Special Issue "Polycyclic Aromatic Hydrocarbons: Sources, Monitoring, and Health Effects"

A special issue of International Journal of Environmental Research and Public Health (ISSN 1660-4601). This special issue belongs to the section "Environmental Health".

Deadline for manuscript submissions: 31 October 2021.

Special Issue Editors

Prof. Ning Tang
Website
Leading Guest Editor
Institute of Nature and Environmental Technology, Kanazawa University, 920-1192 Ishikawa, Kanazawa, Kakumamachi, Japan
Prof. Seiya Nagao
Website
Guest Editor
Institute of Nature and Environmental Technology, Kanazawa University, 920-1192 Ishikawa, Kanazawa, Kakumamachi, Japan
Dr. Masato Honda
Website
Guest Editor
Institute of Nature and Environmental Technology, Kanazawa University, 920-1192 Ishikawa, Kanazawa, Kakumamachi, Japan
Interests: environmental toxicology; per- and polyfluoroalkyl substances (PFAS); biomonitoring; analytical chemistry
Dr. Lulu Zhang
Website
Guest Editor
Institute of Nature and Environmental Technology, Kanazawa University, 920-1192 Ishikawa, Kanazawa, Kakumamachi, Japan

Special Issue Information

Dear Colleagues,

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants with certain or possible carcinogenicity and mutagenicity. PAHs mostly originate from petrogenic and pyrolysis processes. The combustion of fossil fuels and biomass contributes greatly to emissions. After entering the atmosphere, gaseous and particulate PAHs can undergo homogeneous or heterogeneous oxidation to produce derivatives such as nitrated and oxygenated PAHs, which have direct-acting mutagenicity and are important intermediates of secondary aerosols. Exposure to airborne PAHs and their derivatives results in adverse health outcomes for susceptible and occupational groups and increases health risks for the general population. In addition, the short- and long-range transport of PAHs raises challenges for changing the composition and toxicity of local and regional aerosols. Meanwhile, parent and substituted PAHs in the atmosphere can be deposited into soil or water to participate in the ecological circulation. Consequently, PAHs pose a serious threat to both ecosystems and humans. At present, there are large uncertainties in the source, fate, and health effects of PAHs in the environment under the combined action of mixed primary emissions, secondary formation, and complex meteorology. Therefore, this Special Issue aims to solicit research on these issues from different disciplines and regions in order to improve our understanding of the characteristics, variation trends, and impact of PAHs, and hence to support air pollution mitigation strategies.

Prof. Ning Tang
Prof. Seiya Nagao
Dr. Masato Honda
Dr. Lulu Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Environmental Research and Public Health is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2300 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polycyclic aromatic hydrocarbons
  • nitrated polycyclic aromatic hydrocarbons
  • oxygenated polycyclic aromatic hydrocarbons
  • environmental pollution
  • source apportionment
  • long-range transportation atmospheric reaction
  • health effects
  • respiratory diseases
  • cardiovascular diseases

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Atmospheric Behaviour of Polycyclic and Nitro-Polycyclic Aromatic Hydrocarbons and Water-Soluble Inorganic Ions in Winter in Kirishima, a Typical Japanese Commercial City
Int. J. Environ. Res. Public Health 2021, 18(2), 688; https://doi.org/10.3390/ijerph18020688 - 14 Jan 2021
Abstract
Kirishima is a typical Japanese commercial city, famous for frequent volcanic activity. This is the first study to determine the characteristics of PM2.5-bound polycyclic and nitro-polycyclic aromatic hydrocarbons (PAHs and NPAHs) and water-soluble inorganic ions (WSIIs) in this city. In this [...] Read more.
Kirishima is a typical Japanese commercial city, famous for frequent volcanic activity. This is the first study to determine the characteristics of PM2.5-bound polycyclic and nitro-polycyclic aromatic hydrocarbons (PAHs and NPAHs) and water-soluble inorganic ions (WSIIs) in this city. In this study, the non-volcanic eruption period was taken as the target and daily PM2.5 samples were collected from 24 November to 21 December 2016. The daily concentrations in PM2.5 of ƩPAHs, ƩNPAHs, and ƩWSIIs ranged from 0.36 to 2.90 ng/m3, 2.12 to 22.3 pg/m3, and 1.96 to 11.4 μg/m3, respectively. Through the results of the diagnostic ratio analyses of the PAHs, NPAHs, and WSIIs and the backward trajectory analysis of the air masses arriving in Kirishima, the emission sources of PAHs, NPAHs, and WSIIs in PM2.5 in Kirishima were influenced by the coal burning that came from the East Asian continent, although there was no influence from volcanic emission sources during the sampling period. The total benzo[a]pyrene (BaP)-equivalent concentration was lower than many other cities but the health risks in Kirishima were nonetheless notable. These findings are very important for future research on PM samples during the inactive Asian monsoon and volcanic eruption periods, to further understand the characteristics of air pollutants in Kirishima, and to contribute to the improvement in health of residents and a reduction in the atmospheric circulation of air pollutants in East Asia. Full article
Show Figures

