Ratios of Nitrogen Forms for Substrate-Cultivated Blueberry
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Design
2.2. Determination of Shoot Growth and Biomass
2.3. Determination of Belowground Growth and Biomass
2.4. Determination of Photosynthetic Characteristic Parameters
2.5. Determination of Key Enzyme Activities in Leaves During Nitrogen Metabolism
2.6. Determination of Mineral Elements in Leaves
2.7. Determination of Fruit Quality
2.8. Data Processing
3. Results
3.1. Effects of Varying Nitrogen Ratios on Growth and Development of Blueberry in Substrate Cultivation
3.2. Effects of Varying Nitrogen Ratios on Photosynthetic Characteristics of Blueberry Leaves in Substrate Cultivation
3.3. Effects of Varying Nitrogen Ratios on the Activities of Key Enzymes Involved in Nitrogen Metabolism in Blueberry Leaves Under Substrate Cultivation
3.4. Effects of Varying Nitrogen Ratios on Mineral Element Composition of Blueberry Leaves in Substrate Cultivation
3.5. Effects of Varying Nitrogen Ratios on the Fruit Size and Maturity of Blueberries in Substrate Cultivation
4. Discussion
4.1. The Form of Nitrogen Significantly Influences Enzyme Activity as Well as Plant Growth and Development
4.2. A Higher Proportion of NH4+-N Enhances the Uptake of Mineral Elements in Plants
4.3. A Higher Proportion of NH4+-N Enhances the Photosynthetic Characteristics of Plants
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jung, Y.S.; Kwak, I.A.; Lee, S.G.; Cho, H.; Cho, Y.; Kim, D. Influence of Production Systems on Phenolic Characteristics and Antioxidant Capacity of Highbush Blueberry Cultivars. J. Food Sci. 2021, 86, 2949–2961. [Google Scholar] [CrossRef] [PubMed]
- Voogt, W.; Van Dijk, P.; Douven, F.; Van Der Maas, R. Development of a Soilless Growing System for Blueberries (Vaccinium Corymbosum): Nutrient Demand and Nutrient Solution. Acta Hortic. 2014, 1017, 215–221. [Google Scholar] [CrossRef]
- Fang, Y.; Nunez, G.; Fisher, P.; Munoz, P.R. Effect of Container Size, Substrate Composition, and Genotype on Growth and Fruit Quality of Young Southern Highbush Blueberry in a Container-Based Intensive Production System. Sci. Hortic. 2022, 302, 111149. [Google Scholar] [CrossRef]
- Fang, Y.; Nunez, G.H.; Silva, M.N.D.; Phillips, D.A.; Munoz, P.R. A Review for Southern Highbush Blueberry Alternative Production Systems. Agronomy 2020, 10, 1531. [Google Scholar] [CrossRef]
- Yang, H.; Duan, Y.; Wei, Z.; Wu, Y.; Zhang, C.; Wu, W.; Lyu, L.; Li, W. Integrated Physiological and Metabolomic Analyses Reveal the Differences in the Fruit Quality of the Blueberry Cultivated in Three Soilless Substrates. Foods 2022, 11, 3965. [Google Scholar] [CrossRef]
- Liu, S.; Qiang, X.; Liu, H.; Han, Q.; Yi, P.; Ning, H.; Li, H.; Wang, C.; Zhang, X. Effects of Nutrient Solution Application Rates on Yield, Quality, and Water–Fertilizer Use Efficiency on Greenhouse Tomatoes Using Grown-in Coir. Plants 2024, 13, 893. [Google Scholar] [CrossRef] [PubMed]
