Irrigation System, Rather than Nitrogen Fertilizer Application, Affects the Quantities of Functional Genes Related to N2O Production in Potato Cropping
Abstract
:1. Introduction
- N2O flux rates differ between the treatments, with the highest flux rates expected under sprinkler irrigation without broadcasted N application (SI-ZN) due to it having the highest water volume application and thus promoting N2O production via the denitrification process, followed by drip irrigation without fertilizer application (DI-ZN), as a reduced water volume is directly applied to the rhizosphere of the crops.
- The lowest N2O flux rates are expected under zero irrigation without fertilizer application (ZI-ZN).
- The application of several small N doses in irrigation water by fertigation (F) will lead to lower N2O flux rates compared to the broadcasted N application under sprinkler irrigation (SI-N) due to a better N use efficiency of the potato crops.
- Fertigation will potentially lead to more diverse N2O production pathways, whereas the broadcasted N application under drip irrigation leads to intermediate N2O flux rates.
- The absence of plants in fertigation without crops (F-ZC) may lead to increased N2O emissions due to reduced competition for nitrogen between plants and soil microorganisms.
2. Materials and Methods
2.1. Experimental Site and N2O Flux Measurement
2.2. Analysis of Mineral Nitrogen and Soil Moisture
2.3. Determining Nitrogen Use Efficiency (NUE) and Apparent Nitrogen Recovery (ANR)
2.4. Functional Profiling of Relevant Genes of the Nitrogen Cycle
2.5. Statistical Analysis
3. Results and Discussion
3.1. N2O Flux Rates Influenced by Different Irrigation and Fertilization Regimes
3.2. Time-Related Effects on Functional Genes Within the Bacterial N Cycle in Applied Management Regimes
3.3. Effects of Different Irrigation Technologies on the Bacterial N Cycle
3.4. Effects of Different N Fertilizer Application Technologies on the Bacterial N Cycle
3.5. Summarized Assessment of the Genetically Determined N2O Production Pathways Within Applied Management Regimes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC (Intergovernmental Panel on Climate Change). Summary for Policymakers. In The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 3–32. [Google Scholar]
- Tian, H.; Xu, R.; Canadell, J.G.; Thompson, R.L.; Winiwater, W.; Suntharalingam, P.; Davidson, E.A.; Ciais, P.; Jackson, R.B.; Janssens-Maenhout, G.; et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Kuang, W.; Gao, X.; Tenuta, M.; Zeng, F. A global meta-analysis of nitrous oxide emission from drip-irrigated cropping system. Glob. Chang. Biol. 2021, 27, 3244–3256. [Google Scholar] [CrossRef]
- Liang, D.; Robertson, G.P. Nitrification is a minor source of nitrous oxide (N2O) in an agricultural landscape and declines with increasing management intensity. Glob. Chang. Biol. 2021, 27, 5599–5613. [Google Scholar] [CrossRef]
- Wang, X.; Bai, J.; Xie, T.; Wang, W.; Zhang, G.; Yin, S.; Wang, D. Effects of biological nitrification inhibitors on nitrogen use efficiency and greenhouse gas emissions in agricultural soils: A review. Ecotoxicol. Environ. Saf. 2021, 220, 112338. [Google Scholar] [CrossRef] [PubMed]
- Menegat, S.; Ledo, A.; Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 2022, 12, 14490. [Google Scholar] [CrossRef]
- Milroy, S.P.; Wang, P.; Sadras, V.O. Defining upper limits of nitrogen uptake and nitrogen use efficiency of potato in response to crop N supply. Field Crops Res. 2019, 239, 38–46. [Google Scholar] [CrossRef]
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.A.; Mahmood, A.; Chen, Z.L.; Li, Q.; Zeng, X.-P.; Liu, Y.; Li, Y.-R. Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 2020, 53, 47. [Google Scholar] [CrossRef]
- Wang, C.; Zang, H.; Liu, J.; Shi, X.; Li, S.; Chen, F.; Chu, Q. Optimum nitrogen rate to maintain sustainable potato production and improve nitrogen use efficiency at a regional scale in China. Meta-Anal. Agron. Sustain. Dev. 2020, 40, 37. [Google Scholar] [CrossRef]
- You, L.; Ros, G.H.; Chen, Y.; Shao, Q.; Young, M.D.; Zhang, F.; de Vries, W. Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices. Nat. Commun. 2023, 14, 5747. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change and Land. In IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., et al., Eds.; 2019; in press; Available online: https://www.ipcc.ch/srccl/ (accessed on 17 September 2023).
