Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (135)

Search Parameters:
Keywords = nitrous oxide flux

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1459 KiB  
Article
Assessing Controlled Traffic Farming as a Precision Agriculture Strategy for Minimising N2O Losses
by Bawatharani Raveendrakumaran, Miles Grafton, Paramsothy Jeyakumar, Peter Bishop and Clive Davies
Nitrogen 2025, 6(3), 63; https://doi.org/10.3390/nitrogen6030063 - 4 Aug 2025
Abstract
Intensive vegetable farming emits high nitrous oxide (N2O) due to traffic-induced compaction, highlighting the need for preventing nitrogen (N) losses through better traffic management. This study examined the effects of Controlled Traffic Farming (CTF) and Random Traffic Farming (RTF) on N [...] Read more.
Intensive vegetable farming emits high nitrous oxide (N2O) due to traffic-induced compaction, highlighting the need for preventing nitrogen (N) losses through better traffic management. This study examined the effects of Controlled Traffic Farming (CTF) and Random Traffic Farming (RTF) on N2O emissions using intact soil cores (diameter: 18.7 cm; depth: 25 cm) collected from a vegetable production system in Pukekohe, New Zealand. Soil cores from CTF beds, CTF tramlines, and RTF plots were analysed under fertilised (140 kg N/ha) and unfertilised conditions. N2O fluxes were monitored over 58 days using gas chambers. The fertilised RTF system significantly (p < 0.05) increased N2O emissions (5.4 kg N2O–N/ha) compared to the unfertilised RTF system (1.53 kg N2O–N/ha). The emission from fertilised RTF was 46% higher than the maximum N2O emissions (3.7 kg N2O–N/ha) reported under New Zealand pasture conditions. The fertilised CTF system showed a 31.6% reduction in N2O emissions compared to fertilised RTF and did not differ significantly from unfertilised CTF. In general, CTF has demonstrated some resilience against fertiliser-induced N2O emissions, indicating the need for further investigation into its role as a greenhouse gas mitigation strategy. Full article
Show Figures

Figure 1

7 pages, 4461 KiB  
Data Descriptor
Dataset on Environmental Parameters and Greenhouse Gases in Port and Harbor Seawaters of Jeju Island, Korea
by Jae-Hyun Lim, Ju-Hyoung Kim, Hyo-Ryeon Kim, Seo-Young Kim and Il-Nam Kim
Data 2025, 10(7), 118; https://doi.org/10.3390/data10070118 - 19 Jul 2025
Viewed by 322
Abstract
This dataset presents environmental observations collected in August 2021 from 18 port and harbor sites located around Jeju Island, Korea. It includes physical, biogeochemical, and greenhouse gas (GHG) variables measured in surface seawater, such as temperature, salinity, dissolved oxygen, nutrients, chlorophyll-a, [...] Read more.
This dataset presents environmental observations collected in August 2021 from 18 port and harbor sites located around Jeju Island, Korea. It includes physical, biogeochemical, and greenhouse gas (GHG) variables measured in surface seawater, such as temperature, salinity, dissolved oxygen, nutrients, chlorophyll-a, pH, total alkalinity, and dissolved inorganic carbon. Concentrations and air–sea fluxes of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) were also quantified. All measurements were conducted following standardized analytical protocols, and certified reference materials and duplicate analyses were used to ensure data accuracy. Consequently, the dataset revealed that elevated nutrient accumulation in port and harbor waters and GHG concentrations tended to be higher at sites with stronger land-based influence. During August 2021, most sites functioned as sources of N2O, CH4, and CO2 to the atmosphere. This integrated dataset offers valuable insights into the influence of anthropogenic and hydrological factors on coastal GHG dynamics and provides a foundation for future studies across diverse semi-enclosed marine systems. Full article
Show Figures

