Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (577)

Search Parameters:
Keywords = nitrogen metabolic enzymes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1189 KB  
Article
Rhizopus oryzae Hydrolases from Solid-State Fermentation: A Gateway to Food Waste Valorization
by Agata Fabiszewska, Karina Jasińska, Katarzyna Wierzchowska and Jolanta Małajowicz
Appl. Sci. 2026, 16(3), 1225; https://doi.org/10.3390/app16031225 - 25 Jan 2026
Viewed by 46
Abstract
Moulds of the Rhizopus oryzae species exhibit high biotechnological potential due to their significant metabolic activity, which is influenced by cultivation conditions. The study aimed to evaluate the ability of R. oryzae DSM 2199 to synthesize extracellular lipolytic and proteolytic enzymes in solid-state [...] Read more.
Moulds of the Rhizopus oryzae species exhibit high biotechnological potential due to their significant metabolic activity, which is influenced by cultivation conditions. The study aimed to evaluate the ability of R. oryzae DSM 2199 to synthesize extracellular lipolytic and proteolytic enzymes in solid-state fermentation (SSF) using rapeseed cake as a substrate. The effectiveness of the SSF method in stimulating the synthesis of hydrolytic enzymes by R. oryzae was confirmed. The effect of an additional carbon and nitrogen source with three different dilution variants of the solid substrate on lipase and protease activity was analyzed. No significant correlation was found between enzyme activity and the applied diluents. The extracellular enzyme solution obtained from R. oryzae in SSF was lyophilized. The freeze-dried raw preparation exhibited high lipolytic activity (111.59 U/g) compared to its low proteolytic activity (0.013 U/g). Demonstrated hydrolytic activity made the biocatalyst useful for the hydrolysis and esterification reactions. Full article
Show Figures

Figure 1

16 pages, 1122 KB  
Review
The Multifaceted Functions of Plant Asparagine Synthetase: Regulatory Mechanisms and Functional Diversity in Growth and Defense
by Gang Qiao, Siyi Xiao, Jie Dong, Qiang Yang, Haiyan Che and Xianchao Sun
Plants 2026, 15(3), 362; https://doi.org/10.3390/plants15030362 - 24 Jan 2026
Viewed by 102
Abstract
Asparagine synthetase (AS) is a key enzyme in plant nitrogen metabolic network. Beyond its canonical role as a major nitrogen transport and storage molecule, asparagine also serves critical functions in plant immunity and tolerance to environmental stresses. This review systematically summarizes the characteristics [...] Read more.
Asparagine synthetase (AS) is a key enzyme in plant nitrogen metabolic network. Beyond its canonical role as a major nitrogen transport and storage molecule, asparagine also serves critical functions in plant immunity and tolerance to environmental stresses. This review systematically summarizes the characteristics of the core AS-mediated asparagine biosynthesis pathway and two other minor pathways in plants. It details the distribution of the AS gene family, protein structure, and evolutionary classification. The mechanisms governing AS expression are analyzed, revealing tissue-specific patterns and precise regulation by nitrogen availability, abiotic stresses, and exogenous hormones, mediated through an interactive network of cis-acting elements and transcription factors. Furthermore, the biological functions of AS are multifaceted: it influences plant biomass and nitrogen use efficiency by regulating nitrogen uptake, transport, and recycling during growth and development; it contributes to abiotic stress tolerance by synthesizing asparagine to maintain cellular osmotic balance and scavenge reactive oxygen species; and it indirectly enhances antibacterial and antiviral capacity by activating the SA signaling pathway and modulating programmed cell death. Current knowledge gaps remain regarding the crosstalk between AS-mediated signaling pathways, the upstream transcriptional regulatory network, and the balance between nitrogen utilization and disease resistance in crop breeding. Future research aimed at addressing these questions will provide a theoretical foundation and molecular targets for improving crop nitrogen use efficiency and breeding resistant cultivars. Full article
Show Figures

