Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = nitro-polycyclic aromatic hydrocarbon (NPAHs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2596 KiB  
Article
Long-Term and Seasonal Changes in Emission Sources of Atmospheric Particulate-Bound Pyrene and 1-Nitropyrene in Four Selected Cities in the Western Pacific
by Kazuichi Hayakawa
Atmosphere 2024, 15(6), 634; https://doi.org/10.3390/atmos15060634 - 24 May 2024
Cited by 1 | Viewed by 1116
Abstract
Estimating the source contribution to polycyclic aromatic hydrocarbons (PAHs) and nitropolycyclic aromatic hydrocarbons (NPAHs) in the atmosphere is necessary for developing effective disease control and pollution control measures. The NPAH-PAH combination method (NP method) was used to elucidate the contributions of vehicles and [...] Read more.
Estimating the source contribution to polycyclic aromatic hydrocarbons (PAHs) and nitropolycyclic aromatic hydrocarbons (NPAHs) in the atmosphere is necessary for developing effective disease control and pollution control measures. The NPAH-PAH combination method (NP method) was used to elucidate the contributions of vehicles and coal/biomass combustion to seasonal and long-term urban atmospheric particulate matter (PM)-bound Pyr and 1-NP concentrations in Kanazawa, Kitakyushu, Shenyang and Shanghai in the Western Pacific region from 1997 to 2021. Among the four cities, Kanazawa demonstrated the lowest Pyr concentration. The contribution of vehicles to Pyr before and after 2010 was 35% and 5%, respectively. The 1-NP concentration was reduced by a factor of more than 1/10. These changes can be attributed to the emission control from vehicles. Kitakyushu revealed the second-lowest Pyr and the lowest 1-NP concentrations. Coal combustion was found to be the main contributor to Pyr, while its contribution to 1-NP increased from 9% to 19%. The large contribution of coal combustion is attributed to iron manufacturers. Shenyang demonstrated the highest atmospheric Pyr concentration with its largest seasonal change. Vehicles are the largest contributors to 1-NP. However, coal combustion, including winter coal heating, contributed 97% or more to Pyr and more than 14% to 1-NP. Shanghai revealed the second-highest Pyr and 1-NP concentrations, but the former was substantially lower than that in Shenyang. Coal combustion was the major contributor, but the contribution of vehicles to Pyr was larger before 2010, which was similar to Kanazawa. Full article
(This article belongs to the Special Issue Novel Insights into Air Pollution over East Asia)
Show Figures

Figure 1

14 pages, 1194 KiB  
Article
Evaluation of Environmentally Relevant Nitrated and Oxygenated Polycyclic Aromatic Hydrocarbons in Honey
by Alejandro Mandelli, María Guiñez and Soledad Cerutti
Foods 2023, 12(11), 2205; https://doi.org/10.3390/foods12112205 - 31 May 2023
Viewed by 2413
Abstract
In this work, a novel analytical methodology for the extraction and determination of polycyclic aromatic hydrocarbon derivatives, nitrated (NPAH) and oxygenated (OPAH), in bee honey samples was developed. The extraction approach resulted in being straightforward, sustainable, and low-cost. It was based on a [...] Read more.
In this work, a novel analytical methodology for the extraction and determination of polycyclic aromatic hydrocarbon derivatives, nitrated (NPAH) and oxygenated (OPAH), in bee honey samples was developed. The extraction approach resulted in being straightforward, sustainable, and low-cost. It was based on a salting-out assisted liquid-liquid extraction followed by liquid chromatography-tandem mass spectrometry determination (SALLE-UHPLC-(+)APCI-MS/MS). The following figures of merit were obtained, linearity between 0.8 and 500 ng g−1 for NPAH and between 0.1 and 750 ng g−1 for OPAH compounds, coefficients of determination (r2) from 0.97 to 0.99. Limits of detection (LOD) were from 0.26 to 7.42 ng g−1 for NPAH compounds and from 0.04 to 9.77 ng g−1 for OPAH compounds. Recoveries ranged from 90.6% to 100.1%, and relative standard deviations (RSD) were lower than 8.9%. The green assessment of the method was calculated. Thus, the Green Certificate allowed a classification of 87 points. This methodology was reliable and suitable for application in honey samples. The results demonstrated that the levels of nitro- and oxy-PAHs were higher than those reported for unsubstituted PAHs. In this sense, the production chain sometimes transforms foods as direct carriers of contaminants to consumers, representing a concern and demonstrating the need for routine control. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Graphical abstract