- Drastig, K.; Prochnow, A.; Libra, J.; Koch, H.; Rolinski, S. Irrigation water demand of selected agricultural crops in Germany between 1902 and 2010. Sci. Total Environ. 2016, 569–570, 1299–1314. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the process and their control? Phil. Trans. 2013, 5, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.-W.; Chen, D.; He, J.-Z. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 2015, 39, 729–749. [Google Scholar] [CrossRef] [PubMed]
- Bronson, K.F.; Hunsaker, D.J.; Williams, C.F.; Thorp, K.P.; Rockholt, S.M.; Del Grosso, S.J.; Ventera, R.T.; Barnes, E.M. Nitrogen management affects nitrous oxide emissions under varying cotton irrigation systems in the desert southwest, USA. J. Environ. Qual. 2018, 47, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xiong, Y.; Huang, Q.; Xu, X.; Huang, G. Impact of irrigation and fertilization regimes on greenhouse gas emissions from soil of mulching cultivated maize (Zea mays L.) field in the upper reaches of Yellow Rover, China. J. Clean. Prod. 2020, 259. [Google Scholar] [CrossRef]
- Sapkota, A.; Haghverdi, A.; Avila, C.C.; Ying, S. Irrigation and greenhouse gas emissions: A review of field-based studies. Soil Syst. 2020, 4, 20. [Google Scholar] [CrossRef]
- Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W. Water savings potential of irrigation systemy: Global simulation of process and linkages. Hydrol. Earth Syst. Sci. 2015, 19, 3073–3091. [Google Scholar] [CrossRef]
- Smart, D.R.; Alsina, M.M.; Wolff, M.W.; Katiasek, G.; Schellenberg, D.L.; Edstrom, J.P.; Brown, P.H.; Scow, K.M. N2O emissions and water management in California perennial crops. In Understanding Greenhouse Gas Emissions from Agricultural Management; Guo, L., Gunasekara, A.S., McConnell, L.L., Eds.; American Chemical Society: Washington, DC, USA, 2011; pp. 227–255. [Google Scholar]
- Fentabil, M.M.; Nichol, C.F.; Jones, M.D.; Neilsen, G.H.; Neilsen, D.; Hannam, K.D. Effect of drip irrigation frequency, nitrogen rate and mulching on nitrous oxide emissions in a semi-arid climate: An assessment across two years in an apple orchard. Agric. Ecosyst. Environ. 2016, 235, 242–252. [Google Scholar] [CrossRef]
- Tian, D.; Zhang, Y.; Mu, Y.; Zhou, Y.; Zhang, C.; Liu, J. The effect of drip irrigation and drip fertigation on N2O and NO emissions, water saving and grain yields in a maize field in the North China Plain. Sci. Total Environ. 2017, 575, 1034–1040. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, F.; Li, H.; Wang, L.; Wu, S.; Xiao, G.; Wu, W. Optimized fertigation maintains high yield and mitigates N2O and NO emissions in an intensified wheat–maize cropping system. Agric. Water Manag. 2019, 211, 26–36. [Google Scholar] [CrossRef]
- Kumar, A.; Medhi, K.; Fagodiya, R.K.; Subrahmanyam, G.; Mondal, R.; Raja, P.; Malyan, S.K.; Gupta, D.K.; Gupta, C.K.; Pathak, H. Molecular and ecological perspectives of nitrous oxide producing microbial communities in agro-ecosystems. Rev. Environ. Sci. Biotechnol. 2020, 19, 717–750. [Google Scholar] [CrossRef]
- Kuypers, M.; Marchant, H.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef]
- Wrage-Mönnig, N.; Horn, M.A.; Well, R.; Müller, C.; Velthof, G.; Oenema, O. The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biol. Biochem. 2018, 123, A3–A16. [Google Scholar] [CrossRef]
- Prosser, J.I.; Hink, L.; Gubry-Rangin, C.; Nicol, G.W. Nitrous oxide production by ammonia oxidizers: Physiological diversity, nice differentiation and potential mitigation strategies. Glob. Chang. Biol. 2020, 26, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Norton, J.; Ouyang, Y. Controls and adaptive management of nitrification in agricultural soils. Front. Microbiol. 2019, 10, 1931. [Google Scholar] [CrossRef] [PubMed]
- Storch, L.C.; Schulz, K.; Rißmann, C.; Cerull, E.; Plakias, A.; Schlichting, I.; Prochnow, A.; Ruess, L.; Trost, B.; Theuerl, S. Nitrogen fertilization and irrigation types do not affect the overall N2O production potential of a sandy soil, but the microbial community structure and the quantity of functional genes related to the N cycle. Appl. Soil Ecol. 2023, 192, 105083. [Google Scholar] [CrossRef]
