Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = no-load loss

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4418 KiB  
Article
Optimization of Electric Transformer Operation Through Load Estimation Based on the K-Means Algorithm
by Pedro Torres-Bermeo, José Varela-Aldás, Kevin López-Eugenio, Nancy Velasco and Guillermo Palacios-Navarro
Energies 2025, 18(14), 3755; https://doi.org/10.3390/en18143755 - 15 Jul 2025
Viewed by 365
Abstract
This study presents an innovative methodology to optimize the operation of distribution transformers through the estimation of hourly load curves, aimed at minimizing technical losses due to oversizing, particularly in systems lacking advanced metering infrastructure. The proposed approach combines clustering techniques, K-Means with [...] Read more.
This study presents an innovative methodology to optimize the operation of distribution transformers through the estimation of hourly load curves, aimed at minimizing technical losses due to oversizing, particularly in systems lacking advanced metering infrastructure. The proposed approach combines clustering techniques, K-Means with DTW, to identify representative daily consumption patterns and a supervised model based on LightGBM to estimate hourly load curves for unmetered transformers, using customer characteristics as input. These estimated curves are integrated into a process that calculates technical losses, both no-load and load losses, for different transformer sizes, selecting the optimal rating that minimizes losses without compromising demand. Empirical validation showed accuracy levels of 95.6%, 95.29%, and 98.14% at an individual transformer, feeder, and a complete electrical system with 16,864 transformers, respectively. The application of the methodology to a real distribution system revealed a potential annual energy savings of 3004 MWh, equivalent to an estimated economic reduction of 150,238 USD. Full article
Show Figures

Figure 1

23 pages, 7744 KiB  
Article
Optimization and Design of Built-In U-Shaped Permanent Magnet and Salient-Pole Electromagnetic Hybrid Excitation Generator for Vehicles
by Keqi Chen, Shilun Ma, Changwei Li, Yongyi Wu and Jianwei Ma
Symmetry 2025, 17(6), 897; https://doi.org/10.3390/sym17060897 - 6 Jun 2025
Cited by 1 | Viewed by 385
Abstract
In this paper, the concept of symmetry is utilized to optimize the structural parameters and output characteristics of the generator design—that is, the construction and solution of the equivalent magnetic circuit method for the hybrid excitation generator are symmetrical. To address the issues [...] Read more.
In this paper, the concept of symmetry is utilized to optimize the structural parameters and output characteristics of the generator design—that is, the construction and solution of the equivalent magnetic circuit method for the hybrid excitation generator are symmetrical. To address the issues of high excitation loss and low power density in purely electrically excited generators, as well as the difficulty in adjusting the magnetic field in purely permanent magnet generators, a new topology for a built-in permanent magnet and salient-pole electromagnetic hybrid excitation generator is proposed. Firstly, an equivalent magnetic circuit model of the generator is established. Secondly, expressions are derived to describe the relationships between the dimensions of the salient-pole rotor and the permanent magnets and the generator’s no-load induced electromotive force, cogging torque, and air gap flux density. These expressions are then used to analyze the structural parameters that influence the generator’s performance. Thirdly, optimization targets are selected through sensitivity analysis, with the no-load induced electromotive force, cogging torque, and air gap flux density serving as the optimization objectives. A multi-objective genetic algorithm is employed to optimize these parameters and determine the optimal structural matching parameters for the generator. As a result, the optimized no-load induced electromotive force increased from 18.96 V to 20.14 V, representing a 6.22% improvement; the cogging torque decreased from 177.08 mN·m to 90.52 mN·m, a 48.88% reduction; the air gap flux density increased from 0.789 T to 0.829 T, a 5.07% improvement; and the air gap flux density waveform distortion rate decreased from 6.22% to 2.38%, a 39.3% reduction. Finally, a prototype is fabricated and experimentally tested, validating the accuracy of the simulation analysis, the feasibility of the optimization method, and the rationality of the generator design. Therefore, the proposed topology and optimization method can effectively enhance the output performance of the generator, providing a valuable theoretical reference for the design of hybrid excitation generators for vehicles. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