14 pages, 2053 KiB  
Article
Main Emission Sources and Health Risks of Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons at Three Typical Sites in Hanoi
by Hao Zhang, Chau-Thuy Pham, Bin Chen, Xuan Zhang, Yan Wang, Pengchu Bai, Lulu Zhang, Seiya Nagao, Akira Toriba, Trung-Dung Nghiem and Ning Tang
Atmosphere 2023, 14(5), 782; https://doi.org/10.3390/atmos14050782 - 26 Apr 2023
Cited by 6 | Viewed by 2815
Abstract
Particulate matter-bound polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) were first systematically studied in downtown (XT), suburban (GL) and rural (DA) sites in winter and summer in Hanoi, Vietnam, from 2019 to 2022. The mean concentrations of PAHs and NPAHs ranged from 0.76 [...] Read more.
Particulate matter-bound polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) were first systematically studied in downtown (XT), suburban (GL) and rural (DA) sites in winter and summer in Hanoi, Vietnam, from 2019 to 2022. The mean concentrations of PAHs and NPAHs ranged from 0.76 ng m−3 to 50.2 ng m−3 and 6.07 pg m−3 to 1.95 ng m−3, respectively. The concentrations of PAHs and NPAHs in winter were higher than in summer, except for NPAHs in XT. We found the benzo[a]pyrene (BaP)/benzo[ghi]perylene (BgPe) ratio could effectively identify biomass burning in this study, in which a higher [BaP]/[BgPe] value indicates a greater effect of biomass burning on PAHs and NPAHs. The results indicated that atmospheric PAHs and NPAHs were mainly affected by motor vehicles (especially the unique motorcycles in Southeast Asia) in the summer in Hanoi. In winter, all sites were affected by the burning of rice straw to varying degrees, especially DA. The incremental lifetime cancer risk (ILCR) in Hanoi was first determined through ingestion, inhalation and dermal absorption. The results showed that residents in Hanoi faced high health risks, while females experienced higher health risks than males. The ingestion and dermal pathways indicated higher exposure risks than the usually considered inhalation pathway. Full article
Show Figures

Figure 1

12 pages, 2146 KiB  
Article
Sources Causing Long-Term and Seasonal Changes in Combustion-Derived Particulate Matter in the Urban Air of Sapporo, Japan, from 1990 to 2002
by Kazuichi Hayakawa, Shigekatsu Sakai and Tomoko Akutagawa
Atmosphere 2023, 14(4), 646; https://doi.org/10.3390/atmos14040646 - 29 Mar 2023
Viewed by 1785
Abstract
Fifty-one samples were collected seasonally to estimate the amounts of total suspended particulate (TSP) in Sapporo, Japan, from 1990 to 2002. The atmospheric concentration of combustion-derived particulate (Pc) was calculated based on the NP method using 1-nitropyrene and pyrene. The atmospheric [...] Read more.
Fifty-one samples were collected seasonally to estimate the amounts of total suspended particulate (TSP) in Sapporo, Japan, from 1990 to 2002. The atmospheric concentration of combustion-derived particulate (Pc) was calculated based on the NP method using 1-nitropyrene and pyrene. The atmospheric TSP and Pc concentration ranges were between 31–121 µg m−3 of air (Mean ± standard deviation (SD) = 58.2 ± 20.2 µg m−3) and 31–121 µg m−3 (Mean ± SD = 8.2 ± 6.0 µg m−3), respectively. First-order linear regression equations suggested that the Pc fraction decreased faster than TSP. The highest and lowest Pc concentrations were observed in winter and summer, respectively, whereas the highest and lowest TSP concentrations were observed in spring and winter, respectively. The largest and smallest Pc/TSP concentration ratios were observed in winter (0.324) and summer (0.075), respectively. The seasonal fractions of high-temperature combustion-derived particulate (Ph) in Pc ranged from 0.56 (winter) to 0.75 (summer), suggesting that the contribution of vehicle emissions to Pc was always larger than those of coal and biomass combustion. The sources of long-term and seasonal change in Pc were elucidated by analyzing organic source markers. Atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs), nitropolycyclic aromatic hydrocarbons (NPAHs) and hopanes showed long-term and seasonal changes similar to those of Pc, although biomarkers of biomass and coal combustion, such as levoglucosan, mannosan, and galactosan were not as strongly correlated. These results suggest that the change in the Pc concentration was mainly affected by vehicle emissions rather than by coal and biomass combustion or secondary pollutant formation. The decrease in the Pc over the study period was mainly a result of the Japanese particulate matter/NOx regulations on vehicle exhaust. Full article
(This article belongs to the Special Issue Feature Papers in Air Quality)
Show Figures