- Bryla, D.R.; Strik, B.C. Nutrient Requirements, Leaf Tissue Standards, and New Options for Fertigation of Northern Highbush Blueberry. HortTechnology 2015, 25, 464–470. [Google Scholar] [CrossRef]
- Bryla, D.R.; Machado, R.M.A. Comparative Effects of Nitrogen Fertigation and Granular Fertilizer Application on Growth and Availability of Soil Nitrogen during Establishment of Highbush Blueberry. Front. Plant Sci. 2011, 2, 46. [Google Scholar] [CrossRef]
- Ito, T.; Tanaka-Oda, A.; Masumoto, T.; Akatsuki, M.; Makita, N. Different Relationships of Fine Root Traits with Root Ammonium and Nitrate Uptake Rates in Conifer Forests. J. For. Res. 2023, 28, 25–32. [Google Scholar] [CrossRef]
- Fang, Y.; Williamson, J.; Darnell, R.; Li, Y.; Liu, G. Nitrogen Uptake and Allocation at Different Growth Stages of Young Southern Highbush Blueberry Plants. HortScience 2017, 52, 905–909. [Google Scholar] [CrossRef]
- Darnell, R.L.; Casamali, B.; Williamson, J.G. Nutrient Assimilation in Southern Highbush Blueberry and Implications for the Field. HortTechnology 2015, 25, 460–463. [Google Scholar] [CrossRef]
- Korcak, R.F. The Importance of Calcium and Nitrogen Source in Fruit Tree Nutrition. Acta Hortic. 1980, 92, 267–278. [Google Scholar] [CrossRef]
- Wang, P.; Yang, L.; Sun, X.; Shi, W.; Dong, R.; Wu, Y.; Mi, G. Lateral Root Elongation in Maize Is Related to Auxin Synthesis and Transportation Mediated by N Metabolism under a Mixed NO3− and NH4+ Supply. J. Integr. Agric. 2024, 23, 1048–1060. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, T.; Zhang, J.; Lei, W.; Zhao, L.; Wang, S.; Shi, M.; Wei, M. Low Nitrogen Stress Promotes Root Nitrogen Uptake and Assimilation in Strawberry: Contribution of Hormone Networks. Horticulturae 2023, 9, 249. [Google Scholar] [CrossRef]
- Zhu, Y.; Qi, B.; Hao, Y.; Liu, H.; Sun, G.; Chen, R.; Song, S. Appropriate NH4+/NO3− Ratio Triggers Plant Growth and Nutrient Uptake of Flowering Chinese Cabbage by Optimizing the pH Value of Nutrient Solution. Front. Plant Sci. 2021, 12, 656144. [Google Scholar] [CrossRef]
- Liu, G.; Du, Q.; Li, J. Interactive Effects of Nitrate-Ammonium Ratios and Temperatures on Growth, Photosynthesis, and Nitrogen Metabolism of Tomato Seedlings. Sci. Hortic. 2017, 214, 41–50. [Google Scholar] [CrossRef]
- Salazar-Gutiérrez, M.R.; Lawrence, K.; Coneva, E.D.; Chaves-Córdoba, B. Photosynthetic Response of Blueberries Grown in Containers. Plants 2023, 12, 3272. [Google Scholar] [CrossRef]
- Cao, X.; Li, W.; Wang, P.; Ma, Z.; Mao, J.; Chen, B. New Insights into MdSPS4-Mediated Sucrose Accumulation under Different Nitrogen Levels Revealed by Physiological and Transcriptomic Analysis. Int. J. Mol. Sci. 2022, 23, 16073. [Google Scholar] [CrossRef]
- Throop, P.; Hanson, E. Effects of Dicyandiamide on Blueberry Uptake and Soil Transformations of Nitrogen. HortScience 1995, 30, 784E. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, T.; Yu, S.; Zhou, C.; Teng, A.; Lei, L.; Li, F. Optimizing the Mulching Pattern and Nitrogen Application Rate to Improve Maize Photosynthetic Capacity, Yield, and Nitrogen Fertilizer Utilization Efficiency. Plants 2024, 13, 1241. [Google Scholar] [CrossRef] [PubMed]