14 pages, 3592 KiB  
Article
A Permanent-Magnet Eddy-Current Loss Analytical Model for Axial Flux Permanent-Magnet Electric Machine Accounting for Stator Saturation
by Hao Liu, Jin Tian, Guofeng He and Xiaopeng Li
Energies 2025, 18(10), 2462; https://doi.org/10.3390/en18102462 - 11 May 2025
Viewed by 402
Abstract
This paper introduces a hybrid analytical model (HAM) for the evaluation of permanent-magnet (PM) eddy-current loss in dual-stator single-rotor axial flux permanent-magnet machine (AFPMM), accounting for stator saturation. The proposed model integrates the magnetic equivalent circuit (MEC) with an analytical model based on [...] Read more.
This paper introduces a hybrid analytical model (HAM) for the evaluation of permanent-magnet (PM) eddy-current loss in dual-stator single-rotor axial flux permanent-magnet machine (AFPMM), accounting for stator saturation. The proposed model integrates the magnetic equivalent circuit (MEC) with an analytical model based on scalar magnetic potential, enabling simultaneous consideration of different rotor positions and stator slotting effects. The three-dimensional finite element method (3D-FEM) validates the no-load and armature reaction magnetic field calculated by HAM, as well as the PM eddy-current loss under both no-load and load conditions. Compared to 3D-FEM, the proposed model reduces the calculation time by more than 98% with an error of no more than 18%, demonstrating a significant advantage in terms of computational time. Based on the proposed model, the effects of air-gap length and slot opening width on PM eddy-current loss are analyzed; the results indicate that reducing the slot opening width can effectively mitigate PM eddy-current loss for AFPMM. Full article
(This article belongs to the Special Issue Design, Analysis, Optimization and Control of Electric Machines)
Show Figures

Figure 1

13 pages, 1720 KiB  
Article
Evaluation of Mechanical Stability, and Magnetic and Acoustic Properties of a Transformer Core Made of Amorphous Steel Consolidated with a Silane-Based Hybrid Binder
by Jolanta Nieroda, Grzegorz Kmita, Michal Kozupa, Szymon Piela, Maciej Sitarz and Andrzej Rybak
Appl. Sci. 2025, 15(9), 5141; https://doi.org/10.3390/app15095141 - 6 May 2025
Viewed by 431
Abstract
The ongoing electrification process also requires improvements in the efficiency of power transmission devices, such as transformers, the main part of which is the magnetic core. Despite great progress in the development of core material, losses and audible noise during their operation is [...] Read more.
The ongoing electrification process also requires improvements in the efficiency of power transmission devices, such as transformers, the main part of which is the magnetic core. Despite great progress in the development of core material, losses and audible noise during their operation is still a critical issue to be solved. Currently, a magnetic material used to produce the transformer core is amorphous steel, which is gaining popularity. Compared to traditionally used grain-oriented silicon electrical steel, a significantly larger number of very thin amorphous ribbons is needed to produce the core, which is due to the fact that they are about an order of magnitude thinner, making mechanical stability a challenge. The presented article describes the preparation of a hybrid binder for amorphous steel based on the two types of silanes, tetraethyl orthosilicate and 1,2-bis(triethoxysilyl)ethane, for which their anticorrosive character and good dielectric properties were confirmed. Using the obtained binders, model toroidal cores were produced and their magnetic and acoustic properties were tested. The obtained results indicate that the applied silane-based hybrid binders improved important functional properties by reducing the magnetic no-load losses and audible noise. Full article
(This article belongs to the Special Issue Advances in Properties of Thin Film Materials)
Show Figures

Graphical abstract

16 pages, 1638 KiB  
Article
Computationally Efficient Design of 16-Poles and 24-Slots IPMSM for EV Traction Considering PWM-Induced Iron Loss Using Active Transfer Learning
by Soo-Hwan Park and Myung-Seop Lim
Mathematics 2025, 13(6), 915; https://doi.org/10.3390/math13060915 - 10 Mar 2025
Viewed by 865
Abstract
The efficiency of the traction motor is highly concerned with the PWM-induced iron loss, so the PWM-induced iron loss should be considered in designing the traction motor. However, analyzing the PWM-induced iron loss requires a high computational cost because the inverter-motor model should [...] Read more.
The efficiency of the traction motor is highly concerned with the PWM-induced iron loss, so the PWM-induced iron loss should be considered in designing the traction motor. However, analyzing the PWM-induced iron loss requires a high computational cost because the inverter-motor model should be included in the calculation process. In surrogate-based design optimization, collecting a large amount of data is essential. However, for PWM-induced iron loss, extremely small time steps are required to accurately capture high-frequency components, resulting in a significantly high computational cost for data acquisition and making the optimization process inefficient. From this point of view, we propose a computationally efficient design process for the traction motor considering the PWM-induced iron loss. By using the proposed method, it is possible to train the accurate surrogate model for predicting the PWM-induced iron loss with a small amount of PWM-induced iron loss using active transfer learning. After training the surrogate model, multi-objective optimization was conducted for designing a high efficiency 14.5 kW traction motor for personal mobility. In order to verify the design result, an optimized traction motor was fabricated, and experiments were conducted. As a result, the performance of the trained surrogate model was verified by measuring the no-load back electromotive force, PWM current, and main drive efficiency. Full article
(This article belongs to the Special Issue Artificial Intelligence for Fault Detection in Manufacturing)
Show Figures