Figure 1

12 pages, 2394 KiB  
Article
Development of Quantitative Chemical Ionization Using Gas Chromatography/Mass Spectrometry and Gas Chromatography/Tandem Mass Spectrometry for Ambient Nitro- and Oxy-PAHs and Its Applications
by Jungmin Jo, Ji-Yi Lee, Kyoung-Soon Jang, Atsushi Matsuki, Amgalan Natsagdorj and Yun-Gyong Ahn
Molecules 2023, 28(2), 775; https://doi.org/10.3390/molecules28020775 - 12 Jan 2023
Cited by 6 | Viewed by 2968
Abstract
The concentration of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere has been continually monitored since their toxicity became known, whereas nitro-PAHs (NPAHs) and oxy-PAHs (OPAHs), which are derivatives of PAHs by primary emissions or secondary formations in the atmosphere, have gained attention more [...] Read more.
The concentration of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere has been continually monitored since their toxicity became known, whereas nitro-PAHs (NPAHs) and oxy-PAHs (OPAHs), which are derivatives of PAHs by primary emissions or secondary formations in the atmosphere, have gained attention more recently. In this study, a method for the quantification of 18 NPAH and OPAH congeners in the atmosphere based on combined applications of gas chromatography coupled with chemical ionization mass spectrometry is presented. A high sensitivity and selectivity for the quantification of individual NPAH and OPAH congeners without sample preparations from the extract of aerosol samples were achieved using negative chemical ionization (NCI/MS) or positive chemical ionization tandem mass spectrometry (PCI-MS/MS). This analytical method was validated and applied to the aerosol samples collected from three regions in Northeast Asia—namely, Noto, Seoul, and Ulaanbaatar—from 15 December 2020 to 17 January 2021. The ranges of the method detection limits (MDLs) of the NPAHs and OPAHs for the analytical method were from 0.272 to 3.494 pg/m3 and 0.977 to 13.345 pg/m3, respectively. Among the three regions, Ulaanbaatar had the highest total mean concentration of NPAHs and OPAHs at 313.803 ± 176.349 ng/m3. The contribution of individual NPAHs and OPAHs in the total concentration differed according to the regional emission characteristics. As a result of the aerosol samples when the developed method was applied, the concentrations of NPAHs and OPAHs were quantified in the ranges of 0.016~3.659 ng/m3 and 0.002~201.704 ng/m3, respectively. It was concluded that the method could be utilized for the quantification of NPAHs and OPAHs over a wide concentration range. Full article
(This article belongs to the Special Issue Environmental Analytical Chemistry)
Show Figures

Figure 1

22 pages, 1164 KiB  
Review
Recent Research Progress on Nitropolycyclic Aromatic Hydrocarbons in Outdoor and Indoor Environments
by Kazuichi Hayakawa
Appl. Sci. 2022, 12(21), 11259; https://doi.org/10.3390/app122111259 - 6 Nov 2022
Cited by 8 | Viewed by 3099
Abstract
Nitropolycyclic aromatic hydrocarbons (NPAHs) are derivatives of PAHs and contain one or more nitro functional groups (-NO2). Some NPAHs are classified as possible or probable human carcinogens and are more mutagenic than PAHs. Although the atmospheric cancer risk is estimated as [...] Read more.
Nitropolycyclic aromatic hydrocarbons (NPAHs) are derivatives of PAHs and contain one or more nitro functional groups (-NO2). Some NPAHs are classified as possible or probable human carcinogens and are more mutagenic than PAHs. Although the atmospheric cancer risk is estimated as 11% from PAHs but 17% from NPAHs, many of the atmospheric behaviors of NPAHs are unknown. There are two major NPAH formation processes. Primary formation of NPAHs occurs directly during the combustion of organic materials. The secondary formation of NPAHs occurs through the transformation of PAHs after they have been released into the environment. The fate, transport, and health effects of NPAHs are considerably different from their parent PAHs because of these differing formation processes. However, the amount of research conducted on NPAHs is comparatively low relative to PAHs. This is primarily due to a lack of effective analytical method for NPAHs, which generally exist in the environment at concentrations one to three orders of magnitude lower than PAHs. However, with the development of more sensitive analytical methods, the number of research papers published on NPAHs has recently increased. The Western Pacific region, one of the post polluted areas in the world, is the most frequently studied area for NPAHs. Many of them reported that atmospheric concentrations of NPAHs were much lower than parent PAHs and oxygenated derivatives (OPAHs). In this article, recent research on sample treatment and analysis, as well as the sources and environmental fate of NPAHs, are discussed with PAHs and OPAHs. A notable achievement using NPAHs is the development of a new emission source analysis method, the NP method, whose features are also discussed in this review. Full article
Show Figures