Figure 1

23 pages, 2618 KiB  
Article
The Impact of Rice–Frog Co-Cultivation on Greenhouse Gas Emissions of Reclaimed Paddy Fields
by Haochen Huang, Zhigang Wang, Yunshuang Ma, Piao Zhu, Xinhao Zhang, Hao Chen, Han Li and Rongquan Zheng
Biology 2025, 14(7), 861; https://doi.org/10.3390/biology14070861 - 16 Jul 2025
Viewed by 319
Abstract
Reclaimed fields have a low soil fertility and low productivity compared to conventional arable land, necessitating research on productivity enhancement. The rice–frog co-culture model is an ecologically intensive practice that combines biodiversity objectives with agricultural production needs, offering high ecological and economic value. [...] Read more.
Reclaimed fields have a low soil fertility and low productivity compared to conventional arable land, necessitating research on productivity enhancement. The rice–frog co-culture model is an ecologically intensive practice that combines biodiversity objectives with agricultural production needs, offering high ecological and economic value. However, there is a lack of research on this model that has focused on factors other than soil nutrient levels. The present study evaluated the rice–frog co-culture model in a reclaimed paddy field across three experimental plots with varying frog stocking densities: a rice monoculture (CG), low-density co-culture (LRF), and high-density co-culture (HRF). We investigated the effects of the frog density on greenhouse gas emissions throughout the rice growth. The rice–frog co-culture model significantly reduced methane (CH4) emissions, with fluxes highest in the CG plot, followed by the LRF and then HRF plots. This reduction was achieved by altering the soil pH, the cation exchange capacity, the mcrA gene abundance, and the mcrA/pmoA gene abundance ratio. However, there was a contrasting nitrous oxide (N2O) emission pattern. The co-culture model actually increased N2O emissions, with fluxes being highest in the HRF plots, followed by the LRF and then CG plots. The correlation analysis identified the soil nosZ gene abundance, redox potential, urease activity, nirS gene abundance, and ratio of the combined nirK and nirS abundance to the nosZ abundance as key factors associated with N2O emissions. While the co-cultivation model increased N2O emissions, it also significantly reduced CH4 emissions. Overall, the rice–frog co-culture model, especially at a high density, offers a favorable sustainable agricultural production model. Full article
Show Figures

Figure 1

20 pages, 1419 KiB  
Article
Evaluation of Greenhouse Gas-Flux-Determination Models and Calculation in Southeast Arkansas Cotton Production
by Cassandra Seuferling, Kristofor Brye, Diego Della Lunga, Jonathan Brye, Michael Daniels, Lisa Wood and Kelsey Greub
AgriEngineering 2025, 7(7), 213; https://doi.org/10.3390/agriengineering7070213 - 2 Jul 2025
Viewed by 309
Abstract
Greenhouse gas (GHG) emissions evaluations from agroecosystems are critical, particularly as technology improves. Consistent GHG measurement methods are essential to the evaluation of GHG emissions. The objective of the study was to evaluate potential differences in gas-flux-determination (GFD) options and carbon dioxide (CO [...] Read more.
Greenhouse gas (GHG) emissions evaluations from agroecosystems are critical, particularly as technology improves. Consistent GHG measurement methods are essential to the evaluation of GHG emissions. The objective of the study was to evaluate potential differences in gas-flux-determination (GFD) options and carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes and growing-season-long emissions estimates from furrow-irrigated cotton (Gossypium hirsutum) in southeast Arkansas. Four GFD methods were evaluated [i.e., linear (L) or exponential (E) regression models, with negative fluxes (WNF) included in the dataset or replacing negative fluxes (RNF)] over the 2024 growing season using a LI-COR field-portable chamber and gas analyzers. Exponential regression models were influenced by abnormal CO2 and N2O gas concentration data points, indicating the use of caution with E models. Season-long CH4 emissions differed (p < 0.05) between the WNF (−0.51 kg ha−1 season−1 for L and−0.54 kg ha−1 season−1 for E) and RNF (0.01 kg ha−1 season−1 for L and E) GFD methods, concluding that RNF options over-estimate CH4 emissions. Gas concentration measurements following chamber closure should remain under 300 s, with one concentration measurement obtained per second. The choice of GFD method needs careful consideration to result in accurate GHG fluxes and season-long emission estimates. Full article
Show Figures