Figure 1

10 pages, 3033 KiB  
Proceeding Paper
Analysis of Gearbox Losses for High-Performance Electric Motorcycle Applications
by Adelmo Niccolai, Lorenzo Berzi and Niccolò Baldanzini
Eng. Proc. 2025, 85(1), 34; https://doi.org/10.3390/engproc2025085034 - 4 Mar 2025
Viewed by 623
Abstract
Finding an architectural solution that satisfies electric motorcycles’ performance and riding range is challenging due to the electric powertrain constraints, such as low battery energy density. This paper analyzes the gearbox and powertrain efficiency for battery electric motorcycles (BEMs) based on the drivetrain [...] Read more.
Finding an architectural solution that satisfies electric motorcycles’ performance and riding range is challenging due to the electric powertrain constraints, such as low battery energy density. This paper analyzes the gearbox and powertrain efficiency for battery electric motorcycles (BEMs) based on the drivetrain architecture and under various vehicle use scenarios. The impact on the consumption of a constant-speed gearbox is investigated, focusing mainly on load-independent losses. The analysis is performed using an analytic approach and experimental data. Two different gearbox and powertrain solutions are characterized through test bench experiments, running them under free-driving conditions and no-load tests. A comparison of these powertrain solutions in terms of consumption for the same motorcycle model under different speed profiles (WMTC, LA-4) is conducted. The results show the energy losses and provide information for defining drivetrain components and architectures. Full article
Show Figures

Figure 1

13 pages, 5435 KiB  
Article
Design, Analysis, and Comparison of Electric Vehicle Electric Oil Pump Motor Rotors Using Ferrite Magnet
by Huai-Cong Liu
World Electr. Veh. J. 2025, 16(1), 50; https://doi.org/10.3390/wevj16010050 - 20 Jan 2025
Viewed by 1403
Abstract
With the recent proliferation of electric vehicles, there is increasing attention on drive motors that are powerful and efficient, with a higher power density. To meet such high power density requirements, the cooling technology used for drive motors is particularly important. To further [...] Read more.
With the recent proliferation of electric vehicles, there is increasing attention on drive motors that are powerful and efficient, with a higher power density. To meet such high power density requirements, the cooling technology used for drive motors is particularly important. To further optimize the cooling effects, the use of direct oil-cooling technology for drive motors is gaining more attention, especially regarding the requirements for electric vehicle electric oil pumps (EOPs) in motor cooling. In such high-temperature environments, it is also necessary for the EOP to maintain its performance under high temperatures. This research explores the feasibility of using high-temperature-resistant ferrite magnets in the rotors of EOPs. For a 150 W EOP motor with the same stator size, three different rotor configurations are proposed: a surface permanent magnet (SPM) rotor, an interior permanent magnet (IPM) rotor, and a spoke-type IPM rotor. While the rotor sizes are the same, to maximize the power density while meeting the rotor’s mechanical strength requirements, the different rotor configurations make the most use of ferrite magnets (weighing 58 g, 51.8 g, and 46.3 g, respectively). Finite element analysis (FEA) was used to compare the performance of these models with that of the basic rotor design, considering factors such as the no-load back electromotive force, no-load voltage harmonics (<10%), cogging torque (<0.1 Nm), load torque, motor loss, and efficiency (>80%). Additionally, a comprehensive analysis of the system efficiency and energy loss was conducted based on hypothetical electric vehicle traction motor parameters. Finally, by manufacturing a prototype motor and conducting experiments, the effectiveness and superiority of the finite element method (FEM) design results were confirmed. Full article
Show Figures