Figure 1

14 pages, 2225 KiB  
Article
Abundance, Source Apportionment and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons in PM2.5 in the Urban Atmosphere of Singapore
by Yan Wang, Hao Zhang, Xuan Zhang, Pengchu Bai, Lulu Zhang, Sim Joo Huang, Stephen Brian Pointing, Seiya Nagao, Bin Chen, Akira Toriba and Ning Tang
Atmosphere 2022, 13(9), 1420; https://doi.org/10.3390/atmos13091420 - 2 Sep 2022
Cited by 13 | Viewed by 3169
Abstract
In this study, the levels of fine particulate matter (PM2.5), polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) in PM2.5 samples were determined from 2020 to 2021 in Singapore. For analysis convenience, the sampling period was classified according to two monsoon [...] Read more.
In this study, the levels of fine particulate matter (PM2.5), polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) in PM2.5 samples were determined from 2020 to 2021 in Singapore. For analysis convenience, the sampling period was classified according to two monsoon periods and the inter-monsoon period. Considering Singapore’s typically tropical monsoon climate, the four seasons were divided into the northeast monsoon season (NE), southwest monsoon season (SW), presouthwest monsoon season (PSW) and prenortheast monsoon season (PNE)). The PM2.5 concentration reached 17.1 ± 8.38 μg/m3, which was slightly higher than that in 2015, and the average PAH concentration continuously declined during the sampling period compared to that reported in previous studies in 2006 and 2015. This is the first report of NPAHs in Singapore indicating a concentration of 13.1 ± 10.7 pg/m3. The seasonal variation in the PAH and NPAH concentrations in PM2.5 did not obviously differ owing to the unique geographical location and almost uniform climate changes in Singapore. Diagnostic ratios revealed that PAHs and NPAHs mainly originated from local vehicle emissions during all seasons. 2-Nitropyrene (2-NP) and 2-nitrofluoranthene (2-NFR) in Singapore were mainly formed under the daytime OH-initiated reaction pathway. Combined with airmass backward trajectory analysis, the Indonesia air mass could have influenced Singapore’s air pollution levels in PSW. However, these survey results showed that no effect was found on the concentrations of PAHs and NPAHs in PM2.5 in Indonesia during SW because of Indonesia’s efforts in the environment. It is worth noting that air masses from southern China could impact the PAH and NPAH concentrations according to long-range transportation during the NE. The results of the total incremental lifetime cancer risk (ILCR) via three exposure routes (ingestion, inhalation and dermal absorption) for males and females during the four seasons indicated a low long-term potential carcinogenic risk, with values ranging from 10−10 to 10−7. This study systematically explains the latest pollution conditions, sources, and potential health risks in Singapore, and comprehensively analyses the impact of the tropical monsoon system on air pollution in Singapore, providing a new perspective on the transmission mechanism of global air pollution. Full article
Show Figures

Figure 1

14 pages, 13540 KiB  
Article
Characteristics and Health Risks of Polycyclic Aromatic Hydrocarbons and Nitro-PAHs in Xinxiang, China in 2015 and 2017
by Hao Zhang, Lu Yang, Xuan Zhang, Wanli Xing, Yan Wang, Pengchu Bai, Lulu Zhang, Ying Li, Kazuichi Hayakawa, Akira Toriba and Ning Tang
Int. J. Environ. Res. Public Health 2021, 18(6), 3017; https://doi.org/10.3390/ijerph18063017 - 15 Mar 2021
Cited by 18 | Viewed by 3427
Abstract
Fine particulate matter (PM2.5) samples were collected in the summer and winter of 2015 and 2017 in Xinxiang, China. Nine polycyclic aromatic hydrocarbons (PAHs) and three nitro-PAHs (NPAHs) in PM2.5 were detected via high-performance liquid chromatography (HPLC). The PAHs concentration [...] Read more.
Fine particulate matter (PM2.5) samples were collected in the summer and winter of 2015 and 2017 in Xinxiang, China. Nine polycyclic aromatic hydrocarbons (PAHs) and three nitro-PAHs (NPAHs) in PM2.5 were detected via high-performance liquid chromatography (HPLC). The PAHs concentration in summer and winter decreased from 6.37 ± 1.30 ng/m3 and 96.9 ± 69.9 ng/m3 to 4.89 ± 2.67 ng/m3 and 49.8 ± 43.4 ng/m3 from 2015 to 2017. NPAHs decreased in winter (from 1707 ± 708 pg/m3 to 1192 ± 1113 pg/m3), but increased in summer from 2015 (336 ± 77.2 pg/m3) to 2017 (456 ± 312 pg/m3). Diagnostic ratios of PAHs indicated that petroleum combustion was the main emission source in summer, and pollutants originating from the combustion of petroleum, coal and biomass dominated in winter. The 2-nitrofluoranthene (2-NFR)/2-nitropyrene (2-NP) ratio in this study demonstrated that the OH radical pathway was the main pathway for the formation of 2-NP and 2-NFR. The mean total benzo[a]pyrene-equivalent concentrations (BaPeq) and incremental lifetime cancer risk (ILCR) values decreased from 2013 to 2017. The high value of total BaPeq in the winter of 2017 in Xinxiang revealed that a high-risk of cancer remained for residents. The results of this study demonstrate that the decreases in PAHs and NPAHS concentrations from 2015 to 2017. Combined with reducing gaseous pollutants concentration, the reduction in this study might be attributable to emissions reductions by implementing the air pollution control regulations in Xinxiang city in 2016. Full article
Show Figures