Figure 1

23 pages, 4515 KiB  
Article
Impact of Coastal Beach Reclamation on Seasonal Greenhouse Gas Emissions: A Study of Diversified Saline–Alkaline Land Use Patterns
by Jiayi Xie, Ye Yuan, Xiaoqing Wang, Rui Zhang, Rui Zhong, Jiahao Zhai, Yumeng Lu, Jiawei Tao, Lijie Pu and Sihua Huang
Agriculture 2025, 15(13), 1403; https://doi.org/10.3390/agriculture15131403 - 29 Jun 2025
Viewed by 382
Abstract
Reclaiming coastal wetlands for agricultural purposes has led to intensified farming activities, which are anticipated to affect greenhouse gas (GHG) flux processes within coastal wetland ecosystems. However, how greenhouse gas exchanges respond to variations in agricultural reclamation activities across different years remains uncertain. [...] Read more.
Reclaiming coastal wetlands for agricultural purposes has led to intensified farming activities, which are anticipated to affect greenhouse gas (GHG) flux processes within coastal wetland ecosystems. However, how greenhouse gas exchanges respond to variations in agricultural reclamation activities across different years remains uncertain. To address this knowledge gap, this study characterized dynamic exchanges within the soil–plant–atmosphere continuum by employing continuous monitoring across four representative coastal wetland soil–vegetation systems in Jiangsu, China. The results show the carbon dioxide (CO2) and nitrous oxide (N2O) flux exchanges between the system and the atmosphere and soil–vegetation carbon pools, which revealed the drivers of carbon dynamics in the coastal wetland system. The four study sites, converted from coastal wetlands to agricultural lands at different times (years), generally act as CO2 sinks and N2O sources. Higher levels of CO2 sequestration occur as the age of reclamation rises. In terms of time scale, crops lands were found to be CO2 sinks during the growing period but became CO2 sources during the crop fallow period. Although the temporal trend of the N2O flux was generally smooth, reclaimed farmlands acted as net sources of N2O, particularly during the crop-growing period. The RDA and PLS-PM models illustrate that soil salinity, acidity, and hydrothermal conditions were the key drivers affecting the magnitude of the GHG flux exchanges under reclamation. This study demonstrates that GHG emissions from reclaimed wetlands can be effectively regulated through science-based land management, calling for prioritized attention to post-development practices rather than blanket restrictions on coastal exploitation. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

19 pages, 1200 KiB  
Article
Effects of Rice–Fish Coculture on Greenhouse Gas Emissions: A Case Study in Terraced Paddy Fields of Qingtian, China
by Qixuan Li, Lina Xie, Shiwei Lin, Xiangbing Cheng, Qigen Liu and Yalei Li
Agronomy 2025, 15(6), 1480; https://doi.org/10.3390/agronomy15061480 - 18 Jun 2025
Viewed by 544
Abstract
Rice–fish coculture, a traditional integrated agriculture–aquaculture system, has been recognized as a “Globally Important Agricultural Heritage System” due to its ecological and socio-economic benefits. However, the impact of rice–fish coculture on greenhouse gas emissions remains controversial. This study investigated the effects of rice–fish [...] Read more.
Rice–fish coculture, a traditional integrated agriculture–aquaculture system, has been recognized as a “Globally Important Agricultural Heritage System” due to its ecological and socio-economic benefits. However, the impact of rice–fish coculture on greenhouse gas emissions remains controversial. This study investigated the effects of rice–fish coculture on methane (CH4) and nitrous oxide (N2O) emissions in the Qingtian rice–fish system, a 1200-year-old terraced paddy field system in Zhejiang Province, China. A field experiment with two treatments, rice–fish coculture (RF) and rice monoculture (RM), was conducted to examine the relationships between fish activities, water and soil properties, microbial communities, and greenhouse gas fluxes. Results showed that the RF system had significantly higher CH4 emissions, particularly during the early rice growth stage, compared to the RM system. This increase was attributed to the lower dissolved oxygen levels and higher methanogen abundance in the RF system, likely driven by the grazing, “muddying”, and burrowing activities of fish. In contrast, no significant differences in N2O emissions were observed between the two systems. Redundancy analysis revealed that water variables contributed more to the variation in greenhouse gas emissions than soil variables. Microbial community analysis indicated that the RF system supported a more diverse microbial community involved in methane cycling processes. These findings provide new insights into the complex interactions between fish activities, environmental factors, and microbial communities in regulating greenhouse gas emissions from rice–fish coculture systems. The results suggest that optimizing water management strategies and exploring the potential of microbial community manipulation could help mitigate greenhouse gas emissions while maintaining the ecological and socio-economic benefits of these traditional integrated agriculture–aquaculture systems. Full article
Show Figures