Figure 1

15 pages, 8029 KiB  
Article
Study on Length–Diameter Ratio of Axial–Radial Flux Hybrid Excitation Machine
by Mingyu Guo, Jiakuan Xia, Qimin Wu, Wenhao Gao and Hongbo Qiu
Processes 2024, 12(12), 2942; https://doi.org/10.3390/pr12122942 - 23 Dec 2024
Cited by 1 | Viewed by 688
Abstract
To improve the flux regulation range of the Axial–Radial Flux Hybrid Excitation Machine (ARFHEM) and the utilization rate of permanent magnets (PMs), the effects of different length–diameter ratios (LDRs) on the ARFHEM performance are studied. Firstly, the principle of the flux regulation of [...] Read more.
To improve the flux regulation range of the Axial–Radial Flux Hybrid Excitation Machine (ARFHEM) and the utilization rate of permanent magnets (PMs), the effects of different length–diameter ratios (LDRs) on the ARFHEM performance are studied. Firstly, the principle of the flux regulation of the ARFHEM is introduced by means of the structure and equivalent magnetic circuit method. Then, based on the principle of the bypass effect, the analytical formulas of LDRs, the number of pole-pairs, and the flux regulation ability are derived, and then the restrictive relationship between the air-gap magnetic field, LDR, and the number of pole-pairs is revealed. On this basis, the influence of an electric LDR on motor performance is studied. By comparing and analyzing the air-gap magnetic density and no-load back electromotive force (EMF) of motors with different LDRs, the variation in the magnetic flux regulation ability of motors with different LDRs is obtained and its influence mechanism is revealed. In addition, the torque regulation ability and loss of motors with different LDRs are compared and analyzed, and the influence mechanism of the LDR on torque and loss is determined. Finally, the above analysis is verified by experiments. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

17 pages, 23136 KiB  
Article
Analysis of an Axial Field Hybrid Excitation Synchronous Generator
by Junyue Yu, Shushu Zhu and Chuang Liu
Energies 2024, 17(24), 6329; https://doi.org/10.3390/en17246329 - 16 Dec 2024
Viewed by 793
Abstract
An axial field hybrid excitation synchronous generator (AF-HESG) is proposed for an independent power supply system, and its electromagnetic performance is studied in this paper. The distinguishing feature of the proposed generator is the addition of static magnetic bridges at both ends to [...] Read more.
An axial field hybrid excitation synchronous generator (AF-HESG) is proposed for an independent power supply system, and its electromagnetic performance is studied in this paper. The distinguishing feature of the proposed generator is the addition of static magnetic bridges at both ends to place the field windings and the use of a sloping surface to increase the additional air-gap cross-sectional area. The advantage of the structure is that it achieves brushless excitation and improves the flux-regulation range. The structure and magnetic circuit characteristics are introduced in detail. Theoretical analysis of the flux-regulation principle is conducted by studying the relationship between field magnetomotive force, rotor reluctance, and air-gap flux density. Quantitative calculation is performed using a magnetomotive force (MMF)-specific permeance model, and the influence of the main parameters on the air-gap flux density and flux-regulation range is analyzed. Subsequently, magnetic field, no-load, and load characteristics are investigated through three-dimensional finite element analysis. The loss distribution is analyzed, and the temperature of the generator under rated conditions is simulated. Finally, a 30 kW, 1500 r/min prototype is developed and tested. The test results show good flux-regulation capability and stable voltage output performance of the proposed generator. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

12 pages, 3876 KiB  
Article
Design and Performance Analysis of Windings Considering High Frequency Loss and Connection Mode of a Starter Generator
by Xiaojun Ren, Zhikai Chen, Rui Du and Ming Feng
Energies 2024, 17(20), 5124; https://doi.org/10.3390/en17205124 - 15 Oct 2024
Cited by 2 | Viewed by 1206
Abstract
The starter generator is the key component of the aircraft’s starter generation system. A high power density, efficiency, and reliability are essential for an aircraft’s starter generator. The configuration of the windings is closely related to the performance of the starter generator. In [...] Read more.
The starter generator is the key component of the aircraft’s starter generation system. A high power density, efficiency, and reliability are essential for an aircraft’s starter generator. The configuration of the windings is closely related to the performance of the starter generator. In this paper, the winding performance analysis and design are studied. Considering the skin effect, circulation effect, and proximity effect, a calculation model of winding loss under high-frequency operation is established. The motor performance under different winding connections is compared. Through a comprehensive comparison of starting performance, generation loss, and process performance differences, the optimum configuration of windings is identified. The performance of the starter generator including winding resistance, current, and no-load loss was tested on the prototype platform to verify the rationality and correctness of the analysis and design methods. Full article
Show Figures