Figure 1

12 pages, 2856 KiB  
Article
Concentrations and Sources of Atmospheric PM, Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons in Kanazawa, Japan
by Kazuichi Hayakawa, Ning Tang, Wanli Xing, Pham Kim Oanh, Akinori Hara and Hiroyuki Nakamura
Atmosphere 2021, 12(2), 256; https://doi.org/10.3390/atmos12020256 - 15 Feb 2021
Cited by 14 | Viewed by 3726
Abstract
PM2.5 (fine particles with diameters 2.5 micrometers and smaller) and PM>2.5 were separately collected in Kanazawa, Japan in every season, from the spring of 2017 to the winter of 2018, and nine polycyclic aromatic hydrocarbons (PAHs) and six nitropolycyclic aromatic hydrocarbons [...] Read more.
PM2.5 (fine particles with diameters 2.5 micrometers and smaller) and PM>2.5 were separately collected in Kanazawa, Japan in every season, from the spring of 2017 to the winter of 2018, and nine polycyclic aromatic hydrocarbons (PAHs) and six nitropolycyclic aromatic hydrocarbons (NPAHs) were respectively determined using high-performance liquid chromatography (HPLC) with fluorescence and chemiluminescence detections. The atmospheric concentrations of both the PAHs and NPAHs showed seasonal changes (highest in the winter and lowest in the summer), which differed from the variations in the total suspended particulate matter (TSP) and PM2.5 amounts (which were highest in the spring). The contributions of major sources to the combustion-derived particulate (Pc) in the PM2.5 were calculated using the 1-nitropyrene-pyrene (NP) method, using pyrene and 1-nitropyrene as the representative markers of PAHs and NPAHs, respectively. The annual average concentration of Pc accounted for only 2.1% of PM2.5, but showed the same seasonal variation as PAHs. The sources of Pc were vehicles (31%) and coal heating facilities/industries (69%). A backward trajectory analysis showed that the vehicle-derived Pc was mainly from Kanazawa and its surroundings, and that coal heating facilities/industry-derived Pc was transported from city areas in central and northern China in the winter, and during the Asian dust event in the spring. These results show that large amounts of PAHs were transported over a long range from China during the winter. Even in the spring, after the coal heating season was over in China, PAHs were still transported to Japan after Asian dust storms passed through Chinese city areas. By contrast, the main contributors of NPAHs were vehicles in Kanazawa and its surroundings. The recent Pc concentrations were much lower than those in 1999. This decrease was mostly attributed to the decrease in the contribution of vehicle emissions. Thus, the changes in the atmospheric concentrations of Pc, PAHs and NPAHs in Kanazawa were strongly affected not only by the local emissions but also by long-range transport from China. Full article
(This article belongs to the Special Issue Air Pollution in Japan)
Show Figures