- Poonnachit, U.; Darnell, R.L. 624 Nitrate and Iron Reductase Activities in Vaccinium Species. HortScience 2000, 35, 505A. [Google Scholar] [CrossRef]
- Merhaut, D.J.; Darnell, R.L. Nitrate Reductase Activity in Leaves and Roots of Two Blueberry Species. HortScience 1996, 31, 664a. [Google Scholar] [CrossRef]
- Rizwan, M.; Usman, K.; Alsafran, M.; Jabri, H.A.; Samreen, T.; Saleem, M.H.; Tu, S. Nickel Toxicity Interferes with NO3−/NH4+ Uptake and Nitrogen Metabolic Enzyme Activity in Rice (Oryza sativa L.). Plants 2022, 11, 1401. [Google Scholar] [CrossRef]
- Fontaine, J.-X.; Tercé-Laforgue, T.; Armengaud, P.; Clément, G.; Renou, J.-P.; Pelletier, S.; Catterou, M.; Azzopardi, M.; Gibon, Y.; Lea, P.J.; et al. Characterization of a NADH-Dependent Glutamate Dehydrogenase Mutant of Arabidopsis Demonstrates the Key Role of This Enzyme in Root Carbon and Nitrogen Metabolism. Plant Cell 2012, 24, 4044–4065. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Z. Experimental Techniques in Plant Physiology, 2nd ed.; Jilin University Press: Changchun, China, 2008. [Google Scholar]
- Zhang, H.; Zhang, X.; Xiao, J. Epigenetic Regulation of Nitrogen Signaling and Adaptation in Plants. Plants 2023, 12, 2725. [Google Scholar] [CrossRef]
- Nejamkin, A.; Del Castello, F.; Lamattina, L.; Foresi, N.; Correa Aragunde, N. Redox Regulation in Primary Nitrate Response: Nitric Oxide in the Spotlight. Plant Physiol. Biochem. 2024, 210, 108625. [Google Scholar] [CrossRef]
- Zhao, M.; Gao, Z.; Kuang, C.; Chen, X. Partial Root-Zone Drying Combined with Nitrogen Treatments Mitigates Drought Responses in Rice. Front. Plant Sci. 2024, 15, 1381491. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, K.; Xie, J.; Liu, J.; Qiao, Z.; Tan, P.; Peng, F. Ammonium-Nitrate Mixtures Dominated by NH4+-N Promote the Growth of Pecan (Carya illinoinensis) through Enhanced N Uptake and Assimilation. Front. Plant Sci. 2023, 14, 1186818. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hu, B.; Chu, C. Nitrogen Assimilation in Plants: Current Status and Future Prospects. J. Genet. Genom. 2022, 49, 394–404. [Google Scholar] [CrossRef]
- Du, S.; Zhang, R.; Zhang, P.; Liu, H.; Yan, M.; Chen, N.; Xie, H.; Ke, S. Elevated CO2-Induced Production of Nitric Oxide (NO) by NO Synthase Differentially Affects Nitrate Reductase Activity in Arabidopsis Plants under Different Nitrate Supplies. J. Exp. Bot. 2016, 67, 893–904. [Google Scholar] [CrossRef] [PubMed]
- Calatayud, A.; Roca, D.; Gorbe, E.; Martínez, P.F. Light Acclimation in Rose (Rosa hybrida Cv. Grand Gala) Leaves after Pruning: Effects on Chlorophyll a Fluorescence, Nitrate Reductase, Ammonium and Carbohydrates. Sci. Hortic. 2007, 111, 152–159. [Google Scholar] [CrossRef]