Figure 1

16 pages, 2516 KB  
Article
Responses of Soil Enzyme Activities and Microbial Community Structure and Functions to Cyclobalanopsis gilva Afforestation in Infertile Mountainous Areas of Eastern Subtropical China
by Shengyi Huang, Yafei Ding, Yonghong Xu, Yuequn Bao, Yukun Lin, Zhichun Zhou and Bin Wang
Forests 2026, 17(2), 154; https://doi.org/10.3390/f17020154 - 23 Jan 2026
Viewed by 71
Abstract
The effect of afforestation in infertile mountainous areas is closely related to the soil ecological environment. Soil enzyme activities and the structure and functions of microbial communities are core indicators reflecting soil quality. Clarifying the response patterns of the two to Cyclobalanopsis gilva [...] Read more.
The effect of afforestation in infertile mountainous areas is closely related to the soil ecological environment. Soil enzyme activities and the structure and functions of microbial communities are core indicators reflecting soil quality. Clarifying the response patterns of the two to Cyclobalanopsis gilva afforestation in infertile mountainous areas can provide a key scientific basis for targeted improvement of the cultivation efficiency of C. gilva plantations under different site conditions in the eastern subtropical region of China. In this study, 7-year-old C. gilva young forests in infertile mountainous areas and control woodland areas were selected in Shouchang Forest Farm, Jiande, Zhejiang Province, located in the subtropical region of China. Soil enzyme activities and microbial biomass in different soil layers, as well as metagenomes of rhizosphere and bulk soils, were determined to explore the effects and internal correlations of site conditions on soil enzyme activities and microbial community characteristics of C. gilva forests. The results showed that the activities of urease and catalase, as well as the content of microbial biomass nitrogen in the surface soil of infertile mountainous areas, were significantly lower than those in control woodland areas. The shared dominant phyla in the two types of sites included Proteobacteria and Acidobacteria, and the shared dominant genera included Bradyrhizobium. In addition, the relative abundances of three unclassified populations of Proteobacteria and functional genes related to cofactor and vitamin metabolism in the rhizosphere soil of infertile mountainous areas were significantly higher than those in control woodland areas. Meanwhile, the dominant microbial phyla in the rhizosphere soil of infertile mountainous areas had a closer correlation with soil enzyme activities and microbial biomass. This study clarified the ecological strategy of C. gilva young forests adapting to infertile mountainous areas: by increasing the relative abundances of functional genes related to cofactor and vitamin metabolism in rhizosphere microorganisms, promoting the enrichment of microorganisms associated with soil nitrogen cycling, and enhancing the correlations between dominant microbial phyla and soil enzyme activities and microbial biomass, the nitrogen resource limitation on soil microbial activity in infertile mountainous areas is balanced. This finding provides direct guidance for optimizing the afforestation and management techniques of C. gilva in infertile mountainous areas and has important practical value for promoting forest ecological restoration. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

22 pages, 2580 KB  
Article
Variation in Soil Microbial Carbon Utilization Patterns Along a Forest Successional Series in a Degraded Wetland of the Sanjiang Plain
by Zhaorui Liu, Wenmiao Pu, Kaiquan Zhang, Rongze Luo, Xin Sui and Mai-He Li
Diversity 2026, 18(1), 48; https://doi.org/10.3390/d18010048 - 16 Jan 2026
Viewed by 140
Abstract
The Sanjiang Plain hosts the largest freshwater wetland in Northeastern China and plays a critical role in regional climate stability. However, climate change and human activities have degraded the wetland, forming a successional gradient from the original flooded wetland to dry shrub and [...] Read more.
The Sanjiang Plain hosts the largest freshwater wetland in Northeastern China and plays a critical role in regional climate stability. However, climate change and human activities have degraded the wetland, forming a successional gradient from the original flooded wetland to dry shrub and forest vegetation with a lower ground water level. This degradation has altered soil microbial structure and functions, reducing ecological and socio-economic benefits. Along this successional gradient, we used Biolog-ECO plates combined with soil enzyme assays (catalase, urease, sucrase, and acid phosphatase) to assess the dynamics of microbial carbon metabolic activity, measured by average well color development (AWCD). The results showed a systematic decline in AWCD values with advancing succession, revealing a pronounced reduction in overall microbial metabolic activity during wetland degradation. This trend correlated with loss of soil moisture, organic carbon, and nitrogen nutrients. Microbial communities in early successional wetland stages (i.e., original natural wetland and wetland edge) preferred labile carbon sources (e.g., carbohydrates, amino acids), while forested stages favored relatively more structural (e.g., polymers, phenolic compounds). These findings indicate that vegetation succession regulates microbial carbon metabolism by modifying soil physicochemical properties, providing insights for wetland restoration. Full article
(This article belongs to the Special Issue Microbial Diversity in Different Environments)
Show Figures