Figure 1

14 pages, 1386 KiB  
Article
Atmospheric Behaviour of Polycyclic and Nitro-Polycyclic Aromatic Hydrocarbons and Water-Soluble Inorganic Ions in Winter in Kirishima, a Typical Japanese Commercial City
by Lu Yang, Quanyu Zhou, Hao Zhang, Xuan Zhang, Wanli Xing, Yan Wang, Pengchu Bai, Masahito Yamauchi, Tetsuji Chohji, Lulu Zhang, Kazuichi Hayakawa, Akira Toriba and Ning Tang
Int. J. Environ. Res. Public Health 2021, 18(2), 688; https://doi.org/10.3390/ijerph18020688 - 14 Jan 2021
Cited by 12 | Viewed by 3041
Abstract
Kirishima is a typical Japanese commercial city, famous for frequent volcanic activity. This is the first study to determine the characteristics of PM2.5-bound polycyclic and nitro-polycyclic aromatic hydrocarbons (PAHs and NPAHs) and water-soluble inorganic ions (WSIIs) in this city. In this [...] Read more.
Kirishima is a typical Japanese commercial city, famous for frequent volcanic activity. This is the first study to determine the characteristics of PM2.5-bound polycyclic and nitro-polycyclic aromatic hydrocarbons (PAHs and NPAHs) and water-soluble inorganic ions (WSIIs) in this city. In this study, the non-volcanic eruption period was taken as the target and daily PM2.5 samples were collected from 24 November to 21 December 2016. The daily concentrations in PM2.5 of ƩPAHs, ƩNPAHs, and ƩWSIIs ranged from 0.36 to 2.90 ng/m3, 2.12 to 22.3 pg/m3, and 1.96 to 11.4 μg/m3, respectively. Through the results of the diagnostic ratio analyses of the PAHs, NPAHs, and WSIIs and the backward trajectory analysis of the air masses arriving in Kirishima, the emission sources of PAHs, NPAHs, and WSIIs in PM2.5 in Kirishima were influenced by the coal burning that came from the East Asian continent, although there was no influence from volcanic emission sources during the sampling period. The total benzo[a]pyrene (BaP)-equivalent concentration was lower than many other cities but the health risks in Kirishima were nonetheless notable. These findings are very important for future research on PM samples during the inactive Asian monsoon and volcanic eruption periods, to further understand the characteristics of air pollutants in Kirishima, and to contribute to the improvement in health of residents and a reduction in the atmospheric circulation of air pollutants in East Asia. Full article
Show Figures

Figure 1

16 pages, 6123 KiB  
Article
Comparative Analysis of PM2.5-Bound Polycyclic Aromatic Hydrocarbons (PAHs), Nitro-PAHs (NPAHs), and Water-Soluble Inorganic Ions (WSIIs) at Two Background Sites in Japan
by Lu Yang, Lulu Zhang, Hao Zhang, Quanyu Zhou, Xuan Zhang, Wanli Xing, Akinori Takami, Kei Sato, Atsushi Shimizu, Ayako Yoshino, Naoki Kaneyasu, Atsushi Matsuki, Kazuichi Hayakawa, Akira Toriba and Ning Tang
Int. J. Environ. Res. Public Health 2020, 17(21), 8224; https://doi.org/10.3390/ijerph17218224 - 6 Nov 2020
Cited by 20 | Viewed by 3922
Abstract
Daily PM2.5 (particulate matter with aerodynamic diameter ≤2.5 μm) samples were simultaneously collected at two background sites (Wajima Air Monitoring Station (WAMS) and Fukue-Jima Atmosphere and Aerosol Monitoring Station (FAMS)) in Japan in the East Asian winter and summer monsoon periods of [...] Read more.
Daily PM2.5 (particulate matter with aerodynamic diameter ≤2.5 μm) samples were simultaneously collected at two background sites (Wajima Air Monitoring Station (WAMS) and Fukue-Jima Atmosphere and Aerosol Monitoring Station (FAMS)) in Japan in the East Asian winter and summer monsoon periods of 2017 and 2019, to compare the characteristics of air pollutants among different regions and to determine the possible variation during the long-range transport process. Polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and water-soluble inorganic ions (WSIIs) were analyzed. Despite the PM2.5 concentrations at FAMS (8.90–78.5 µg/m3) being higher than those at WAMS (2.33–21.2 µg/m3) in the winter monsoon period, the average concentrations of ∑PAHs, ∑NPAHs, and ∑WSIIs were similar between the two sites. Diagnostic ratios indicated PAHs mainly originated from traffic emissions and mostly aged, whereas NPAHs were mostly secondarily formed during long-range transport. WSIIs at WAMS were mainly formed via the combustion process and secondary reactions, whereas those at FAMS mainly originated from sea salt and dust. Backward trajectories revealed the air masses could not only come from Asian continental coastal regions but also distant landlocked areas in the winter monsoon period, whereas most came from the ocean in the summer monsoon period. These findings can provide basic data for the establishment of prediction models of transboundary air pollutants in East Asia. Full article
Show Figures