Figure 1

Open AccessArticle
Correlation between Polycyclic Aromatic Hydrocarbons in Wharf Roach (Ligia spp.) and Environmental Components of the Intertidal and Supralittoral Zone along the Japanese Coast
Int. J. Environ. Res. Public Health 2021, 18(2), 630; https://doi.org/10.3390/ijerph18020630 - 13 Jan 2021
Abstract
Polycyclic aromatic hydrocarbon (PAH) concentrations in wharf roach (Ligia spp.), as an environmental indicator, and in environmental components of the intertidal and supralittoral zones were determined, and the PAH exposure pathways in wharf roach were estimated. Wharf roaches, mussels, and environmental media [...] Read more.
Polycyclic aromatic hydrocarbon (PAH) concentrations in wharf roach (Ligia spp.), as an environmental indicator, and in environmental components of the intertidal and supralittoral zones were determined, and the PAH exposure pathways in wharf roach were estimated. Wharf roaches, mussels, and environmental media (water, soil and sand, and drifting seaweed) were collected from 12 sites in Japan along coastal areas of the Sea of Japan. PAH concentrations in wharf roaches were higher than those in mussels (median total of 15 PAHs: 48.5 and 39.9 ng/g-dry weight (dw), respectively) except for samples from Ishikawa (wharf roach: 47.9 ng/g-dw; mussel: 132 ng/g-dw). The highest total PAH concentration in wharf roach was from Akita (96.0 ng/g-dw), followed by a sample from Niigata (85.2 ng/g-dw). Diagnostic ratio analysis showed that nearly all PAHs in soil and sand were of petrogenic origin. Based on a correlation analysis of PAH concentrations between wharf roach and the environmental components, wharf roach exposure to three- and four-ring PAHs was likely from food (drifting seaweed) and from soil and sand, whereas exposure to four- and five-ring PAHs was from several environmental components. These findings suggest that the wharf roach can be used to monitor PAH pollution in the supralittoral zone and in the intertidal zone. Full article
Show Figures