Figure 1

31 pages, 4380 KB  
Article
Nitrogen-Enriched Nanobiochar Enhances Spinach Growth via Improved Nitrogen Retention and Uptake Mechanisms
by Kashaf, Sumera Anwar, Fahad Shafiq, Abida Kausar, Shahbaz Khan, Muhammad Ashraf and Syed Ahmed Shah
Nitrogen 2026, 7(1), 11; https://doi.org/10.3390/nitrogen7010011 - 13 Jan 2026
Viewed by 327
Abstract
The increasing demand for sustainable agriculture requires innovative strategies to enhance nitrogen use efficiency while minimizing environmental losses associated with conventional fertilizers. This study aimed to develop and compare ammonium chloride- and ammonium nitrate-modified nanobiochar as controlled-release nitrogen carriers and to elucidate their [...] Read more.
The increasing demand for sustainable agriculture requires innovative strategies to enhance nitrogen use efficiency while minimizing environmental losses associated with conventional fertilizers. This study aimed to develop and compare ammonium chloride- and ammonium nitrate-modified nanobiochar as controlled-release nitrogen carriers and to elucidate their effects on nitrogen retention, soil properties, and physiological nitrogen utilization in spinach (Spinacia oleracea L.). Nitrogen-modified nanobiochar was synthesized using ammonium chloride (NB-AC) and ammonium nitrate (NB-AN) at three nitrogen rates (0.03, 0.06, and 0.12 g N g−1 NB) and applied to soil at 1% (w/w). Soil properties, nutrient dynamics, and plant growth and physiological traits were analyzed after 15 and 30 days. Nitrogen modification significantly improved soil nitrogen retention and nutrient availability compared with unmodified nanobiochar. The highest nitrogen loading treatments (NB-AC3 and NB-AN3) notably improved spinach growth, photosynthetic efficiency, pigment content, nitrogen metabolism enzymatic activities, and accumulation of key metabolites (soluble sugars, flavonoids). Nitrogen-release assessments indicated a pronounced controlled-release with reduced nitrogen leaching and greater retention, particularly under NB-AN3. Overall, this study demonstrates that nitrogen-modified nanobiochar functions as an effective nitrogen carrier that enhances nitrogen utilization and growth. These findings provide mechanistic insights into its potential as a sustainable alternative to conventional nitrogen fertilizers. Full article
Show Figures

Figure 1

28 pages, 2998 KB  
Article
Transcriptomic Insights into Metabolic Reprogramming and Exopolysaccharide Synthesis in Porphyridium purpureum Under Gradual Nitrogen Deprivation
by Maurean Guerreiro, Coline Emmanuel, Céline Dupuits, Christine Gardarin, Said Mouzeyar, João Varela, Jane Roche and Céline Laroche
Mar. Drugs 2026, 24(1), 40; https://doi.org/10.3390/md24010040 - 13 Jan 2026
Viewed by 382
Abstract
Porphyridium species are known red microalgae for producing valuable bioactive compounds such as sulfated exopolysaccharides (EPS) with diverse industrial biomedical applications due to their functional and rheological properties. Recent studies have investigated how abiotic stresses, particularly nitrogen deprivation, affect Porphyridium’s metabolic regulation [...] Read more.
Porphyridium species are known red microalgae for producing valuable bioactive compounds such as sulfated exopolysaccharides (EPS) with diverse industrial biomedical applications due to their functional and rheological properties. Recent studies have investigated how abiotic stresses, particularly nitrogen deprivation, affect Porphyridium’s metabolic regulation and EPS production through transcriptomic analysis. Still, the mechanisms governing EPS biosynthesis and the involvement of carbohydrate-activated enzymes (CAZymes) remain poorly understood. This study investigated the progressive effects of nitrate consumption on the unicellular red alga, P. purpureum, by integrating physiological, biochemical, and transcriptomic analyses through RNA-Seq, further validated by RT-qPCR. P. purpureum displayed a gradual, phase-dependent metabolic response to progressive nitrogen stress. EPS release coincided with the decline in nitrate uptake, linking nitrogen availability to carbon redirection towards polysaccharide secretion. Transcriptomic data revealed global metabolic downregulation with targeted upregulation of stress-responsive, carbohydrate catabolic, and nucleotide–sugar synthesis pathways, including the upregulation of CAZyme families GT4, GT8, and GT77. Our results give insights into the coordinated nitrogen and carbon metabolic regulation underlying polysaccharide biosynthesis, while opening future perspectives on enzyme compartmentalization and regulatory flux distribution under nitrogen stress in P. purpureum. Full article
(This article belongs to the Special Issue Polysaccharides from Marine Environment)
Show Figures

