A.; Hooker, S.; Bricaud, A.; Gentili, B.; Babin, M. Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort sea waters: Application to deriving concentrations of dissolved organic carbon from space. Biogeosciences 2013, 10, 917–927. [Google Scholar] [CrossRef]
- Salama, M.; Dekker, A.; Su, Z.; Mannaerts, C.; Verhoef, W. Deriving inherent optical properties and associated inversion-uncertainties in the Dutch lakes. Hydrol. Earth Syst. Sci. 2009, 13, 1113–1121. [Google Scholar] [CrossRef]
- Li, H.; He, X.; Shanmugam, P.; Bai, Y.; Wang, D.; Huang, H.; Zhu, Q.; Gong, F. Semi-analytical algorithms of ocean color remote sensing under high solar zenith angles. Opt. Express 2019, 27, A800–A817. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; He, X.; Jin, X.; Cai, W.; Bai, Y.; Wang, D.; Gong, F.; Zhu, Q. Spherical vector radiative transfer model for satellite ocean color remote sensing. Opt. Express 2023, 31, 11192–11212. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Maldonado, J.A.; Santamaría-del-Ángel, E.; Gonzalez-Silvera, A.; Sebastiá-Frasquet, M.T. Detection of phytoplankton temporal anomalies based on satellite inherent optical properties: A tool for monitoring phytoplankton blooms. Sensors 2019, 19, 3339. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, R.E.; Pahlevan, N.; Smith, B.; Boss, E.; Gurlin, D.; Alikas, K.; Kangro, K.; Kudela, R.M.; Vaičiūtė, D. A hyperspectral inversion framework for estimating absorbing inherent optical properties and biogeochemical parameters in inland and coastal waters. Remote Sens. Environ. 2023, 295, 113706. [Google Scholar] [CrossRef]
- De Stefano, L.G.; Valdivia, A.S.; Gianello, D.; Gerea, M.; Reissig, M.; Garcia, P.E.; García, R.D.; Cárdenas, C.S.; Dieguez, M.d.C.; Queimaliños, C.P. Using CDOM spectral shape information to improve the estimation of doc concentration in inland waters: A case study of Andean Patagonian lakes. Sci. Total Environ. 2022, 824, 153752. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Meng, J.; Yuan, C.; Liu, R.; Hou, E.; Bi, D.; Li, Y.; Qian, C.; Zhong, S. Seasonal distribution of observed colored dissolved organic matter (CDOM) in the eastern Indian ocean. J. Ocean Univ. China 2023, 22, 886–896. [Google Scholar] [CrossRef]
- Yin, Y.; Wu, Z.; Zhang, Y.; Liu, M.; Zhou, Y.; Gao, Y.; He, J.; Yu, Z. Absorption characteristics and sources analysis of CDOM in xin’anjiang reservoir in summer. China Environ. Sci. 2014, 34, 3207–3214. [Google Scholar]
- Estlander, S.; Horppila, J. Effects of dissolved organic carbon gradient on Epilimnetic zooplankton communities in lakes. Hydrobiologia 2023, 850, 4015–4027. [Google Scholar] [CrossRef]
- Song, K.; Wen, Z.; Shang, Y.; Yang, H.; Lyu, L.; Liu, G.; Fang, C.; Du, J.; Zhao, Y. Quantification of dissolved organic carbon (DOC) storage in lakes and reservoirs of mainland China. J. Environ. Manag. 2018, 217, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Shen, F.; Liu, Y. Light absorption properties of CDOM in the Changjiang (Yangtze) estuarine and coastal waters: An alternative approach for doc estimation. Estuar. Coast. Shelf Sci. 2016, 181, 302–311. [Google Scholar] [CrossRef]
- Danhiez, F.; Vantrepotte, V.; Cauvin, A.; Lebourg, E.; Loisel, H. Optical properties of chromophoric dissolved organic matter during a phytoplankton bloom. Implication for doc estimates from CDOM absorption. Limnol. Oceanogr. 2017, 62, 1409–1425. [Google Scholar] [CrossRef]