- Chamizo-Ampudia, A.; Sanz-Luque, E.; Llamas, A.; Galvan, A.; Fernandez, E. Nitrate Reductase Regulates Plant Nitric Oxide Homeostasis. Trends Plant Sci. 2017, 22, 163–174. [Google Scholar] [CrossRef]
- Fortunato, S.; Nigro, D.; Lasorella, C.; Marcotuli, I.; Gadaleta, A.; De Pinto, M.C. The Role of Glutamine Synthetase (GS) and Glutamate Synthase (GOGAT) in the Improvement of Nitrogen Use Efficiency in Cereals. Biomolecules 2023, 13, 1771. [Google Scholar] [CrossRef]
- Sellers, B.A.; Smeda, R.J.; Li, J. Glutamine Synthetase Activity and Ammonium Accumulation Is Influenced by Time of Glufosinate Application. Pestic. Biochem. Physiol. 2004, 78, 9–20. [Google Scholar] [CrossRef]
- Di, D.; Wang, S.; Chen, G.; Wang, Q.; Zhang, J.; Niu, X.; Huang, D. NH4+-N and Low Ratios of NH4+-N/NO3−-N Promote the Remediation Efficiency of Salix Linearistipularis in Cd- and Pb-Contaminated Soil. Forests 2024, 15, 419. [Google Scholar] [CrossRef]
- Xu, J.; Fang, Y.; Tavakkoli, E.; Pan, X.; Liao, F.; Chen, W.; Guo, W. Preferential Ammonium: Nitrate Ratio of Blueberry Is Regulated by Nitrogen Transport and Reduction Systems. Sci. Hortic. 2021, 288, 110345. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, J.; Dawuda, M.M.; Xie, J.; Yu, J.; Li, J.; Zhang, X.; Tang, C.; Wang, C.; Gan, Y. Appropriate Ammonium-Nitrate Ratio Improves Nutrient Accumulation and Fruit Quality in Pepper (Capsicum annuum L.). Agronomy 2019, 9, 683. [Google Scholar] [CrossRef]
- Wang, C.; Wu, G.; Wang, H.; Wang, J.; Yuan, M.; Guo, X.; Liu, C.; Xing, S.; Sun, Y.; Talpur, M.M.A. Optimizing Tomato Cultivation: Impact of Ammonium–Nitrate Ratios on Growth, Nutrient Uptake, and Fertilizer Utilization. Sustainability 2024, 16, 5373. [Google Scholar] [CrossRef]
- Ueda, Y.; Konishi, M.; Yanagisawa, S. Molecular Basis of the Nitrogen Response in Plants. Soil Sci. Plant Nutr. 2017, 63, 329–341. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S.; Mohapatra, T. Interaction Between Macro- and Micro-Nutrients in Plants. Front. Plant Sci. 2021, 12, 665583. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Hu, W.; Fan, X.; Chen, H.; Tang, M. Interactions Between Phosphorus, Zinc, and Iron Homeostasis in Nonmycorrhizal and Mycorrhizal Plants. Front. Plant Sci. 2019, 10, 1172. [Google Scholar] [CrossRef]
- Liu, B.; Mao, P.; Yang, Q.; Qin, H.; Xu, Y.; Zheng, Y.; Li, Q. Appropriate Nitrogen Form Ratio and UV-A Supplementation Increased Quality and Production in Purple Lettuce (Lactuca sativa L.). Int. J. Mol. Sci. 2023, 24, 16791. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Chen, Y. The Physiological Response of Photosynthesis to Nitrogen Deficiency. Plant Physiol. Biochem. 2021, 158, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Sun, W.; Luo, C.; Zhang, Q.; Osman, F.M.; Guan, C.; Wang, Y.; Zhang, M.; Zhang, X.; Ding, J.; et al. Differential Responses of Rice Genotypes to Nitrogen Supply: Impacts on Nitrogen Metabolism and Chlorophyll Fluorescence Kinetics. Plants 2025, 14, 2467. [Google Scholar] [CrossRef]