Graphical abstract

17 pages, 1494 KB  
Article
Polysaccharide Utilization and Adhesion Enable the Genome-Streamlined Opacimonas immobilis to Adapt to the Diatom Phycosphere
by Xiaoyu Yang, Xuanru Lin, Jianmin Xie, Runlin Cai, Guanjing Cai and Hui Wang
Microorganisms 2026, 14(1), 139; https://doi.org/10.3390/microorganisms14010139 - 8 Jan 2026
Viewed by 257
Abstract
Heterotrophic bacteria and microalgae are key regulators of marine biogeochemical cycles. The phycosphere, a nutrient-rich microenvironment surrounding microalgae, serves as a crucial interface for bacterial–algal interactions. Our previous work identified Opacimonas immobilis LMIT016T, a phycosphere isolate from the diatom Actinocyclus curvatulus [...] Read more.
Heterotrophic bacteria and microalgae are key regulators of marine biogeochemical cycles. The phycosphere, a nutrient-rich microenvironment surrounding microalgae, serves as a crucial interface for bacterial–algal interactions. Our previous work identified Opacimonas immobilis LMIT016T, a phycosphere isolate from the diatom Actinocyclus curvatulus that possesses the smallest genome within the Alteromonadaceae family. However, its adaptation mechanisms to the phycosphere remain unclear, particularly given its extensive genome streamlining, a process involving the selective loss of non-essential and energetically costly genes to enhance fitness in nutrient-specific niches. Here, the co-cultivation experiments demonstrated significant mutual growth promotion between LMIT016T and its host microalgae, with the bacterium forming dense attachments on diatom surfaces. Genomic analysis revealed that in addition to loss of motility-related genes, the strain exhibits a substantial reduction in c-di-GMP signaling components, including both synthases and receptors. Conversely, LMIT016T harbors numerous genes essential for extracellular polysaccharide (EPS) biosynthesis and adhesion, supporting long-term attachment and biofilm formation. Other retained genes encode pathways for nutrient acquisition, stress response, and phosphate and nitrogen metabolism, reflecting its adaptations to the nutrient-rich phycosphere. Furthermore, the genome of LMIT016T encodes two polysaccharide utilization loci (PULs) targeting laminarin and α-1,4-glucans, whose functions were experimentally validated by the transcriptional induction of the corresponding carbohydrate-active enzyme genes. These findings indicate that this strain counterbalances genome reduction by enhancing its attachment capabilities and metabolic specialization on algal polysaccharides, potentially facilitating stable association with diatom cells. Our results suggest that genome streamlining may represent an alternative ecological strategy in the phycosphere, highlighting a potential evolutionary trade-off between metabolic efficiency and niche specialization. Full article
Show Figures

Figure 1

22 pages, 2478 KB  
Article
Whole-Genome Sequencing and Analysis Reveals Plant Growth-Promoting Properties and Biocontrol Potential of the Crotalaria retusa Endophytic Bacillus velezensis Strain G2T39
by Evrad Sausthène Seka Ahoty, Zaka Ghislaine Claude Kouadjo-Zézé, Romain Kouakou Fossou, Anicet Théodore Ebou Ediman, Espérance Pierre-Marie Kéran Boga and Adolphe Zézé
Microorganisms 2026, 14(1), 123; https://doi.org/10.3390/microorganisms14010123 - 7 Jan 2026
Viewed by 367
Abstract
Bacillus velezensis strain G2T39 is an endophytic bacterium previously isolated from Crotalaria retusa L., with evidenced biocontrol activity against Fusarium oxysporum f. sp. Cubense and Fusarium graminearum. In this study, it was shown that this strain also exhibited biocontrol activity against Colletotrichum [...] Read more.
Bacillus velezensis strain G2T39 is an endophytic bacterium previously isolated from Crotalaria retusa L., with evidenced biocontrol activity against Fusarium oxysporum f. sp. Cubense and Fusarium graminearum. In this study, it was shown that this strain also exhibited biocontrol activity against Colletotrichum gloeosporioides and Fusarium oxysporum f. sp. Vasinfectum, two important crop pathogens in tropical zones. Comprehensive phylogenetic and genomic analyses were performed to further characterize this strain. The genome of B. velezensis G2T39 consists of a single circular chromosome of 4,040,830 base pairs, with an average guanine–cytosine (GC) content of 46.35%. Both whole-genome-based phylogeny and average nucleotide identity (ANI) confirmed its identity as B. velezensis, being closely related to biocontrol and plant growth promotion Gram-positive model strains such as B. velezensis FZB42. Whole-genome annotation revealed 216 carbohydrate-active enzymes and 14 gene clusters responsible for secondary metabolite production, including surfactin, macrolactin, bacillaene, fengycin, bacillibactin, bacilysin, and difficidin. Genes involved in plant defense mechanisms were also identified. Additionally, G2T39 genome harbors multiple plant growth-promoting traits, such as genes associated with nitrogen metabolism (nifU, nifS, nifB, fixB, glnK) and a putative phosphate metabolism system (phyC, pst glpQA, ugpB, ugpC). Additional genes linked to biofilm formation, zinc solubilization, stress tolerance, siderophore production and regulation, nitrate reduction, riboflavin and nicotinamide synthesis, lactate metabolism, and homeostasis of potassium and magnesium were also identified. These findings highlight the genetic basis underlying the biocontrol capacity and plant growth-promoting properties of B. velezensis G2T39 and support its potential application as a sustainable bioinoculant in agriculture. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