Figure 1

17 pages, 4158 KiB  
Article
Investigations of the Windage Losses of a High-Speed Shrouded Gear via the Lattice Boltzmann Method
by Yu Dai, Caihua Yang and Xiang Zhu
Appl. Sci. 2024, 14(20), 9174; https://doi.org/10.3390/app14209174 - 10 Oct 2024
Cited by 2 | Viewed by 1267
Abstract
To suppress the adverse effect of the gear windage phenomenon in the high-speed aeronautic industry, a shroud as an effective alternative strategy is usually to enclose gears to reduce the windage behaviors of high-speed gears. To deeply understand these no-load power losses, this [...] Read more.
To suppress the adverse effect of the gear windage phenomenon in the high-speed aeronautic industry, a shroud as an effective alternative strategy is usually to enclose gears to reduce the windage behaviors of high-speed gears. To deeply understand these no-load power losses, this paper proposes a new simulation methodology based on the Lattice Boltzmann method to study the windage losses of a shrouded spur gear and conducts a series of numerical studies. The models reproduce a shroud spur gear varying radial and axial clearances to evaluate the influence of casing walls on windage losses. The simulation results were then compared with experimental values, showing a satisfactory agreement. Furthermore, a torque containment factor integrating the air compressibility at high Mach numbers is introduced to represent the reduction in torque (windage power losses) for the shrouded gear compared to the free case, and the theoretical formulae for predicting windage power losses are further improved for better applicability as the tight shroud approaches the gear during the preliminary design stage. Full article
(This article belongs to the Special Issue Mathematical Methods and Simulations in Mechanics and Engineering)
Show Figures

Figure 1

19 pages, 11946 KiB  
Article
Study on Transient Flow Characteristics of Pump Turbines during No-Load Condition in Turbine Mode Startup
by Xianliang Li, Haiyang Dong, Yonggang Lu, Xiji Li and Zhengwei Wang
Water 2024, 16(19), 2741; https://doi.org/10.3390/w16192741 - 26 Sep 2024
Viewed by 920
Abstract
To address the escalating demand for power grid load regulation, pumped storage power stations must frequently switch between operational modes. As a key component of such stations, the pump turbine has seen extensive research on its steady-state flow behavior. However, the intricate dynamics [...] Read more.
To address the escalating demand for power grid load regulation, pumped storage power stations must frequently switch between operational modes. As a key component of such stations, the pump turbine has seen extensive research on its steady-state flow behavior. However, the intricate dynamics of its transient flow have not yet been thoroughly examined. Notably, the no-load condition represents a quintessential transient state, the instability of which poses challenges for grid integration. Under certain extreme conditions, this could result in the impairment of the unit’s elements, interruption of its functioning, and endangerment of the security of the power station’s output as well as the stability of the power network’s operations. Thus, investigating the flow characteristics of pump turbines under no-load conditions is of significant practical importance. This paper focuses on the transient flow characteristics of a Weifang hydro-generator unit under no-load conditions, exploring the internal unsteady flow features and their underlying mechanisms. The study reveals that under no-load conditions, the runner channel is obstructed by a multitude of vortices, disrupting the normal pressure gradient within the runner and resulting in substantial hydraulic losses. Within the draft tube, a substantial reverse flow zone is present, predominantly along the walls. This irregular flow pattern within the tube generates a potent, stochastic pressure fluctuation. In addition to the interference frequencies of dynamic and static origins, the pressure pulsation frequency at each measurement point also encompasses a substantial portion of low-frequency, high-amplitude components. Full article
(This article belongs to the Special Issue Hydrodynamic Science Experiments and Simulations)
Show Figures

Figure 1

20 pages, 7399 KiB  
Article
Analytical and Experimental Investigation of Windage–Churning Behavior in Spur, Bevel, and Face Gears
by Yu Dai, Caihua Yang, He Liu and Xiang Zhu
Appl. Sci. 2024, 14(17), 7603; https://doi.org/10.3390/app14177603 - 28 Aug 2024
Cited by 4 | Viewed by 1222
Abstract
This paper presents comparable sets of the no-load power loss as a product of windage and churning behaviors of a family of various rotating parts (i.e., disc, spur gear, straight bevel gear, and orthogonal face gear). Experimental measurements were carried out under pure [...] Read more.
This paper presents comparable sets of the no-load power loss as a product of windage and churning behaviors of a family of various rotating parts (i.e., disc, spur gear, straight bevel gear, and orthogonal face gear). Experimental measurements were carried out under pure air only and under partial immersion in oil to qualify and quantify the windage and churning effects of no-load power losses of a family of spur, bevel, and face gears along with a representative disc as the baseline. Aiming at exploring the influence of gear teeth on the total no-load power losses, two different theoretical analytical approaches are introduced to account for the churning contributions, by which the total power losses are estimated. Both analytical approaches compare well with the experimental findings. Furthermore, a spatial intersecting cross-axis gear (e.g., straight bevel gear and orthogonal face gear) results in higher no-load power losses than that of a representative disc or a parallel-axes gear. The significance of gear teeth (gear vs. disc) on windage behavior is presented, as well as the gear windage effects on the churning phenomenon in a high-speed splash-lubricated gear. Full article
(This article belongs to the Special Issue Mathematical Methods and Simulations in Mechanics and Engineering)
Show Figures