- Singh, S.; Raulo, S.; Acharyya, T.; Mishra, D.R.; Kumar, A.; Gopinath, A.; Muduli, P.R.; Rastogi, G. Dynamics and source characterization of chromophoric dissolved organic matter (CDOM) in a tropical monsoon driven lagoon. Mar. Chem. 2024, 265, 104430. [Google Scholar] [CrossRef]
- He, Y.; Gong, Z.; Zheng, Y.; Zhang, Y. Inland reservoir water quality inversion and eutrophication evaluation using bp neural network and remote sensing imagery: A case study of Dashahe reservoir. Water 2021, 13, 2844. [Google Scholar] [CrossRef]
- Wu, Z.; Li, J.; Wang, R.; Shi, L.; Miao, S.; Lv, H.; Li, Y. Estimation of CDOM concentration in inland lake based on random forest using sentinel-3a olci. J. Lake Sci 2018, 30, 979–991. [Google Scholar]
- Huang, Y.; Pan, J.; Devlin, A.T. Enhanced estimate of chromophoric dissolved organic matter using machine learning algorithms from landsat-8 Oli data in the pearl river estuary. Remote Sens. 2023, 15, 1963. [Google Scholar] [CrossRef]
- Menendez, A.; Tzortziou, M. Augmenting estuary monitoring from space: New retrievals of fine-scale CDOM quality and doc exchange. Int. J. Appl. Earth Obs. Geoinf. 2025, 137, 104389. [Google Scholar] [CrossRef]
- Qiang, S.; Song, K.; Shang, Y.; Lai, F.; Wen, Z.; Liu, G.; Tao, H.; Lyu, Y. Remote sensing estimation of CDOM and doc with the environmental implications for lake Khanka. Remote Sens. 2023, 15, 5707. [Google Scholar] [CrossRef]
- Xu, J.; Fang, C.; Gao, D.; Zhang, H.; Gao, C.; Xu, Z.; Wang, Y. Optical models for remote sensing of chromophoric dissolved organic matter (CDOM) absorption in Poyang lake. ISPRS J. Photogramm. Remote Sens. 2018, 142, 124–136. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Page, B.P.; Finlay, J.C.; Brezonik, P.L.; Bauer, M.E.; Griffin, C.G.; Hozalski, R.M. Regional measurements and spatial/temporal analysis of CDOM in 10,000+ optically variable Minnesota lakes using Landsat 8 imagery. Sci. Total Environ. 2020, 724, 138141. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhu, W. Consistency evaluation of landsat-7 and landsat-8 for improved monitoring of colored dissolved organic matter in complex water. Geocarto Int. 2022, 37, 91–102. [Google Scholar] [CrossRef]
- Siswanto, E.; Tang, J.; Yamaguchi, H.; Ahn, Y.-H.; Ishizaka, J.; Yoo, S.; Kim, S.-W.; Kiyomoto, Y.; Yamada, K.; Chiang, C. Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the yellow and east China seas. J. Oceanogr. 2011, 67, 627–650. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Zhang, Y.; Shi, K.; Zhou, Y.; Li, N. Machine learning algorithms for chromophoric dissolved organic matter (CDOM) estimation based on landsat 8 images. Remote Sens. 2021, 13, 3560. [Google Scholar] [CrossRef]
- Toming, K.; Liu, H.; Soomets, T.; Uuemaa, E.; Nõges, T.; Kutser, T. Estimation of the biogeochemical and physical properties of lakes based on remote sensing and artificial intelligence applications. Remote Sens. 2024, 16, 464. [Google Scholar] [CrossRef]
- Li, S.; Song, K.; Wang, S.; Liu, G.; Wen, Z.; Shang, Y.; Lyu, L.; Chen, F.; Xu, S.; Tao, H. Quantification of chlorophyll-a in typical lakes across China using sentinel-2 MSI imagery with machine learning algorithm. Sci. Total Environ. 2021, 778, 146271. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Ma, R.; Duan, H.; Pahlevan, N.; Melack, J.; Shen, M.; Xue, K. A machine learning approach to estimate chlorophyll-a from landsat-8 measurements in inland lakes. Remote Sens. Environ. 2020, 248, 111974. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N. Seamless retrievals of chlorophyll-a from sentinel-2 (MSI) and sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Ye, H.; Tang, S.; Yang, C. Deep learning for chlorophyll-a concentration retrieval: A case study for the pearl river estuary. Remote Sens. 2021, 13, 3717. [Google Scholar] [CrossRef]