15 pages, 3005 KB  
Article
Nitrogen-Doped Biochar Derived from Starch for Enzyme-Free Colorimetric Detection of Uric Acid in Human Body Fluids
by Feihua Ye, Fan Chen, Yunhong Zhang, Yunwei Huang, Shasha Liu, Jiangfei Cao and Yanni Wu
Polymers 2026, 18(1), 146; https://doi.org/10.3390/polym18010146 - 5 Jan 2026
Viewed by 342
Abstract
Uric acid (UA), a key end-product of human purine metabolism, serves as an important biomarker linked to multiple disorders. This study developed a novel enzyme-free colorimetric sensing platform based on starch-derived nitrogen-doped biochar (NC) for the highly sensitive and selective detection of UA [...] Read more.
Uric acid (UA), a key end-product of human purine metabolism, serves as an important biomarker linked to multiple disorders. This study developed a novel enzyme-free colorimetric sensing platform based on starch-derived nitrogen-doped biochar (NC) for the highly sensitive and selective detection of UA in human body fluids. The NC material with a high specific surface area and abundant nitrogen active sites was prepared via a two-step strategy involving hydrothermal synthesis followed by high-temperature pyrolysis, using starch and urea as raw materials. Under mild conditions, the NC effectively catalyzes dissolved oxygen to produce reactive oxygen species (·O2 and 1O2), which oxidize 3,3′,5,5′-tetramethylbenzidine (TMB) to a blue-colored oxidation product (TMBox). The presence of UA reduces TMBox to colorless TMB, leading to a measurable decrease in absorbance at 652 nm and enabling quantitative UA detection. Key reaction conditions were systematically optimized. Material characterization and mechanistic investigations confirmed the catalytic performance of the NC. The method demonstrated a wide linear response from 10 to 500 μmol·L−1, with a detection limit of 4.87 μmol·L−1, and demonstrated outstanding selectivity, stability, and reproducibility. Practical application in human serum and urine samples yielded results consistent with clinical reference ranges, and spike-recovery rates ranged from 95.5% to 103.6%, indicating great potential for real-sample analysis. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

20 pages, 3060 KB  
Article
Root Growth Plasticity and Nitrogen Metabolism Underpin Prolonged Cold Stress Tolerance at Tillering Stage in Japonica Rice
by Weibin Gong, Jian Jin, Wenhua Zhou, Yan Jia, Shenyan Fu, Zhijie Luo, Jinyi Zhao, Chenchen Cao, Jingguo Wang, Hongwei Zhao and Caixian Tang
Agronomy 2026, 16(1), 101; https://doi.org/10.3390/agronomy16010101 - 30 Dec 2025
Viewed by 341
Abstract
Cold stress impairs crop productivity through cascading inhibition of root growth, nitrogen (N) metabolism, and photosynthesis, yet the systematic linkages among these physiological disruptions remain poorly understood. It is crucial to elucidate the mechanisms by which cold-tolerant varieties maintain root growth and N-metabolizing [...] Read more.
Cold stress impairs crop productivity through cascading inhibition of root growth, nitrogen (N) metabolism, and photosynthesis, yet the systematic linkages among these physiological disruptions remain poorly understood. It is crucial to elucidate the mechanisms by which cold-tolerant varieties maintain root growth and N-metabolizing enzyme homeostasis. This two-year field study investigated how cold duration at the tillering stage impacted root traits, N metabolism, photosynthesis, and their relationships with the yield of two japonica rice varieties differing in cold tolerance. A cold-tolerant (Dongnong 428) and a cold-sensitive variety (Songjing 10) were grown in a paddy field for two consecutive growing seasons in 2021 and 2022. Cold water (15 °C) was irrigated for 0 (denoted as D0), 5 (D5), 10 (D10), and 15 days (D15) during the tillering stage. Compared to D0, cold-water treatments significantly reduced root traits and total dry weight of both varieties. Cold stress significantly impaired N metabolism and photosynthesis, leading to significant reductions in N efficiency. The magnitude of these changes turned to greater with cold-water treatment duration. Dongnong 428 showed stronger cold tolerance, attributed to its maintenance of superior root traits and photosynthetic performance, as well as higher activities of enzymes in the roots, which sustained N assimilation and utilization. These factors primarily contributed to Dongnong 428 achieving 11.6–20.9% higher yields compared to Songjing 10. Cold stress during the tillering stage disrupts root growth and photosynthesis, impairs plant N acquisition ability, resulting in substantial yield loss. Cold-tolerant varieties maintain superior root morphology/functionality and photosynthetic performance. Full article
(This article belongs to the Special Issue Evaluating Extreme Temperature Impacts on Crop Growth and Physiology)
Show Figures