- López-Lozano, N.E.; Pereira e Silva, M.C.; Poly, F.; Guillaumaud, N.; van Elsas, J.D.; Falcão Salles, J. Denitrifying bacterial communities display different temporal fluctuation patterns across Dutch agricultural soils. Antoine Van Leeuwenhoek 2017, 110, 1453–1465. [Google Scholar] [CrossRef]
- Dong, Z.; Zhu, B.; Jiang, Y.; Tang, J.; Liu, W.; Hu, L. Seasonal N2O emissions respond differently to environmental and microbial factors after fertilization in wheat-maize agroecosystem. Nutr. Cycl. Agroecosyst. 2018, 112, 215–229. [Google Scholar] [CrossRef]
- Hou, S.; Ai, C.; Zhou, W.; Liang, G.; He, P. Structure and assembly cues for rhizospheric nirK- and nirS-type denitrifier communities in long-term fertilized soils. Soil Biol. Biochem. 2018, 119, 32–40. [Google Scholar]
- Jones, C.M.; Putz, M.; Tiemann, M.; Hallin, S. Reactive nitrogen restructures and weakens microbial controls of soil N2O emissions. Commun. Biol. 2022, 5, 273. [Google Scholar] [CrossRef]
- Deveautour, C.; Rojas-Pinzon, P.A.; Veloso, M.; Rambaud, J.; Duff, A.M.; Wall, D.; Carolan, R.; Philippot, L.; Richards, K.G.; O'Flaherty, V.; et al. Biotic and abiotic predictors of potential N2O emissions from denitrification in Irish grasslands soils: A national-scale field study. Soil Biol. Biochem. 2022, 168, 108637. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, H.; Lv, J. Response of N2O emission and denitrification genes to different inorganic and organic amendments. Sci. Rep. 2022, 12, 3940. [Google Scholar] [CrossRef]
- Petersen, S.O.; Peixoto, L.E.K.; Sørensen, H.; Tariq, A.; Brændholt, A.; Hansen, L.V.; Abalos, D.; Christensen, A.T.; Nielsen, C.S.; Pullens, J.W.M.; et al. Higher N2O emissions from organic compared to synthetic N fertilisers on sandy soils in a cool temperate climate. Agric. Ecosyst. Env. 2023, 358, 108718. [Google Scholar] [CrossRef]
- Trost, B.; Prochnow, A.; Baumecker, M.; Meyer-Aurich, A.; Drastig, K.; Ellmer, F. Nitrous oxide emissions from potato cropping under drip-fertigation in eastern Germany. Arch. Agron. Soil Sci. 2014, 60, 1519–1531. [Google Scholar] [CrossRef]
- Charteris, A.F.; Chadwick, D.R.; Thorman, R.E.; Vallejo, A.; de Klein, C.A.M.; Rochette, P.; Cárdenas, L.A. Gobal Research Alliance N2O chamber methodology guidelines: Recommendations for deployment and accounting for sources of variability. J. Env. Qual. 2020, 49, 1092–1109. [Google Scholar] [CrossRef]
- Shao, G.; Martinson, G.O.; Corre, M.D.; Niu, D.; Bischel, X.; Veldkamp, E. Impacts of monoculture cropland to alley cropping agroforestry conversion on soil N2O emissions. GCB Bioenerg. 2023, 15, 58–71. [Google Scholar] [CrossRef]
- Thilakarathna, S.K.; Konschuh, M.; Woods, S.A.; Hernandez-Ramirez, G. Nitrous oxide emissions and productivity of irrigated potato: Effects of nitrogen fertilization options. Agron. J. 2022, 115, 161–180. [Google Scholar] [CrossRef]
- Flessa, H.; Wild, U.; Klemisch, M.; Pfadenhauer, J. Nitrous oxide and methane fluxes from organic soils under agriculture. Eur. J. Soil Sci. 1998, 49, 327–335. [Google Scholar] [CrossRef]
- Dorich, C.D.; De Rosa, D.; Barton, L.; Grace, P.; Rowlings, D.; De Antoni Migliorati, M.; Wagner-Riddle, C.; Key, C.; Wang, D.; Fehr, B.; et al. Global Research Alliance N2O chamber methodology guidelines: Guidelines for gap-filling missing measurements. J. Environ. Qual. 2020, 49, 1186–1202. [Google Scholar] [CrossRef]
- Linn, D.M.; Doran, J.W. Effect of water filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci. Soc. Am. J. 1984, 48, 1267–1272. [Google Scholar] [CrossRef]
- Badr, M.A.; El-Tohamy, W.A.; Zaghloul, A.M. Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agric. Water Manag. 2012, 110, 9–15. [Google Scholar] [CrossRef]
- Brook, M.E.; Kasper, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Machler, M.; Bolker, B.M. GlmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienne, Austria. 2020. Available online: https://www.R-project.org/ (accessed on 6 October 2023).