- Keller, S.; Maier, P.M.; Riese, F.M.; Norra, S.; Holbach, A.; Börsig, N.; Wilhelms, A.; Moldaenke, C.; Zaake, A.; Hinz, S. Hyperspectral data and machine learning for estimating CDOM, chlorophyll a, diatoms, green algae and turbidity. Int. J. Environ. Res. Public Health 2018, 15, 1881. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Zhao, X.; Gao, L.; Liang, Z.; Yang, Z.; Zhang, P.; Wu, Q.; Ren, K.; Li, R.; Yang, C. Estimation of water quality variables based on machine learning model and cluster analysis-based empirical model using multi-source remote sensing data in inland reservoirs, south China. Environ. Pollut. 2024, 342, 123104. [Google Scholar] [CrossRef] [PubMed]
- Ruescas, A.B.; Hieronymi, M.; Mateo-Garcia, G.; Koponen, S.; Kallio, K.; Camps-Valls, G. Machine learning regression approaches for colored dissolved organic matter (CDOM) retrieval with s2-msi and s3-olci simulated data. Remote Sens. 2018, 10, 786. [Google Scholar] [CrossRef]
- Wu, M.; Huang, J.; Gong, L.; Jiang, T. Analysis of doc concentration variation and driving forces in the arctic river Lena based on long-term landsat time series. Natl. Remote Sens. Bull. 2021, 25, 830–845. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Alikas, K.; Anstee, J.; Barbosa, C.; Binding, C.; Bresciani, M.; Cremella, B.; Giardino, C.; Gurlin, D. Simultaneous retrieval of selected optical water quality indicators from landsat-8, sentinel-2, and sentinel-3. Remote Sens. Environ. 2022, 270, 112860. [Google Scholar] [CrossRef]
- Marinho, R.R.; Harmel, T.; Martinez, J.-M.; Filizola Junior, N.P. Spatiotemporal dynamics of suspended sediments in the negro river, amazon basin, from in situ and sentinel-2 remote sensing data. ISPRS Int. J. Geo-Inf. 2021, 10, 86. [Google Scholar] [CrossRef]
- Freire da Silva, E.F.; Leao de Moraes Novo, E.M.; Lobo, F.d.L.; Faria Barbosa, C.C.; Cairo, C.T.; Noernberg, M.A.; da Silva Rotta, L.H. A machine learning approach for monitoring Brazilian optical water types using sentinel-2 MSI. REMOTE Sens. Appl. Soc. Environ. 2021, 23, 100577. [Google Scholar] [CrossRef]
- Castelvecchi, D. Can we open the black box of ai? Nat. News 2016, 538, 20. [Google Scholar] [CrossRef] [PubMed]
- Voosen, P. How AI detectives are craking open the black box of deep learning. Science, 6 July 2017. [Google Scholar]
- Abdollahi, H.; Noaparast, M.; Shafaei, S.Z.; Akcil, A.; Panda, S.; Kashi, M.H.; Karimi, P. Prediction and optimization studies for bioleaching of molybdenite concentrate using artificial neural networks and genetic algorithm. Miner. Eng. 2019, 130, 24–35. [Google Scholar] [CrossRef]
- Chen, B.; Mu, X.; Chen, P.; Wang, B.; Choi, J.; Park, H.; Xu, S.; Wu, Y.; Yang, H. Machine learning-based inversion of water quality parameters in typical reach of the urban river by UAV multispectral data. Ecol. Indic. 2021, 133, 108434. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed]
- Kutser, T. The possibility of using the landsat image archive for monitoring long time trends in coloured dissolved organic matter concentration in lake waters. Remote Sens. Environ. 2012, 123, 334–338. [Google Scholar] [CrossRef]
- Cherukuru, N.; Ford, P.W.; Matear, R.J.; Oubelkheir, K.; Clementson, L.A.; Suber, K.; Steven, A.D. Estimating dissolved organic carbon concentration in turbid coastal waters using optical remote sensing observations. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 149–154. [Google Scholar] [CrossRef]