Figure 1

18 pages, 21514 KB  
Article
Ratios of Nitrogen Forms for Substrate-Cultivated Blueberry
by Dongshuang Zhao, Xiuhong Xie, Jiacheng Liu, Keyi Dong, Haiyue Sun, Fanfan Chen, Li Chen and Yadong Li
Horticulturae 2026, 12(1), 45; https://doi.org/10.3390/horticulturae12010045 - 30 Dec 2025
Viewed by 520
Abstract
Nitrogen (N) is the most critical element influencing plant growth and development. Different plant species exhibit varying preferences for different N forms. In order to identify an appropriate nutrient solution N formula for optimizing blueberry substrate cultivation, we investigated the effects of seven [...] Read more.
Nitrogen (N) is the most critical element influencing plant growth and development. Different plant species exhibit varying preferences for different N forms. In order to identify an appropriate nutrient solution N formula for optimizing blueberry substrate cultivation, we investigated the effects of seven different NH4+-N/NO3-N ratios on the growth characteristics, photosynthetic physiology, mineral element content, enzymes related to N metabolism, and fruit quality, with ‘F32’ used as the experimental material and water served as controls. The results demonstrated that both the aboveground and belowground parts of blueberry plants exhibited enhanced growth when NH4+-N was used as the primary N source in the nutrient solution, compared to single NH4+-N or a high NO3-N ratio. The most significant growth promotion occurred when the NH4+-N to NO3-N ratio was 7:3. When NH4+-N and NO3-N are concurrently supplied in the nutrient solution, the processes of NO3 reduction, the GS-GOGAT cycle, and NH4+ assimilation are significantly enhanced during nitrogen metabolism. Thereby, providing a theoretical foundation for optimizing nutrient solution management in substrate-cultivated blueberry. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