- R Studio Team. RStudio: Integrated Development for R. R.Studio, PBC, Boston. 2021. Available online: https://www.rstudio.com/ (accessed on 6 October 2023).
- Schmidt, P. Model Diagnostics. Available online: https://schmidtpaul.github.io/dsfair_quarto//ch/summaryarticles/modeldiagnostics.html (accessed on 13 December 2023).
- Pinheiro, J.C.; Bates, D.M. Mixed-Effects Model in S and S-Plus; Springer: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Kassambara, A. Pipe-Friendly Framework for Basic Statistical Tests. 2021. Available online: https://cran.r-project.org/web/packages/rstatix/index.html (accessed on 6 October 2023).
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R Package Ver. 2.2-1 2017, 2, 1–2. [Google Scholar]
- Mathivanan, G.P.; Eysholdt, M.; Zinnbauer, M.; Rösemann, C.; Fuß, R. New N2O emission factors for crop residues and fertiliser inputs to agricultural soils in Germany. Agric. Ecosyst. Environ. 2021, 322, 107640. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. Potato growth, yield and water productivity response to different irrigation and fertilization regimes. Agric. Water Manag. 2018, 201, 21–26. [Google Scholar] [CrossRef]
- Grandy, A.S.; Daly, A.B.; Bowles, T.M.; Gaudin, A.C.M.; Jilling, A.; Leptin, A.; McDaniel, M.D.; Wade, J.; Waterhouse, H. The nitrogen gap in soil health concepts and fertility measurements. Soil Biol. Biochem. 2022, 175, 108856. [Google Scholar] [CrossRef]
- Ojala, J.C.; Stark, J.C.; Kleinkopf, G.E. Influence of irrigation and nitrogen management on potato yield and quality. Am. Potato J. 1990, 67, 29–42. [Google Scholar] [CrossRef]
- Hamonts, K.; Clough, T.J.; Stewart, A.; Clinton, P.W.; Richardson, A.E.; Wakelin, S.A.; O’Callagha, M.; Condron, L.M. Effect of nitrogen and waterlogging on denitrifier gene abundance, community structure and activity in the rhizosphere of wheat. FEMS Microbiol. Eco. 2013, 83, 568–584. [Google Scholar] [CrossRef]
- Sasse, J.; Martinoia, E.; Northern, T. Feed your friends: Do plant exudates shape the root microbiome? Trends Plant. Sci. 2018, 23, 25–41. [Google Scholar] [CrossRef]
- Moreau, D.; Bardgett, R.D.; Finlay, R.D.; Jones, D.L.; Philippot, L. A plant perspective on nitrogen cycling in the rhizosphere. Funct. Ecol. 2019, 33, 540–552. [Google Scholar] [CrossRef]
- Fan, K.; Holland-Moritz, H.; Walsch, C.; Guo, X.; Wang, D.; Bai, Y.; Zhu, Y.-G.; Fierer, N.; Chu, H. Identification of the rhizosphere microbes that actively consume plant-derived carbon. Soil Biol. Biochem. 2022, 166, 108577. [Google Scholar] [CrossRef]
- Dhadli, H.S.; Brar, B.S.; Kingra, P.K. Temporal variations in N2O emissions in maize and wheat crop seasons: Impact of N-fertilization, crop growth, and weather variables. J. Crop Improv. 2016, 30, 17–31. [Google Scholar] [CrossRef]
- Cambouris, A.N.; St Luce, M.; Zebrath, B.J.; Ziadi, N.; Grant, C.A.; Perron, I. Potato Response to nitrogen sources and rates in an irrigated sandy soil. Agron. J. 2016, 108, 391–401. [Google Scholar] [CrossRef]
- Bertagnolli, A.D.; McCalmont, D.; Meinhardt, K.A.; Fransen, S.C.; Strand, S.; Brown, S.; Stahl, D.A. Agricultural land usage transforms nitrifier population ecology. Environ. Microbiol. 2016, 18, 1918–1929. [Google Scholar] [CrossRef] [PubMed]