- Chen, C.; Pan, Z.; Shi, P. Simulation of seawater reflection and its application in retrieval of yellow substances by sensing data. J. Trop. Oceanogr. 2003, 22, 33–39. [Google Scholar]
- Slonecker, E.T.; Jones, D.K.; Pellerin, B.A. The new landsat 8 potential for remote sensing of colored dissolved organic matter (cdom). Mar. Pollut. Bull. 2016, 107, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Kutser, T.; Herlevi, A.; Kallio, K.; Arst, H. A hyperspectral model for interpretation of passive optical remote sensing data from turbid lakes. Sci. Total Environ. 2001, 268, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Olmanson, L.G.; Brezonik, P.L.; Bauer, M.E. Remote sensing for regional lake water quality assessment: Capabilities and limitations of current and upcoming satellite systems. Adv. Watershed Sci. Assess. 2015, 33, 111–140. [Google Scholar]
- Brando, V.E.; Dekker, A.G. Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1378–1387. [Google Scholar] [CrossRef]
- Kutser, T.; Paavel, B.; Verpoorter, C.; Ligi, M.; Soomets, T.; Toming, K.; Casal, G. Remote sensing of black lakes and using 810 nm reflectance peak for retrieving water quality parameters of optically complex waters. Remote Sens. 2016, 8, 497. [Google Scholar] [CrossRef]
- Zhang, L.; Fang, Y.; Cai, H.; Zhang, S. Spatio-temporal heterogeneities in water quality and their potential drivers in lake Chaohu (China) from 2001 to 2017. Ecohydrology 2021, 14, e2333. [Google Scholar] [CrossRef]
- Zhao, Y.; He, X.; Pan, S.; Bai, Y.; Wang, D.; Li, T.; Gong, F.; Zhang, X. Satellite retrievals of water quality for diverse inland waters from sentinel-2 images: An example from Zhejiang province, China. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104048. [Google Scholar] [CrossRef]
- Shi, L.; Mao, Z.; Wu, J.; Liu, M.; Zhang, Y.; Wang, Z. Variations in spectral absorption properties of phytoplankton, non-algal particles and Chromophoric dissolved organic matter in lake Qiandaohu. Water 2017, 9, 352. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.; Mu, G.; Ju, H.; Wang, R.; Li, D.; Shabbir, A.H. Spatiotemporal characterization of chromophoric dissolved organic matter (CDOM) and CDOM-doc relationships for highly polluted rivers. Water 2016, 8, 399. [Google Scholar] [CrossRef]
- Wang, B.; Axe, L.; Michalopoulou, Z.-H.; Riman, R.E.; Tan, M.C.; Wei, L. Light absorption properties of the New York/New Jersey Harbor estuary. Hydrobiologia 2016, 766, 173–188. [Google Scholar] [CrossRef]
- Shao, T.; Zheng, H.; Song, K.; Zhao, Y.; Zhang, B. Influence of environmental factors on absorption characteristics of suspended particulate matter and CDOM in Liaohe river watershed, northeast China. Environ. Sci. Pollut. Res. 2017, 24, 19322–19337. [Google Scholar] [CrossRef] [PubMed]
- Ylöstalo, P.; Kallio, K.; Seppälä, J. Absorption properties of in-water constituents and their variation among various lake types in the boreal region. Remote Sens. Environ. 2014, 148, 190–205. [Google Scholar] [CrossRef]
- Rodrigues, T.; Alcantara, E.; Rotta, L.; Bernardo, N.; Watanabe, F. An investigation into the relationship between light absorption budget and trophic status in inland waters. Ecol. Indic. 2020, 115, 106410. [Google Scholar] [CrossRef]
- Araújo, C.A.; Bélanger, S. Variability of bio-optical properties in nearshore waters of the estuary and gulf of st. Lawrence: Absorption and backscattering coefficients. Estuar. Coast. Shelf Sci. 2022, 264, 107688. [Google Scholar] [CrossRef]