21 pages, 6398 KB  
Article
Integration of Non-Invasive Micro-Test Technology and 15N Tracing Reveals the Impact of Nitrogen Forms at Different Concentrations on Respiratory and Primary Metabolism in Glycyrrhiza uralensis
by Ying Chen, Yisu Cao, Yuan Jiang, Yanjun Wang, Zhengru Zhang, Yuanfan Zhang and Zhirong Sun
Int. J. Mol. Sci. 2026, 27(1), 317; https://doi.org/10.3390/ijms27010317 - 27 Dec 2025
Viewed by 279
Abstract
Glycyrrhiza uralensis is a highly valued medicinal species worldwide. However, a paradox arises in its cultivation in that high nitrogen fertilization boosts yield at the expense of root quality, a problem linked to nitrogen’s regulation of tricarboxylic acid (TCA) cycle-driven respiration. It remains [...] Read more.
Glycyrrhiza uralensis is a highly valued medicinal species worldwide. However, a paradox arises in its cultivation in that high nitrogen fertilization boosts yield at the expense of root quality, a problem linked to nitrogen’s regulation of tricarboxylic acid (TCA) cycle-driven respiration. It remains unclear how different nitrogen forms coordinate respiratory and primary metabolism. We examined the regulatory mechanisms of nitrate (NO3) versus ammonium (NH4+) on these processes in cultivated G. uralensis by supplying seedlings with varying concentrations of K15NO3 or (15NH4)2SO4 in a modified Hoagland solution (HNS). Using non-invasive micro-test technology (NMT) and 15N tracing, we found that G. uralensis employs distinct nitrogen acquisition strategies: sustaining uptake at optimal NH4+ and low-to-moderate NO3, while declining uptake under high NO3. These strategies drove form-specific differences in the activity of key nitrogen assimilation enzymes, nitrate reductase and nitrite reductase (NR/NiR), as well as glutamine synthetase and glutamate synthase (GS/GOGAT), and subsequent glutamate and glutamine accumulation. Ammonium nutrition enhanced primary ammonia assimilation and gamma-aminobutyric acid (GABA) metabolism, leading to greater glutamate and endogenous GABA levels. In contrast, nitrate nutrition preferentially stimulated the TCA cycle, resulting in higher accumulation of α-ketoglutarate (KGA) and succinate. The concomitant increase in GABA catabolism supported this nitrogen-responsive respiratory metabolism, acting as a compensatory mechanism to maintain KGA homeostasis. Our findings inform nitrogen form strategies for G. uralensis cultivation. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 1390 KB  
Article
Heterotrophic Soil Microbes at Work: Short-Term Responses to Differentiated Fertilization Inputs
by Florin Aonofriesei, Alina Giorgiana Brotea (Andriescu) and Enuță Simion
Biology 2026, 15(1), 41; https://doi.org/10.3390/biology15010041 - 26 Dec 2025
Viewed by 346
Abstract
The interaction between organic and inorganic nutrients, bacterial communities, and soil fertility has been well documented over time. Conventional agricultural systems heavily utilize both inorganic and organic fertilizers, each exerting distinct effects on soil microbial dynamics and plant growth. The objective of our [...] Read more.
The interaction between organic and inorganic nutrients, bacterial communities, and soil fertility has been well documented over time. Conventional agricultural systems heavily utilize both inorganic and organic fertilizers, each exerting distinct effects on soil microbial dynamics and plant growth. The objective of our experiments was to identify the most effective fertilization strategy for improving the biological quality of a microbiologically impoverished and low-productivity soil. To this end, four fertilization strategies were evaluated: (i) organic fertilizers characterized by a high content of organic carbon (Fertil 4-5-7—variant 1); (ii) organic fertilizers with 12% organic nitrogen from proteins (Bio Ostara N—variant 2) (iii) combined inorganic–organic fertilizers (P35 Bio—variant 3) and (iv) mineral (inorganic) fertilizers (BioAktiv—variant V4). This study aimed to assess the short-term effects of fertilizers with varying chemical compositions on the density of cultivable heterotrophic bacteria and their associated dehydrogenase (DH) activity in a petrocalcic chernozem soil containing pedogenic carbonates. Soil sampling was conducted according to a randomized block design, comprising four replicates per treatment (control plus four fertilizer types). The enumeration of cultivable bacteria was performed using Nutrient Agar and A2R Agar media, whereas dehydrogenase activity (DHA) was quantified based on the reduction of 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) to 1,3,5-triphenyl-tetrazolium formazan (TPF) by bacterial dehydrogenase enzymes. Marked differences were observed in both parameters between the plots amended with inorganic fertilizers and those treated with organic fertilizers, as well as among the organic fertilizer treatments of varying composition. The most pronounced increases in both bacterial density and dehydrogenase activity (DHA) were recorded in the plots receiving the fertilizer with a high organic nitrogen content. In this treatment, the maximum bacterial population density reached 6.25 log10 CFU g−1 dry soil after approximately two months (May), followed by a significant decline starting in July. In contrast, DHA exhibited a more rapid response, reaching its peak in April (42.75 µg TPF g−1 soil), indicating an earlier DHA activation of microbial metabolism. This temporal lag between the two parameters suggests that enzymatic activity responded more swiftly to the nutrient inputs than did microbial biomass proliferation. For the other two organic fertilizer variants, bacterial population dynamics were broadly similar, with peak densities recorded in June, ranging from 5.98 log10 CFU g−1 soil (V3) to 6.03 log10 CFU g−1 soil (V1). A comparable trend was observed in DHA: in V3, maximum DHA was attained in June (30 µg TPF g−1 soil), after which it remained relatively stable, whereas in V1, it peaked in June (24.05 µg TPF g−1 soil) and subsequently declined slightly toward the end of the experimental period. Overall, the temporal dynamics of bacterial density and DHA demonstrated a strong dependence on the quality and biodegradability of the organic matter supplied by each fertilizer. Both parameters were consistently lower under inorganic fertilization compared with organic treatments, suggesting that the observed increases in microbial density and activity were primarily mediated by the enhanced availability of organic substrates. The relationship between the density of culturable heterotrophic bacteria and dehydrogenase (DH) activity was strongly positive (r = 0.79), indicating a close functional linkage between bacterial density and oxidative enzyme activity. This connection suggests that the culturable fraction of the heterotrophic microbial community plays a key role in the early stages of organic matter mineralization derived from the applied fertilizers, particularly in the decomposition of easily degradable substrates. Full article
(This article belongs to the Special Issue The Application of Microorganisms and Plants in Soil Improvement)
Show Figures