- Hink, L.; Gubry-Rangin, C.; Nicol, G.W.; Prosser, J.I. The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions. ISME J. 2018, 12, 1084–1093. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, L.-M.; Shen, J.-P.; Du, S.; Han, L.-L.; He, J.-Z. Nitrogen fertiliser-induced changes in N2O emissions are attributed more to ammonia-oxidising bacteria rather than archaea as revealed using 1-octyne and acetylene inhibitors in two arable soils. Biol. Fertil. Soils 2016, 52, 1163–1171. [Google Scholar] [CrossRef]
- Heil, J.H.; Brüggemann, N. A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil. Eu. J. Soil. Sci. 2015, 67, 23–29. [Google Scholar] [CrossRef]
- Schaufler, G.; Kitzler, B.; Schindlbacher, A.; Skiba, U.; Sutton, M.A.; Zechmeister-Boltenstern, S. Greenhouse gas emissions from European soil under different land use: Effects of soil moisture and temperature. Eur. J. Soil Sci. 2010, 61, 683–696. [Google Scholar] [CrossRef]
- Trost, B.; Prochnow, A.; Drastig, K.; Meyer-Aurich, A.; Ellmer, F.; Baumecker, M. Irrigation, soil organic carbon and N2O emissions. A review. Agron. Sustain. Dev. 2013, 33, 733–749. [Google Scholar] [CrossRef]
- Ottaiano, L.; Di Mola, I.; Di Tommasi, P.; Mori, M.; Magliulo, V.; Vitale, L. Effects of irrigation on N2O emissions in a maize crop grown on different soil types in two contrasting seasons. Agriculture 2020, 10, 623. [Google Scholar] [CrossRef]
- Lycus, P.; Lovise Bøthun, K.; Bergaust, L.; Peele Shapleigh, J.; Reier Bakken, L.; Frostegård, Å. Phenotypic and genotypic richness of denitrifiers revealed by a novel isolation strategy. ISME J. 2017, 11, 2219–2232. [Google Scholar] [CrossRef]
- Caranto, J.D.; Lancaster, K.M. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. Proc. Natl. Acad. Sci. USA 2017, 114, 8217–8222. [Google Scholar] [CrossRef] [PubMed]
- Maia, L.B.; Moura, J.G.J. How biology handles nitrite. Chem. Rev. 2014, 114, 5273–5357. [Google Scholar] [CrossRef] [PubMed]
- Chalk, P.M.; Smith, C.J. The role of agroecosystems in chemical pathways of N2O production. Agr. Ecosyst. Environ. 2020, 290, 106783. [Google Scholar] [CrossRef]
- Graf, D.R.H.; Jones, C.M.; Hallin, S. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS ONE 2014, 9, e114118. [Google Scholar] [CrossRef]
- You, L.; Ros, G.H.; Chen, Y.; Yang, X.; Cui, Z.; Liu, X.; Jiang, R.; Zhang, F.; de Vries, W. Global meta-analysis of terrestrial nitrous oxide emissions and associated functional genes under nitrogen addition. Soil Biol. Biochem. 2022, 165, 108523. [Google Scholar] [CrossRef]
Variant | Irrigation | N Fertilization | Distribution of Water Supply | Distribution of N Supply | ||
---|---|---|---|---|---|---|
Temporal | Spatial | Temporal | Spatial | |||
ZI-ZN | no irrigation | no N fertilization | stochastic (rainfall) | homogeneous | stochastic (mineralization of organic matter) | homogeneous |
ZI-N | no irrigation | N fertilization (optimal 150 kg/ha) | stochastic (rainfall) | homogeneous | three times per season (75 kg/ha first-order foliation, 45 kg/ha beginning of tuberization and 30 kg/ha maturation) | homogeneous |
SI-ZN | sprinkling irrigation | no N fertilization | irregularly in addition to rainfall | homogeneous | stochastic (mineralization of organic matter) | homogeneous |