Graphical abstract

12 pages, 1102 KiB  
Article
Remediation of 1-Nitropyrene in Soil: A Comparative Study with Pyrene
by Shuo Li, Yatao Huang, Minhui Zhang, Yanchen Gao, Canping Pan, Kailin Deng and Bei Fan
Int. J. Environ. Res. Public Health 2020, 17(6), 1914; https://doi.org/10.3390/ijerph17061914 - 15 Mar 2020
Cited by 9 | Viewed by 3188
Abstract
Nitrated polycyclic aromatic hydrocarbons (nPAHs) are ubiquitous environmental pollutants, which exhibits higher toxicity than their corresponding parent PAHs (pPAHs). Recent studies demonstrated that the nPAHs could represent major soil pollution, however the remediation of nPAHs has been [...] Read more.
Nitrated polycyclic aromatic hydrocarbons (nPAHs) are ubiquitous environmental pollutants, which exhibits higher toxicity than their corresponding parent PAHs (pPAHs). Recent studies demonstrated that the nPAHs could represent major soil pollution, however the remediation of nPAHs has been rarely reported. In this study, biological, physical, and chemical methods have been applied to remove 1-nitropyrene, the model nPAH, in contaminated soil. A comparative study with pyrene has also been investigated and evaluated. The results suggest that the physical method with activated carbon is an efficient and economical approach, removing 88.1% and 78.0% of 1-nitropyrene and pyrene respectively, within one day. The zero-valent ion has a similar removal performance on 1-nitropyrene (83.1%), converting 1-nitropyrene to 1-aminopyrene in soil via chemical reduction and decreasing the mutagenicity and carcinogenicity of 1-nitropyrene. Biological remediation that employs scallion as a plant model can reduce 55.0% of 1-nitropyrene in soil (from 39.6 to 17.8 μg/kg), while 77.9% of pyrene can be removed by plant. This indicates that nPAHs might be more persistent than corresponding pPAHs in soil. It is anticipated that this study could draw public awareness of nitro-derivatives of pPAHs and provide remediation technologies of carcinogenic nPAHs in soil. Full article
Show Figures

Figure 1

11 pages, 1927 KiB  
Article
Characteristics of PM2.5-Bound Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons at A Roadside Air Pollution Monitoring Station in Kanazawa, Japan
by Wanli Xing, Lulu Zhang, Lu Yang, Quanyu Zhou, Xuan Zhang, Akira Toriba, Kazuichi Hayakawa and Ning Tang
Int. J. Environ. Res. Public Health 2020, 17(3), 805; https://doi.org/10.3390/ijerph17030805 - 28 Jan 2020
Cited by 52 | Viewed by 4673
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) in PM2.5 samples were collected at a roadside monitoring station in Kanazawa, Japan, in every season from 2017 to 2018. Nine PAHs and five NPAHs were determined using high-performance liquid chromatography with fluorescence detection and [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) in PM2.5 samples were collected at a roadside monitoring station in Kanazawa, Japan, in every season from 2017 to 2018. Nine PAHs and five NPAHs were determined using high-performance liquid chromatography with fluorescence detection and chemiluminescence detection, respectively. The mean concentrations of PAHs and NPAHs were highest in winter and lowest in summer. Fluoranthene and pyrene were the dominant PAHs and 1-nitropyrene was the dominant NPAH in all seasons, and these compounds were mainly emitted by diesel vehicles. The concentration ratio of benzo(a)pyrene (BaP) to benzo(ghi)perylene (BgPe) ((BaP)/(BgPe)) and of indeno(1,2,3-cd)pyrene (IDP) to the sum of IDP and benzo(ghi)perylene (BgPe) ((IDP)/((IDP)+(BgPe0) might still be useful indicators for identifying traffic emission sources today. Moreover, our results showed that the carcinogenic risk in all seasons was below the acceptable limit set by the WHO. Full article
Show Figures