Figure 1

14 pages, 1413 KiB  
Article
Influence of Nitrogen Addition Levels on N2O Flux and Yield of Spring Wheat in the Loess Plateau
by Haiyan Wang, Jiangqi Wu, Guang Li and Jianyu Yuan
Agronomy 2025, 15(6), 1377; https://doi.org/10.3390/agronomy15061377 - 4 Jun 2025
Viewed by 399
Abstract
Nitrogen fertilizer plays a crucial role in enhancing soil fertility, impacting both crop yields and nitrous oxide (N2O) emissions from farmland soils. However, while nitrogen fertilizers increase yields, they also influence N2O emissions, and this relationship remains understudied in [...] Read more.
Nitrogen fertilizer plays a crucial role in enhancing soil fertility, impacting both crop yields and nitrous oxide (N2O) emissions from farmland soils. However, while nitrogen fertilizers increase yields, they also influence N2O emissions, and this relationship remains understudied in the Loess Plateau region of China. This study examined the effect of four nitrogen fertilizer levels—no nitrogen (CK), low (LN), medium (MN), and high (HN)—on N2O emissions and spring wheat yield. Over two years, nitrogen fertilization significantly increased N2O emissions, with HN treatment resulting in emissions 229.95%, 69.38%, and 46.52% higher than CK, LN, and MN, respectively. Emission fluxes exhibited strong seasonal variability, influenced by soil temperature, enzyme activity, and nitrogen availability. Spring wheat yields initially increased and then decreased, with the highest yields recorded under MN treatment (1283.67 and 1335.83 kg·ha−1). Given the sharp rise in N2O emissions due to nitrogen application in arid areas, the contribution of spring wheat soil to global warming and ozone depletion cannot be overlooked. Results suggest that a moderate nitrogen application of 110 kg·ha−1 in the Loess Plateau optimizes yield, enhances soil conditions, and mitigates N2O emissions, whereas excessive nitrogen leads to nitrate accumulation, exacerbating environmental issues like the greenhouse effect, and ultimately reducing wheat yield and causing economic losses. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

20 pages, 657 KiB  
Article
Greenhouse Gas Emissions from Flood-Irrigated Rice as Affected by Phosphorus Fertilizer Source
by Chandler M. Arel, Kristofor R. Brye, Diego Della Lunga, Trenton L. Roberts and Richard Adams
Agriculture 2025, 15(8), 815; https://doi.org/10.3390/agriculture15080815 - 9 Apr 2025
Viewed by 658
Abstract
Research into alternative phosphorus (P) fertilizer sources that may be able to supplement P resources is necessary. Struvite (MgNH4PO4 · 6H2O) can be made by removing excess nutrients from waste sources and may reduce greenhouse gas (GHG) emissions [...] Read more.
Research into alternative phosphorus (P) fertilizer sources that may be able to supplement P resources is necessary. Struvite (MgNH4PO4 · 6H2O) can be made by removing excess nutrients from waste sources and may reduce greenhouse gas (GHG) emissions from cropping systems. This study sought to quantify GHG [i.e., methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2)] fluxes, season-long emissions, and net GHG emissions from chemically precipitated struvite (CPST) and synthetic and real-wastewater-derived electrochemically precipitated struvite (ECST) compared to monoammonium phosphate (MAP) and an unamended control (UC) from flood-irrigated rice (Oryza sativa) grown in P-deficient, silt loam soil in a greenhouse. Gas samples were collected weekly over a 140-day period in 2022. Methane and CO2 emissions differed (p < 0.05) among P fertilizer sources, while N2O emissions were similar among all treatments. Methane, CO2, and N2O emissions from MAP-fertilized rice were the greatest (98.7, 20,960, and 0.44 kg ha−1 season−1, respectively), but they were similar to those of CH4 and CO2 for CPST and those of N2O for all other P fertilizer sources. Season-long CH4, CO2, and N2O emissions and net GHG emissions did not differ between ECST materials. This study’s results emphasized the potential that wastewater-recovered struvite has to reduce GHG emissions in rice production systems. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