- Watanabe, F.; Alcântara, E.; Curtarelli, M.; Kampel, M.; Stech, J. Landsat-based remote sensing of the colored dissolved organic matter absorption coefficient in a tropical oligotrophic reservoir. Remote Sens. Appl. Soc. Environ. 2018, 9, 82–90. [Google Scholar] [CrossRef]
- Bernardo, N.; Alcântara, E.; Watanabe, F.; Rodrigues, T.; Carmo, A.d.; Gomes, A.C.C.; Andrade, C. Light absorption budget in a reservoir cascade system with widely differing optical properties. Water 2019, 11, 229. [Google Scholar] [CrossRef]
- Rodrigues, T.; Mishra, D.R.; Alcântara, E.; Astuti, I.; Watanabe, F.; Imai, N. Estimating the optical properties of inorganic matter-dominated oligo-to-mesotrophic inland waters. Water 2018, 10, 449. [Google Scholar] [CrossRef]
- Hao, Y.; Cui, T.; Singh, V.P.; Zhang, J.; Yu, R.; Zhao, W. Diurnal variation of light absorption in the yellow river estuary. Remote Sens. 2018, 10, 542. [Google Scholar] [CrossRef]
- Sent, G.; Biguino, B.; Favareto, L.; Cruz, J.; Sá, C.; Dogliotti, A.I.; Palma, C.; Brotas, V.; Brito, A.C. Deriving water quality parameters using sentinel-2 imagery: A case study in the Sado estuary, Portugal. Remote Sens. 2021, 13, 1043. [Google Scholar] [CrossRef]
- Arena, M.; Delgado, A.L.; Celleri, C.; Pratolongo, P.D. Preliminary assessment of spatial and short-term variability of bio-optical properties in a tidal dominated estuary (Bahía Blanca, Argentina). Reg. Stud. Mar. Sci. 2019, 29, 100639. [Google Scholar] [CrossRef]
- Werther, M.; Odermatt, D.; Simis, S.G.; Gurlin, D.; Jorge, D.S.; Loisel, H.; Hunter, P.D.; Tyler, A.N.; Spyrakos, E. Characterising retrieval uncertainty of chlorophyll-a algorithms in oligotrophic and mesotrophic lakes and reservoirs. ISPRS J. Photogramm. Remote Sens. 2022, 190, 279–300. [Google Scholar] [CrossRef]
- Yu, Q.; Tian, Y.Q.; Chen, R.F.; Liu, A.; Gardner, G.B.; Zhu, W. Functional linear analysis of in situ hyperspectral data for assessing cdom in rivers. Photogramm. Eng. Remote Sens. 2010, 76, 1147–1158. [Google Scholar] [CrossRef]
- Cai, X.; Li, Y.; Lei, S.; Zeng, S.; Zhao, Z.; Lyu, H.; Dong, X.; Li, J.; Wang, H.; Xu, J. A hybrid remote sensing approach for estimating chemical oxygen demand concentration in optically complex waters: A case study in inland lake waters in eastern China. Sci. Total Environ. 2023, 856, 158869. [Google Scholar] [CrossRef] [PubMed]
- Attila, J.; Koponen, S.; Kallio, K.; Lindfors, A.; Kaitala, S.; Ylöstalo, P. Meris case ii water processor comparison on coastal sites of the northern Baltic sea. Remote Sens. Environ. 2013, 128, 138–149. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, D.; Li, L.; Ning, R.; Yu, S.; Gao, N. Application of remote sensing technology in water quality monitoring: From traditional approaches to artificial intelligence. Water Res. 2024, 267, 122546. [Google Scholar] [CrossRef] [PubMed]
- Pandi, S.R.; Sarma, N.S.; Gundala, C.; Naroju, V.H.; Lotliker, A.A.; Bajish, C.C.; Tripathy, S.C. Chromophoric dissolved organic matter traces seasonally changing coastal processes in a river-influenced region of the western bay of Bengal. Environ. Sci. Pollut. Res. 2024, 31, 49372–49392. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhu, W.; Zheng, Y.; Tian, Y.Q.; Yu, Q. Monitoring seasonal variations of colored dissolved organic matter for the saginaw river based on landsat-8 data. Water Supply 2019, 19, 274–281. [Google Scholar] [CrossRef]