Figure 1

Open AccessArticle
Chemical Characteristics of Atmospheric PM10 and PM2.5 at a Rural Site of Lijiang City, China
Int. J. Environ. Res. Public Health 2020, 17(24), 9553; https://doi.org/10.3390/ijerph17249553 - 20 Dec 2020
Abstract
Emissions from biomass burning are very serious in Southeast Asia and South Asia in April. In order to explore the effect of long-range transport of biomass emissions from the Indochina Peninsula in Southwest China during the period of the southeast monsoon season and [...] Read more.
Emissions from biomass burning are very serious in Southeast Asia and South Asia in April. In order to explore the effect of long-range transport of biomass emissions from the Indochina Peninsula in Southwest China during the period of the southeast monsoon season and to find out the main pollution sources in local atmospheric PM2.5, a field campaign was conducted from 6–26 April 2011 in Lijiang, China. Twenty-four-hour PM10 and PM2.5 filter samples were collected, and inorganic ions, elements, and carbonaceous components (including organic carbon (OC) and elemental carbon (EC), polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs)) were measured. The monthly mean mass concentrations of particulate matter (PM) were 40.4 and 14.4 μg/m3 for PM10 and PM2.5, respectively. The monthly mean concentrations of OC and EC in PM10 were 6.2 and 1.6 μg/m3, respectively. The weekly mean concentrations of ∑PAHs and ∑NPAHs were 11.9 ng/m3 and 289 pg/m3, respectively, in atmospheric PM10 of Lijiang. The diagnostic ratios of PAH and NPAH isomers were used to analyze the sources of PAHs and NPAHs in PM10. The ratios of Benz(a)anthracene/(Chrysene+Benz(a)anthracen), Fluoranthene/(Fluoranthene+Pyrene) and Indeno(1,2,3-cd)pyrene/(Benzo(g,h,i)perylene+Indeno(1,2,3-cd)pyrene) were 0.45 ± 0.04, 0.61 ± 0.01, and 0.53 ± 0.03, respectively, indicating the contribution from coal combustion and biomass burning. The 1-nitropyrene/Pyrene (1-NP/Pyr) ratio was 0.004 ± 0.001, suggesting that the contribution to NPAHs mainly came from coal combustion. Sulfate was the most prominent inorganic ionic species, with monthly mean levels of 2.28 and 1.39 μg/m3 in PM10 and PM2.5, respectively. The monthly mean mass ratios of NO3/SO42− were 0.40 and 0.23 in PM10 and PM2.5, respectively, indicating that the contribution of atmospheric anions from coal combustion sources was much more important than that from other sources. Based on the relatively high SO42− concentrations and low NO3/SO42− ratios, combined with the data analysis of isomer ratios of PAHs and NPAHs, we can conclude that coal combustion, traffic, and dust were the major contributors to local atmospheric PM in Lijiang city, while biomass burning may also have contributed to local atmospheric PM in Lijiang city to some degree. Full article
Show Figures

Figure 1

Open AccessArticle
Comparative Analysis of PM2.5-Bound Polycyclic Aromatic Hydrocarbons (PAHs), Nitro-PAHs (NPAHs), and Water-Soluble Inorganic Ions (WSIIs) at Two Background Sites in Japan
Int. J. Environ. Res. Public Health 2020, 17(21), 8224; https://doi.org/10.3390/ijerph17218224 - 06 Nov 2020
Cited by 1
Abstract
Daily PM2.5 (particulate matter with aerodynamic diameter ≤2.5 μm) samples were simultaneously collected at two background sites (Wajima Air Monitoring Station (WAMS) and Fukue-Jima Atmosphere and Aerosol Monitoring Station (FAMS)) in Japan in the East Asian winter and summer monsoon periods of [...] Read more.
Daily PM2.5 (particulate matter with aerodynamic diameter ≤2.5 μm) samples were simultaneously collected at two background sites (Wajima Air Monitoring Station (WAMS) and Fukue-Jima Atmosphere and Aerosol Monitoring Station (FAMS)) in Japan in the East Asian winter and summer monsoon periods of 2017 and 2019, to compare the characteristics of air pollutants among different regions and to determine the possible variation during the long-range transport process. Polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and water-soluble inorganic ions (WSIIs) were analyzed. Despite the PM2.5 concentrations at FAMS (8.90–78.5 µg/m3) being higher than those at WAMS (2.33–21.2 µg/m3) in the winter monsoon period, the average concentrations of ∑PAHs, ∑NPAHs, and ∑WSIIs were similar between the two sites. Diagnostic ratios indicated PAHs mainly originated from traffic emissions and mostly aged, whereas NPAHs were mostly secondarily formed during long-range transport. WSIIs at WAMS were mainly formed via the combustion process and secondary reactions, whereas those at FAMS mainly originated from sea salt and dust. Backward trajectories revealed the air masses could not only come from Asian continental coastal regions but also distant landlocked areas in the winter monsoon period, whereas most came from the ocean in the summer monsoon period. These findings can provide basic data for the establishment of prediction models of transboundary air pollutants in East Asia. Full article
Show Figures

Graphical abstract

Back to TopTop