20 pages, 1870 KiB  
Article
Irrigation System, Rather than Nitrogen Fertilizer Application, Affects the Quantities of Functional Genes Related to N2O Production in Potato Cropping
by Laura Charlotte Storch, Katharina Schulz, Jana Marie Kraft, Annette Prochnow, Liliane Ruess, Benjamin Trost and Susanne Theuerl
Microorganisms 2025, 13(4), 741; https://doi.org/10.3390/microorganisms13040741 - 25 Mar 2025
Cited by 1 | Viewed by 374
Abstract
The spatial and temporal distribution of water and nitrogen supply affects soil-borne nitrous oxide (N2O) emissions. In this study, the effects of different irrigation technologies (no irrigation, sprinkler irrigation and drip irrigation) and nitrogen (N) application types (no fertilizer, broadcasted and [...] Read more.
The spatial and temporal distribution of water and nitrogen supply affects soil-borne nitrous oxide (N2O) emissions. In this study, the effects of different irrigation technologies (no irrigation, sprinkler irrigation and drip irrigation) and nitrogen (N) application types (no fertilizer, broadcasted and within irrigation water) on N2O flux rates and the quantities of functional genes involved in the N cycle in potato cropping were investigated over an entire season. The volume of irrigation water affected microbial N2O production, with the highest N2O flux rates found under sprinkler irrigation conditions, followed by drip and no irrigation. Nitrifier denitrification was identified as the potential pre-dominant pathway stimulated by fluctuations in aerobic-anaerobic soil conditions, especially under sprinkler irrigation. Regarding the different N application types, increased N use efficiency under fertigation was expected. However, N2O flux rates were not significantly reduced compared to broadcasted N application under drip irrigation. On average, the N2O fluxes were higher during the first half of the season, which was accompanied by a low N use efficiency of the potato crops. Potato crops mainly require N at later growth stages. Due to the different water and nutrient demand of potatoes, an adjusted application of fertilizer and water based on crop demand could reduce N2O emissions. Full article
(This article belongs to the Special Issue Advances in Soil Microbial Ecology, 2nd Edition)
Show Figures

Figure 1

19 pages, 3399 KiB  
Article
Mitigating Nitrous Oxide Emission from a Lab-Scale Membrane-Aerated Biofilm Reactor
by Andras Nemeth, Eoin Casey and Eoin Syron
Water 2025, 17(4), 500; https://doi.org/10.3390/w17040500 - 11 Feb 2025
Cited by 1 | Viewed by 912
Abstract
The membrane-aerated biofilm reactor (MABR) is an emerging technology for the biological treatment of wastewaters. It can achieve simultaneous nitrification and denitrification due to anoxic liquid conditions. The counter diffusion of oxygen and nutrients in the biofilm allows for aerobic and anoxic layers, [...] Read more.
The membrane-aerated biofilm reactor (MABR) is an emerging technology for the biological treatment of wastewaters. It can achieve simultaneous nitrification and denitrification due to anoxic liquid conditions. The counter diffusion of oxygen and nutrients in the biofilm allows for aerobic and anoxic layers, providing conditions where the formation, accumulation and consumption of nitrous oxide can all occur. The microbial processes involved in the production and consumption of N2O are complex, and, due to the innovative nature of the MABR, understanding the influence of operational factors helps to minimise N2O emission. Using a lab-scale 20L MABR system, an investigation was carried out to determine the influence of operational factors on the emission of nitrous oxide from the reactor. A direct link between the nitrous oxide emissions and bulk liquid conditions could not be established with only limited statistical correlation between them. It was found that under both steady loading rates and transient conditions, the emission of nitrous oxide was most influenced by the air flow rate through the membranes. The majority of N2O emissions occurred via the membrane off-gas and not through the liquid. N2O flux through the membrane was influenced not only by the accumulation of N2O in the biofilm side but also by the gas residence time on the lumen side. Therefore, minimising the air flow rate is an effective strategy to mitigate nitrous oxide emissions from the MABR. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