- Ratnasingam, S.; Muñoz-Lopez, J. Distance correlation-based feature selection in random forest. Entropy 2023, 25, 1250. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Xu, Z.; Liu, Y.; Dong, Q.; Zhang, S.; Zhu, Z.; Yang, Z. Satellite-based estimation of nitrous oxide concentration and emission in a large estuary. Environ. Sci. Technol. 2025, 59, 5012–5020. [Google Scholar] [CrossRef] [PubMed]
- Sadaiappan, B.; Balakrishnan, P.; CR, V.; Vijayan, N.T.; Subramanian, M.; Gauns, M.U. Applications of machine learning in chemical and biological oceanography. ACS Omega 2023, 8, 15831–15853. [Google Scholar] [CrossRef] [PubMed]
- Cardall, A.C.; Hales, R.C.; Tanner, K.B.; Williams, G.P.; Markert, K.N. Lasso (l1) regularization for development of sparse remote-sensing models with applications in optically complex waters using gee tools. Remote Sens. 2023, 15, 1670. [Google Scholar] [CrossRef]
- Hong, S.M.; Baek, S.-S.; Yun, D.; Kwon, Y.-H.; Duan, H.; Pyo, J.; Cho, K.H. Monitoring the vertical distribution of HABS using hyperspectral imagery and deep learning models. Sci. Total Environ. 2021, 794, 148592. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Jiang, G.; Gao, H.; Ren, L.; Chen, C.; Yang, L.; Zhou, M.; Pan, S. Optimization of convolutional neural network with dual attention mechanism: Estimation of chlorophyll-a concentration in the Taiwan strait using MODIS data. Estuar. Coast. Shelf Sci. 2024, 300, 108729. [Google Scholar] [CrossRef]
- Xu, J.; Pan, J.; Devlin, A.T. Variations in chlorophyll-a concentration in response to hydrodynamics in a flow-through lake: Remote sensing and modeling studies. Ecol. Indic. 2023, 148, 110128. [Google Scholar] [CrossRef]
Source | Documents | Citation | Average Citation |
---|---|---|---|
Remote sensing | 25 | 730 | 29.20 |
Remote Sensing of Environment | 18 | 1332 | 74 |
Biogeosciences | 11 | 380 | 34.54 |
Water Research | 9 | 326 | 36.22 |
Science of the Total Environment | 8 | 246 | 30.75 |
Journal of Geophysical Research: Biogeosciences | 6 | 184 | 30.66 |
Water | 6 | 114 | 19 |
International Journal of Applied Earth Observation and Geoinformation | 5 | 84 | 16.8 |
Source | Satellite | Sensor | Number of Bands | Band Range (nm) | Spatial Resolution (m) | Temporal Resolution (Day) |
---|---|---|---|---|---|---|
Ocean-Color Sensors | Nimbus-7 | CZCS | 6 | 433–12,500 | 825 | 1–2 |
IRS-P3 | MOS | 18 | 408–1600 | 500 | 5 | |
ADEOS-I | OCTS | 12 | 402–125,00 | 700 | 41 | |
Terra (EOS AMI) | MODIS Terra | 36 | 405–14,385 | 1000 | 1–2 | |
KOMPSAT-I | OSMI | 6 | 400–900 | 850 | 28 | |
HY-1A | COCTS | 10:04 | 402–12,500 | 1100:250 | 3 | |
HY-1A | CZI | 10:04 | 420–890 | 1100:250 | 3 | |
ENVISAT | MERIS | 15 | 412–1050 | 300/1200 | 3 | |
Myriade Series | PARASOL | 9 | 443–1020 | 6000 | 16 | |
Oceansat | OCM-II | 12 | 400–900 | 350/4000 | 2 | |
Sentinel-3A/B | OLCI | 16 | 400–1040 | 300 | 2 | |
Himawari-9 | AHI | 16 | 450–13,400 | 500–2000 | 10 min | |
NOAA-20 | VIIRS | 22 | 412–2250 | 375, 750 | 0.5 | |
HY-1C/1D | COCTS | 10 | 402–12,500 | 1100 | 1 | |
GK-2B | GOCI-II | 13 | 380–865 | 500 | 1 h | |
EOS-06 | OCM-3 | 13 | 400–1010 | 360 | 2 | |
PACE | OCI | 200 | 340–890 | 1000 | 2 | |
Inland/Coastal Water Sensors | Sentinel-2 | MSI | 13 | 443–2190 | 10, 20, 60 | 5 |
HJ-1A/B | CCD | 4 | 430–900 | 30 | 4 | |
Landsat-8, 9 | OLI | 11 | 433–12,510 | 15, 30, 100 | 16 | |
Planet | PlanetScope-2 | 8 | 455–860 | 3 | 1 | |
Trra, Aqua | MODIS | 36 | 402–965 3660–14,338.5 | 250, 500, 1000 | 1–2 | |
SPOT-6/7 | HRVIR | 5 | 450–680 | 10, 20 | 26 | |
GF-5 | AHSI | 330 | 400–2500 | 30, 60 | 5–16 |
Case | Study Area | Overview |
---|---|---|