SI-N | sprinkling irrigation | N fertilization (optimal 150 kg/ha) | irregularly in addition to rainfall | homogeneous | three times per season (75 kg/ha first-order foliation, 45 kg/ha beginning of tuberization and 30 kg/ha maturation) | homogeneous |
DI-ZN | drip irrigation | no N fertilization | irregularly in addition to rainfall | punctual in grid knot pattern | stochastic (mineralization of organic matter) | homogeneous |
DI-N | drip irrigation | N fertilization (optimal 150 kg/ha) | irregularly in addition to rainfall | punctual in grid knot pattern | three times per season (75 kg/ha first-order foliation, 45 kg/ha beginning of tuberization and 30 kg/ha maturation) | homogeneous |
F | fertigation (optimal N fertilization 150 kg/ha) | regularly in short intervals (5 to 15 mm every week) | punctual in grid knot pattern | regularly in short intervals (about 5 to 15 kg/ha every week) | punctual in grid knot pattern | |
F-ZC | fertigation, no crops (optimal N fertilization 150 kg/ha) | regularly in short intervals (5 to 15 mm every week) | punctual in grid knot pattern | regularly in short intervals (about 5 to 15 kg/ha every week) | punctual in grid knot pattern |
Cumulative Area-Related N2O Emissions (kg N2O-N ha−1) | Yield (t ha−1) | Yield-Related N2O Emissions (kg N2O-N t−1 Yield) | |||||
---|---|---|---|---|---|---|---|
Median | Group | Median | Group | Median | Group | ||
(a) | ZI-ZN | 0.40 | a | 20.4 | a | 0.0194 | a |
ZI-N | 0.68 | a | 29.4 | bc | 0.0211 | a | |
SI-ZN | 0.63 | a | 25.6 | ab | 0.0248 | a | |
SI-N | 0.61 | a | 48.2 | d | 0.0126 | a | |
DI-ZN | 0.38 | a | 26.8 | ab | 0.0170 | a | |
DI-N | 0.83 | a | 30.6 | c | 0.0213 | a | |
F | 0.60 | a | 33.7 | c | 0.0227 | a | |
F-ZC | 0.30 | a | - | - | - | - | |
(b) | ANOVA | F: | p: | F: | p: | F: | p: |
Treatment | 2.109 | 0.111 | 14.146 | <0.001 *** | 0.736 | 0.631 | |
Block | 1.234 | 0.321 | 13.954 | <0.001 *** | 5.532 | 0.02 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Storch, L.C.; Schulz, K.; Kraft, J.M.; Prochnow, A.; Ruess, L.; Trost, B.; Theuerl, S. Irrigation System, Rather than Nitrogen Fertilizer Application, Affects the Quantities of Functional Genes Related to N2O Production in Potato Cropping. Microorganisms 2025, 13, 741. https://doi.org/10.3390/microorganisms13040741
Storch LC, Schulz K, Kraft JM, Prochnow A, Ruess L, Trost B, Theuerl S. Irrigation System, Rather than Nitrogen Fertilizer Application, Affects the Quantities of Functional Genes Related to N2O Production in Potato Cropping. Microorganisms. 2025; 13(4):741. https://doi.org/10.3390/microorganisms13040741
Chicago/Turabian StyleStorch, Laura Charlotte, Katharina Schulz, Jana Marie Kraft, Annette Prochnow, Liliane Ruess, Benjamin Trost, and Susanne Theuerl. 2025. "Irrigation System, Rather than Nitrogen Fertilizer Application, Affects the Quantities of Functional Genes Related to N2O Production in Potato Cropping" Microorganisms 13, no. 4: 741. https://doi.org/10.3390/microorganisms13040741
APA StyleStorch, L. C., Schulz, K., Kraft, J. M., Prochnow, A., Ruess, L., Trost, B., & Theuerl, S. (2025). Irrigation System, Rather than Nitrogen Fertilizer Application, Affects the Quantities of Functional Genes Related to N2O Production in Potato Cropping. Microorganisms, 13(4), 741. https://doi.org/10.3390/microorganisms13040741