Figure 1

24 pages, 18733 KiB  
Article
Comprehensive Comparison of Different Rotor Structures of Low-Speed Permanent Magnet Motor
by Guanghui Du, Hui Li, Ruojin Jiang, Wanning Li and Shengli Hou
Energies 2024, 17(13), 3300; https://doi.org/10.3390/en17133300 - 5 Jul 2024
Cited by 1 | Viewed by 1172
Abstract
At present, most of the existing research on low-speed permanent magnet motors (LSPMMs) focuses on the surface-mounted type. There are few other rotor structures, and there is no comprehensive comparison of several widely used rotor structures. A comprehensive comparison of three different rotor [...] Read more.
At present, most of the existing research on low-speed permanent magnet motors (LSPMMs) focuses on the surface-mounted type. There are few other rotor structures, and there is no comprehensive comparison of several widely used rotor structures. A comprehensive comparison of three different rotor structures for low-speed mining motors is carried out, including electromagnetic and loss characteristics, permanent magnet consumption, temperature distribution, etc. Firstly, three rotor structures of a 500 kW, 60 rpm low-speed motor are introduced, and the initial design parameters are determined. Secondly, the influence of each rotor design parameter on the electromagnetic characteristics is analyzed. Next, the electromagnetic optimization of the three rotor structures is carried out, and the motor performance of the three rotor structure optimization schemes is compared, including electromagnetic performance, permanent magnet consumption, motor temperature distribution, etc. Finally, in order to verify the correctness of the theoretical analysis, a prototype is made and tested based on the above analysis. The results show that for the electromagnetic characteristics, when the motors with three different rotor structures meet the performance requirements, the no-load line back-EMF of the inset surface-mounted motor is the lowest, but the back-EMF harmonic content of the inset surface-mounted motor is the highest. The copper loss of the spoke-type motor is the smallest, the efficiency is the highest, and the power factor is the lowest. In addition, the surface-mounted motor has the least consumption of permanent magnets and is more economical. Regarding the temperature distribution, when the same heat dissipation system is used, the temperature of the spoke-type motor with minimum copper loss is the lowest. Full article
Show Figures

Figure 1

15 pages, 5187 KiB  
Article
The Use of Polyimide as a Bonding Material to Improve the Mechanical Stability, Magnetic and Acoustic Properties of the Transformer Core Based on Amorphous Steel
by Jolanta Nieroda, Grzegorz Kmita, Michal Kozupa, Szymon Piela and Andrzej Rybak
Polymers 2024, 16(13), 1840; https://doi.org/10.3390/polym16131840 - 28 Jun 2024
Cited by 2 | Viewed by 1451
Abstract
The constantly evolving electrification also entails an increase in requirements for the effective and efficient distribution of electricity with the lowest possible power losses. Such needs can be met by highly effective electrical devices, and one of them is a transformer whose main [...] Read more.
The constantly evolving electrification also entails an increase in requirements for the effective and efficient distribution of electricity with the lowest possible power losses. Such needs can be met by highly effective electrical devices, and one of them is a transformer whose main component is a magnetic core. Currently, one of the soft magnetic materials used alternatively for the production of transformer cores are amorphous metal strips with competitive losses. However, to successfully use these materials, a key problem must be solved: limited mechanical stability. The presented article describes the development and application of a polyimide-based binder for efficient bonding of an amorphous metal ribbon. The layered binder was characterized using confocal microscopy, scanning electron microscopy and Raman spectroscopy, and its anticorrosion and mechanical properties were examined. As a final step, a prototype of a toroidal magnetic core bonded with the binder was manufactured and subjected to the evaluation of no-load loss and the analysis of the emitted noise. It was confirmed that the proposed polyimide binder tremendously improved the mechanical stability while reducing core losses and audible noise. Full article
(This article belongs to the Special Issue Application of Functional Polymer Materials for Advanced Technologies)
Show Figures

Graphical abstract

Back to TopTop