[56] | River basins and coastal areas from the Rajang River | Using Landsat-8 data to construct band ratio combinations, perform regression based on in situ DOC, validate the model with three verification methods (simple grouping, K-fold analysis, and bootstrap), and estimate the DOC flux from April 2013 to December 2018 by using the constructed regression model (R2 = 0.88, MAPE = 5.71%) and river discharge. |
[57] | Erhai Lake | A CDOM prediction model was constructed using empirical methods based on Aqua satellite imagery and insitu measured data. The model was then used to invert the CDOM changes across the entire lake from 2013 to 2019. |
[43] | Small water surface reservoirs in the Brazilian semiarid region | Based on Landsat-8 imagery and RapidEye commercial satellite imagery, a CDOM model was constructed. The results showed that the green band of Landsat-8 performed better (R2 = 0.69 vs. RapidEye: R2 = 0.25), especially for non-perennial reservoirs with high CDOM concentrations and without optical interference from phytoplankton. |
[41] | Ganh Hao River | The MLR model developed from Sentinel-2 data demonstrated stable performance (comprehensive error value = 0.66, 0.53) across both water body types (Class 1: low aCDOM (412), Class 2: medium to high aCDOM (412)), while the Landsat-8-based MLR model achieved the highest accuracy (value = 0.15) in Class 1 but showed significant performance degradation in Class 2 (value = 0.46). |
Error Source | Atmospheric Correction | Spatial Heterogeneity | Model/Data Deficiencies |
---|---|---|---|
Impact Nature | Fundamental, systemic errors | Regional, scale-dependent errors | Algorithmic or structural limitations |
Correctability | Requires ground validation + advanced algorithms | High-resolution data + spectral unmixing | Model optimization + data fusion |
Directness on DOC Retrieval | Directly determines spectral fidelity | Indirectly affects pixel purity | Dependent on input data quality + model architecture |
Evaluation Metrics | Formula | Correlation with Error |
---|---|---|
R2 | A higher R2 value indicates a smaller sum of squared deviations between predicted and measured values relative to the total variance, reflecting a lower overall error level of the model. | |
MAE | The smaller the MAE, the smaller the average absolute error of the retrieved values, indicating better prediction stability of the model in regions with gradual water gradients. | |
RMSE | A larger RMSE indicates poorer model performance in handling extreme values or anomalous scenarios, where retrieved results potentially exhibit greater variability, and it is effective for identifying extreme scenarios such as estuaries and algal bloom areas. | |
Bias | A large absolute bias value may result from the model’s omission of atmospheric correction or radiative transfer losses, inducing systematic deviations in retrieved results; this can be addressed by refining the model with physical priors. | |
MAPE | A MAPE of 0% indicates a perfect model. The smaller the MAPE value, the better the accuracy of the prediction model. |
Number | CDOM–DOC | R2 | Reference |
---|---|---|---|
1 | 0.86 | [103] | |
2 | / | [104] | |
3 | / | [105] | |
4 | / | [106] | |
5 | 0.95 | [107] | |
6 | 0.78 0.81 0.72 | [108] | |
7 | DOC = 2.13 + 1.24 × (CDOM) | 0.84 | [109] |
8 | 0.88 | [46] | |
9 | 0.76 | [44] | |
10 | 0.873 | [110] | |
11 | / | [111] | |
12 | 0.74 | [112] | |
13 | 0.73 | [113] |
Model | Core Advantages | Applicable Inland Water Types | Operational Constraints |
---|---|---|---|
QAA |
|
|
|
GSM |