Figure 1

12 pages, 3959 KiB  
Article
Long-Term Trends in Urban Atmospheric Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons: China, Russia, and Korea from 1999 to 2014
by Kazuichi Hayakawa, Ning Tang, Edward Nagato, Akira Toriba, Jin-Min Lin, Lixia Zhao, Zhijun Zhou, Wu Qing, Xiaoyang Yang, Vassily Mishukov, Andrey Neroda and Hae-Young Chung
Int. J. Environ. Res. Public Health 2020, 17(2), 431; https://doi.org/10.3390/ijerph17020431 - 8 Jan 2020
Cited by 32 | Viewed by 4145
Abstract
Total suspended particulate matter (TSP) was collected during the summer and winter in five cities in China (Shenyang, Beijing, and Shanghai), Russia (Vladivostok), and Korea (Busan) from 1997 to 2014. Nine polycyclic aromatic hydrocarbons (PAHs) with four to six rings, including pyrene (Pyr) [...] Read more.
Total suspended particulate matter (TSP) was collected during the summer and winter in five cities in China (Shenyang, Beijing, and Shanghai), Russia (Vladivostok), and Korea (Busan) from 1997 to 2014. Nine polycyclic aromatic hydrocarbons (PAHs) with four to six rings, including pyrene (Pyr) and benzo[a]pyrene (BaP), were determined using high-performance liquid chromatography with fluorescence detection. Two nitropolycyclic aromatic hydrocarbons (NPAHs), 1-nitropyrene (1-NP) and 6-nitrobenzo[a]pyrene (6-NBaP), were also determined using high-performance liquid chromatography with online reduction/chemiluminescence detection. Two Chinese cities, Beijing and Shenyang, showed very high concentrations of total PAHs (ΣPAH) and total NPAHs (ΣNPAH) with a large seasonal difference (winter > summer), although the concentrations decreased over time. In both cities, maximum mean concentrations of ΣPAH over 200 ng m−3 were observed in the winter. In Beijing, an increase in the ΣPAH concentration was observed in the winter of 2010, which was after the 2008 Beijing Olympic Games. The [1-NP]/[Pyr] ratio, a diagnostic parameter for source, was smaller in the winter than in the summer over the monitoring period, suggesting a large contribution of coal heating systems in the winter. In Vladivostok, concentrations of ΣPAH and ΣNPAH were lower than in the above two Chinese cities. The [1-NP]/[Pyr] ratio was larger than in the above Chinese cities even in the winter, suggesting that the contribution of coal combustion facilities, such as power plants for heating, was not very large. In Shanghai and Busan, concentrations of ΣPAH and ΣNPAH were much lower than in the above three cities. At the beginning of the monitoring periods, the [1-NP]/[Pyr] ratios, which were as large as those of Japanese commercial cities, suggested a large contribution from automobiles. After that, the contribution of automobiles decreased gradually. However, BaP concentrations were still over 1 ng m−3 in all cities monitored in China, Russia, and Korea, suggesting that the urban air pollution of PAHs and NPAHs in these regions should not be ignored. Full article
Show Figures

Figure 1

17 pages, 1138 KiB  
Article
Emission Characteristics of Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons from Open Burning of Rice Straw in the North of Vietnam
by Chau-Thuy Pham, Yaowatat Boongla, Trung-Dung Nghiem, Huu-Tuyen Le, Ning Tang, Akira Toriba and Kazuichi Hayakawa
Int. J. Environ. Res. Public Health 2019, 16(13), 2343; https://doi.org/10.3390/ijerph16132343 - 2 Jul 2019
Cited by 32 | Viewed by 5819
Abstract
This research investigated the distribution and contribution of polycyclic aromatic hydrocarbons (PAHs) and nitro-polycyclic aromatic hydrocarbons (NPAHs) bound to particulate matter (PM) emitted from open burning of rice straw (RS) into the atmosphere in the north of Vietnam. The experiments were conducted to [...] Read more.
This research investigated the distribution and contribution of polycyclic aromatic hydrocarbons (PAHs) and nitro-polycyclic aromatic hydrocarbons (NPAHs) bound to particulate matter (PM) emitted from open burning of rice straw (RS) into the atmosphere in the north of Vietnam. The experiments were conducted to collect PM2.5 and total suspended particulates (TSP) prior to and during burning in the period of 2016–2018 in suburban areas of Hanoi. Nine PAHs and 18 NPAHs were determined using the HPLC-FL system. The results showed that the proportion of RS burning seasonally affects the variation of PAHs emission in atmospheric environment. The levels of nine PAHs from RS burning were 254.4 ± 87.8 µg g−1 for PM2.5 and 209.7 ± 89.5 µg g−1 for TSP. We observed the fact that, although fluoranthene (Flu) was the most abundant PAH among detected PAHs both in PM2.5 and TSP, the enrichment of Flu in TSP from burning smoke was higher than that in PM2.5 while the contribution of benzo[a]pyrene (BaP) and indeno[1,2,3- cd]pyrene (IDP) in PM2.5 from burning smoke were much higher than those in TSP. This research found that 1-nitropyrene (1-NP) and 6-nitrochrysene (6-NC) emit from RS burning with the same range with those from wood burning. The 2-nitrofluorene (2-NF) and 2-nitropyrene (2-NP) released from RS burning as the secondary NPAHs. This research provides a comprehensive contribution characterization of PAHs and NPAHs in PM with different size emitted from traditional local rice straw burning in the north of Vietnam. The results help to clarify the environmental behavior of toxic organic compounds from RS burning in Southeast Asia. Full article
Show Figures

Figure 1

Back to TopTop