- Xiaochuang, C.; Chu, Z.; Chunquan, Z.; Junhua, Z.; Lianfeng, Z.; Lianghuan, W.; Qianyu, J. Variability of Leaf Photosynthetic Characteristics in Rice and Its Relationship with Resistance to Water Stress under Different Nitrogen Nutrition Regimes. Physiol. Plant. 2019, 167, 613–627. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, J. Photosynthetic CO2 Assimilation, Chlorophyll Fluorescence and Photoinhibition as Affected by Nitrogen Deficiency in Maize Plants. Plant Sci. 2000, 151, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Noor, H.; Yan, Z.; Sun, P.; Zhang, L.; Ding, P.; Li, L.; Ren, A.; Sun, M.; Gao, Z. Effects of Nitrogen on Photosynthetic Productivity and Yield Quality of Wheat (Triticum aestivum L.). Agronomy 2023, 13, 1448. [Google Scholar] [CrossRef]









| Working Solution | Nutrient Source | 10:0 | 9:1 | 8:2 | 7:3 | 6:4 | 5:5 | 3:7 |
|---|---|---|---|---|---|---|---|---|
| A | 5Ca(NO3)2·NH4NO3·10H2O | 0.000 | 0.128 | 0.256 | 0.385 | 0.490 | 0.490 | 0.490 |
| A | Ca [HCOOCH (NH2) CH2COO]2 | 0.820 | 0.820 | 0.820 | 0.820 | 0.820 | 0.820 | 0.820 |
| A | C10H12N2O8FeNa·3H2O | 0.049 | 0.049 | 0.049 | 0.049 | 0.049 | 0.049 | 0.049 |
| B | K2SO4 | 1.980 | 1.980 | 1.980 | 1.980 | 1.655 | 1.855 | 0.615 |
| B | Ca (CH3COO)2 | 2.450 | 1.810 | 1.170 | 0.525 | 0.000 | 0.000 | 0.000 |
| B | KNO3 | 0.000 | 0.000 | 0.000 | 0.000 | 0.200 | 0.000 | 2.480 |
| B | KH2PO4 | 0.000 | 0.000 | 0.000 | 0.000 | 0.451 | 0.251 | 0.251 |
| B | NH4NO3 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.645 | 2.000 |
| B | (NH4)2SO4 | 6.072 | 5.304 | 4.536 | 3.762 | 3.258 | 1.613 | 0.018 |
| B | NH4H2PO4 | 1.956 | 1.956 | 1.956 | 1.956 | 1.505 | 1.705 | 1.705 |
| B | MgSO4 | 3.007 | 3.007 | 3.007 | 3.007 | 3.007 | 3.007 | 3.007 |
| B | Na2B4O7·10H2O | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 |
| B | MnSO4 | 0.021 | 0.021 | 0.021 | 0.021 | 0.021 | 0.021 | 0.021 |
| B | CuSO4 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 |
| B | ZnSO4 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 |
| B | Na2MoO4 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhao, D.; Xie, X.; Liu, J.; Dong, K.; Sun, H.; Chen, F.; Chen, L.; Li, Y. Ratios of Nitrogen Forms for Substrate-Cultivated Blueberry. Horticulturae 2026, 12, 45. https://doi.org/10.3390/horticulturae12010045
Zhao D, Xie X, Liu J, Dong K, Sun H, Chen F, Chen L, Li Y. Ratios of Nitrogen Forms for Substrate-Cultivated Blueberry. Horticulturae. 2026; 12(1):45. https://doi.org/10.3390/horticulturae12010045
Chicago/Turabian StyleZhao, Dongshuang, Xiuhong Xie, Jiacheng Liu, Keyi Dong, Haiyue Sun, Fanfan Chen, Li Chen, and Yadong Li. 2026. "Ratios of Nitrogen Forms for Substrate-Cultivated Blueberry" Horticulturae 12, no. 1: 45. https://doi.org/10.3390/horticulturae12010045
APA StyleZhao, D., Xie, X., Liu, J., Dong, K., Sun, H., Chen, F., Chen, L., & Li, Y. (2026). Ratios of Nitrogen Forms for Substrate-Cultivated Blueberry. Horticulturae, 12(1), 45. https://doi.org/10.3390/horticulturae12010045