|
|
|
GIOP |
|
|
|
Method/Step | Advantages | Disadvantages | Limitations | Applicability | |||
---|---|---|---|---|---|---|---|
Direct Inversion Methods | Simple model; Fast computation; Low data requirements. | High regional dependency; Ignores optical mechanisms; Poor generalization. | Only suitable for optically stable waters; Low long-term monitoring reliability. | Short-term monitoring of single water body (e.g., clear rivers). | |||
Indirect Inversion Method | From Spectra to CDOM | Semi-Empirical Method | Relatively strong physical relevance; Moderate data needs. | Affected by CDOM sources and seasonal variations. | Effective for high CDOM waters; Large errors in low CDOM waters. | CDOM dominated eutrophic lakes/rivers. | |
Semi-Analytical Method | QAA | Clear physical mechanisms; Compatible with multi-spectral satellite data. | Relies on atmospheric correction accuracy; Large errors in deep water/highly turbid waters. | Requires accurate separation of CDOM from other absorbers (e.g., phytoplankton). | Moderately turbid shallow lakes. | ||
GSM | Low complexity, strong global applicability; Robust for highly turbid waters. | Requires prior spectral library support. | CDOM absorption easily confounded with particulate matter in turbid waters. | Large turbid lakes/estuaries; High suspended sediment waters. | |||
GIOP | Highly customizable; Flexible; Adapts to complex optical properties. | Difficult parameter optimization; High result uncertainty. | Requires extensive validation data for sub-model integration. | Urban waters or eutrophic lakes with complex optical properties. | |||
From CDOM to DOC | Robust CDOM–DOC Relationships | Sensitive to high CDOM concentrations, captures seasonal DOC variations; Simple implementation. | Demands extensive field sampling for CDOM absorption and DOC data. | CDOM:DOC ratio affected by sources (terrestrial/autochthonous), seasonality (e.g., snowmelt), and photodegradation may cause model failure. | CDOM-dominated waters; Terrestrial input regions; Short-term monitoring needs. | ||
ML Method | Strong high-dimensional data processing; Integrates multi-source data (spectral + environmental factors); Superior nonlinear modeling. | Requires large labeled datasets; Poor model interpretability; High computational resources. | Weak generalization in data-scarce regions. | Complex waters with hyperspectral data support; Long-term temporal monitoring. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Xue, R.; Luo, M.; Wang, W.; Zhang, W.; Wang, Y. Advances in Dissolved Organic Carbon Remote Sensing Inversion in Inland Waters: Methodologies, Challenges, and Future Directions. Sustainability 2025, 17, 6652. https://doi.org/10.3390/su17146652
Xu D, Xue R, Luo M, Wang W, Zhang W, Wang Y. Advances in Dissolved Organic Carbon Remote Sensing Inversion in Inland Waters: Methodologies, Challenges, and Future Directions. Sustainability. 2025; 17(14):6652. https://doi.org/10.3390/su17146652
Chicago/Turabian StyleXu, Dandan, Rui Xue, Mengyuan Luo, Wenhuan Wang, Wei Zhang, and Yinghui Wang. 2025. "Advances in Dissolved Organic Carbon Remote Sensing Inversion in Inland Waters: Methodologies, Challenges, and Future Directions" Sustainability 17, no. 14: 6652. https://doi.org/10.3390/su17146652
APA StyleXu, D., Xue, R., Luo, M., Wang, W., Zhang, W., & Wang, Y. (2025). Advances in Dissolved Organic Carbon Remote Sensing Inversion in Inland Waters: Methodologies, Challenges, and Future Directions. Sustainability, 17(14), 6652. https://doi.org/10.3390/su17146652