23 pages, 6653 KiB  
Article
Nitrogen and Water Additions Affect N2O Dynamics in Temperate Steppe by Regulating Soil Matrix and Microbial Abundance
by Siyu Ren, Yinghui Liu, Pei He, Yihe Zhao and Chang Wang
Agriculture 2025, 15(3), 283; https://doi.org/10.3390/agriculture15030283 - 28 Jan 2025
Cited by 1 | Viewed by 886
Abstract
Elucidating the effects of nitrogen and water addition on N2O dynamics is critical, as N2O is a key driver of climate change (including nitrogen deposition and shifting precipitation patterns) and stratospheric ozone depletion. The temperate steppe is a notable [...] Read more.
Elucidating the effects of nitrogen and water addition on N2O dynamics is critical, as N2O is a key driver of climate change (including nitrogen deposition and shifting precipitation patterns) and stratospheric ozone depletion. The temperate steppe is a notable natural source of this potent greenhouse gas. This study uses field observations and soil sampling to investigate the seasonal pattern of N2O emissions in the temperate steppe of Inner Mongolia and the mechanism by which nitrogen and water additions, as two different types of factors, alter this seasonal pattern. It explores the regulatory roles of environmental factors, soil physicochemical properties, microbial community structure, and abundance of functional genes in influencing N2O emissions. These results indicate that the effects of nitrogen and water addition on N2O emission mechanisms vary throughout the growing season. Nitrogen application consistently increase N2O emissions. In contrast, water addition suppresses N2O emissions during the early growing season but promotes emissions during the peak and late growing seasons. In the early growing season, nitrogen addition primarily increased the dissolved organic nitrogen (DON) levels, which provided a matrix for nitrification and promoted N2O emissions. Meanwhile, water addition increased soil moisture, enhancing the abundance of the nosZ (nitrous oxide reductase) gene while reducing nitrate nitrogen (NO3-N) levels, as well as AOA (ammonia-oxidizing archaea) amoA and AOB (ammonia-oxidizing bacteria) amoA gene expression, thereby lowering N2O emissions. During the peak growing season, nitrogen’s role in adjusting pH and ammonium nitrogen (NH4+-N), along with amplifying AOB amoA, spiked N2O emissions. Water addition affects the balance between nitrification and denitrification by altering aerobic and anaerobic soil conditions, ultimately increasing N2O emissions by inhibiting nosZ. As the growing season waned and precipitation decreased, temperature also became a driver of N2O emissions. Structural equation modeling reveals that the impacts of nitrogen and water on N2O flux variations through nitrification and denitrification are more significant during the peak growing season. This research uncovers innovative insights into how nitrogen and water additions differently impact N2O dynamics across various stages of the growing season in the temperate steppe, providing a scientific basis for predicting and managing N2O emissions within these ecosystems. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