Figure 1

14 pages, 3086 KB  
Article
Developmental and Stress-Mediated Transcriptional Shifts in Riboflavin Metabolism Pathway in Arabidopsis
by Dikran Tsitsekian, Panagiota Mylona, Efstratios Kamargiakis, Stamatis Rigas and Gerasimos Daras
Genes 2026, 17(1), 16; https://doi.org/10.3390/genes17010016 - 25 Dec 2025
Viewed by 408
Abstract
Background: Flavin cofactors, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), are indispensable for plant metabolism, supporting photosynthesis, photorespiration, mitochondrial electron transport, nitrogen assimilation, and cellular redox balance. Both cofactors derive from riboflavin (vitamin B2), which plants synthesize de novo, [...] Read more.
Background: Flavin cofactors, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), are indispensable for plant metabolism, supporting photosynthesis, photorespiration, mitochondrial electron transport, nitrogen assimilation, and cellular redox balance. Both cofactors derive from riboflavin (vitamin B2), which plants synthesize de novo, unlike animals, which rely on dietary intake. While the riboflavin biosynthesis pathway has been biochemically well-characterized, its transcriptional regulation and cellular organization remain poorly understood. Methods: Here, using large-scale transcriptomic datasets as well as co-expression and cis-element analyses, we systematically investigated the expression dynamics of riboflavin metabolism genes in Arabidopsis thaliana. In addition, HPLC was employed to monitor flavin level fluctuations in plants under abiotic stresses. Results: Most genes displayed strong expression in photosynthetic and reproductive tissues, consistent with elevated metabolic demands for flavins in redox reactions and energy metabolism. Under osmotic stress, RIBA1, RIBA3, PYRD, PYRR, COS1/LS, and RS, genes encoding enzymes involved in the early and intermediate steps of riboflavin biosynthesis were transcriptionally downregulated. In contrast, RIBA2, FHY1/PYRP1 and FMN/FHY were upregulated, whereas FADS1 and NUDX23, genes encoding enzymes responsible for interconversion between FMN and FAD, were suppressed. Gene expression responses are consistent with the maintenance of flavin homeostasis, affecting flavin level changes under abiotic stress. Conclusions: This study establishes a comprehensive framework for the transcriptional regulation of flavin biosynthesis in plants. The findings reveal stress-responsive reprogramming of flavin metabolism and identify promising strategies for engineering crops for biofortification, metabolic efficiency, and stress resilience. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

24 pages, 3137 KB  
Article
Genome-Resolved Metagenomics of Microbes from the Atoud Dam, Southwestern Saudi Arabia
by Fatmah M. Alqahtani
Diversity 2026, 18(1), 16; https://doi.org/10.3390/d18010016 - 25 Dec 2025
Viewed by 466
Abstract
Artificial freshwater bodies receive elemental inputs and face environmental stressors, posing a risk of wetland pollution that could threaten ecological health. In such an inland backwater, its microbial diversity and functional potentials remain uncharacterized. Here, shotgun metagenomic sequencing was performed on environmental DNA [...] Read more.
Artificial freshwater bodies receive elemental inputs and face environmental stressors, posing a risk of wetland pollution that could threaten ecological health. In such an inland backwater, its microbial diversity and functional potentials remain uncharacterized. Here, shotgun metagenomic sequencing was performed on environmental DNA samples collected from the Atoud Dam reservoir in southwestern Saudi Arabia. The taxonomic assignments of the sequencing reads identified Pseudomonadota and Actinomycetota as the dominant phyla, while the most prevalent species was Microcystis aeruginosa. Binning assembled contigs recovered 30 metagenome-assembled genomes representing 11 phyla, suggesting potentially novel bacterial taxa and metabolic functions. Functional analysis of gene-coding sequences identified genes associated with mobile genetic elements and xenobiotic biodegradation pathways as the main factors driving the spread of antibiotic resistance genes. Additionally, a community-wide analysis of enzyme-encoding genes involved in regulating the carbon, nitrogen, and sulfur cycles revealed significant annotation of denitrification and thiosulfate oxidation pathways under anoxic conditions, suggesting early signs of eutrophication and a potential risk of algal blooms. Overall, our study provides detailed insights into the genomic capabilities of the microbial community in this previously understudied ecosystem and establishes baseline data for future assessments of microbial biodiversity in other, less-explored ecosystems, thereby facilitating more effective biomonitoring and discovery. Full article
(This article belongs to the Special Issue Microbial Community Dynamics and Ecological Functions in Wetlands)
Show Figures

Graphical abstract

Back to TopTop