17 pages, 2072 KiB  
Article
Effects of Long-Term Organic Substitution on Soil Nitrous Oxide Emissions in a Tea (Camellia sinensis L.) Plantation in China
by Zhidan Wu, Wei Hua, Kang Ni, Xiangde Yang and Fuying Jiang
Agronomy 2025, 15(2), 288; https://doi.org/10.3390/agronomy15020288 - 24 Jan 2025
Viewed by 1256
Abstract
Nitrous oxide (N2O) is a major greenhouse gas (GHG) responsible for global warming. Improper fertilization in agricultural fields, particularly excessive nitrogen (N) application, accelerates soil N2O emissions. Though partial substitution with organic fertilizer has been implemented to mitigate these [...] Read more.
Nitrous oxide (N2O) is a major greenhouse gas (GHG) responsible for global warming. Improper fertilization in agricultural fields, particularly excessive nitrogen (N) application, accelerates soil N2O emissions. Though partial substitution with organic fertilizer has been implemented to mitigate these emissions, the effect on perennial systems, such as tea plantations, remains largely unexplored. Therefore, the present study monitored soil N2O emissions for a year in a tea plantation in South China under the following treatments: no N fertilizer (control, CK), chemical fertilizer alone (CF), replacing 40% of chemical fertilizer with organic fertilizer (CF + OF), and organic fertilizer alone (OF). Our results showed that the annual cumulative N2O emissions from the plantation soil ranged from 1.03 to 3.43 kg N2O-N ha−1. The cumulative N2O emissions, the yield-scaled N2O emissions (YSNE), and the N2O-N emission factor (EF) from the soil were the highest under the CF + OF treatment but the lowest under the OF treatment. Further analysis revealed that fertilization, mainly chemical fertilization, increased the soil ammonium (NH4+-N) and nitrate (NO3-N) levels by 182–387% and 195–258%, respectively, and tea yields by 120–170%. However, tea yield decreased gradually with increasing organic substitution. These results prove that complete organic substitution reduces soil N2O emissions and tea yield and suggest adopting an appropriate substitution rate for optimal effect. Further random forest (RF) modeling identified water-filled pore space (WFPS; 20.27% of total variation), soil temperature (Tsoil; 19.29%), and NH4+-N (18.27%) as the key factors significantly contributing to the changes in soil N2O flux. These findings provide a theoretical foundation for optimizing fertilization regimes for sustainable tea production and soil N2O mitigation. Full article
Show Figures

Figure 1

24 pages, 4978 KiB  
Article
Characteristics of Soil Profile Greenhouse Gas Concentrations and Fluxes of Alpine Grassland as Affected by Livestock Grazing
by Mingyuan Yin, Xiaopeng Gao, Yanyan Li, Yufeng Wu, Wennong Kuang and Fanjiang Zeng
Agronomy 2025, 15(1), 243; https://doi.org/10.3390/agronomy15010243 - 20 Jan 2025
Viewed by 1139
Abstract
Previous research has investigated the effects of different grazing intensities on soil surface greenhouse gas (GHG) emissions, whereas the dynamics of GHG production and consumption within the soil profile and their responses to different grazing intensities remain unclear. In this study, a field [...] Read more.
Previous research has investigated the effects of different grazing intensities on soil surface greenhouse gas (GHG) emissions, whereas the dynamics of GHG production and consumption within the soil profile and their responses to different grazing intensities remain unclear. In this study, a field experiment was conducted in 2017 and 2018 to evaluate the influences of three grazing intensities (none, light, heavy) on both soil surface and subsurface (0–60 cm) GHG fluxes estimated using chamber-based and concentration gradient-based methods, respectively. Results showed that soil at lower depths (30–60 cm) had higher carbon dioxide (CO2) concentrations but lower methane (CH4) concentrations. In contrast, soil profile nitrous oxide (N2O) concentration did not vary with depth, possibly resulting from the relatively low soil moisture in the semiarid grassland, which increased air diffusivity across the soil profile. Grassland soil acted as a source of N2O and CO2 production but as a sink for CH4 uptake, which mainly attributed to the topsoil (0–5 cm for N2O, and 0–15 cm for CO2 and CH4). The estimated soil surface GHG flux rates based on the concentration gradient method did not align well with those directly measured using the chamber method. Furthermore, the cumulative N2O flux over the study period was significantly higher for the concentration gradient method than the chamber method, whereas a contrary result was observed for CO2 emission and CH4 uptake. This study confirms that the grassland soil serves as an important source of CO2 and N2O emissions and a weak sink for CH4 consumption, playing a crucial role in the annual carbon budget of livestock-grazed grassland ecosystems. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

12 pages, 6537 KiB  
Article
Impact of Insect Foliar Herbivory on Soil N₂O Emission and Nitrogen Dynamics in Subtropical Tree Species
by Bin Yan, Qinqin Xu, Yunyun Yang and Yalin Hu
Forests 2025, 16(1), 16; https://doi.org/10.3390/f16010016 - 25 Dec 2024
Viewed by 813
Abstract
Insect foliar herbivory is ubiquitous in terrestrial ecosystems, yet its impacts on soil nitrogen cycling processes remain not yet well known. To examine the impacts of insect foliar herbivory on soil N2O emission flux and available nitrogen (N), we conducted a [...] Read more.
Insect foliar herbivory is ubiquitous in terrestrial ecosystems, yet its impacts on soil nitrogen cycling processes remain not yet well known. To examine the impacts of insect foliar herbivory on soil N2O emission flux and available nitrogen (N), we conducted a pot experiment to measure soil available N content and soil N2O emission flux among three treatments (i.e., leaf herbivory, artificial defoliation, and control,) in two broad-leaved trees (Cinnamomum camphora and Liquidambar formosana) and two conifer trees (Pinus massonianna and Cryptomeria fortunei). Our results showed that insect foliar herbivory significantly increased soil inorganic N (i.e., NH4+–N and NO3–N), dissolved organic nitrogen (DON) and microbial biomass nitrogen (MBN) contents, and urease activity compared to control treatment. However, there were no differences in soil available N contents and urease activity between artificial defoliation and control treatments, implying that insect foliar herbivory had greater impacts on soil available N contents compared to physical damage of leaves. Moreover, soil N2O emission fluxes were increased by insect foliar herbivory in Cinnamomum camphora and Pinus massonianna, but not for the other two tree species, indicating various effect of insect foliar herbivory on soil N2O emission among tree species. Furthermore, our results showed the positive correlations between soil N2O emission flux and soil NO3–N, DON, MBN, and acid protease activity, and soil inorganic N, pH, and MBN mainly explained soil N2O emission. Our results implied that insect foliar herbivory can speed up soil nitrogen availability in subtropical forests, but the impacts on soil N2O emission are related to tree species. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

15 pages, 3137 KiB  
Article
Effects of Long-Term Nitrogen Fertilization on Nitrous Oxide Emission and Yield in Acidic Tea (Camellia sinensis L.) Plantation Soils
by Fuying Jiang, Yunni Chang, Jiabao Han, Xiangde Yang and Zhidan Wu
Agronomy 2025, 15(1), 7; https://doi.org/10.3390/agronomy15010007 - 24 Dec 2024
Viewed by 894
Abstract
The responses of nitrous oxide (N2O) emissions to nitrogen (N) application in acidic, perennial agricultural systems, and the factors driving these emissions, remain poorly understood. To address this gap, a 12-year field experiment was conducted to investigate the effects of different [...] Read more.
The responses of nitrous oxide (N2O) emissions to nitrogen (N) application in acidic, perennial agricultural systems, and the factors driving these emissions, remain poorly understood. To address this gap, a 12-year field experiment was conducted to investigate the effects of different N application rates (0, 112.5, 225, and 450 kg N ha−1 yr−1) on N2O emissions, tea yield, and the associated driving factors in a tea plantation. The study found that soil pH significantly decreased with long-term N application, dropping by 0.32 to 0.85 units. Annual tea yield increased significantly, by 148–243%. N application also elevated N2O emission fluxes by 33–277%, with notable seasonal fluctuations observed. N2O flux was positively correlated with N rates, water-filled pore space (WFPS), soil temperature (Tsoil), and inorganic N (NH4+-N and NO3-N), while showing a negative correlation with soil pH. Random forest (RF) modeling identified WFPS, N rates, and Tsoil as the most important variables influencing N2O flux. The cumulative N2O emissions for N112.5, N225, and N450 were 1584, 2791, and 45,046 g N ha−2, respectively, representing increases of 1.33, 2.34, and 3.77 times compared to N0. The N2O-N emission factors (EF) were 0.35%, 0.71%, and 0.74%, respectively, and increased with higher N rates. These findings highlight the importance of selecting appropriate fertilization timing and improving water and fertilizer management as key strategies for mitigating soil acidification, enhancing nitrogen use efficiency (NUE), and reducing N2O emissions in acidic tea-plantation systems. This study offers a theoretical foundation for developing rational N fertilizer management practices and strategies aimed at reducing N2O emissions in tea-plantation soils. Full article
Show Figures

Figure 1

Back to TopTop