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Abstract: In this study, the levels of fine particulate matter (PM2.5), polycyclic aromatic hydrocarbons
(PAHs) and nitro-PAHs (NPAHs) in PM2.5 samples were determined from 2020 to 2021 in Singapore.
For analysis convenience, the sampling period was classified according to two monsoon periods
and the inter-monsoon period. Considering Singapore’s typically tropical monsoon climate, the
four seasons were divided into the northeast monsoon season (NE), southwest monsoon season
(SW), presouthwest monsoon season (PSW) and prenortheast monsoon season (PNE)). The PM2.5

concentration reached 17.1 ± 8.38 µg/m3, which was slightly higher than that in 2015, and the average
PAH concentration continuously declined during the sampling period compared to that reported
in previous studies in 2006 and 2015. This is the first report of NPAHs in Singapore indicating a
concentration of 13.1 ± 10.7 pg/m3. The seasonal variation in the PAH and NPAH concentrations in
PM2.5 did not obviously differ owing to the unique geographical location and almost uniform climate
changes in Singapore. Diagnostic ratios revealed that PAHs and NPAHs mainly originated from
local vehicle emissions during all seasons. 2-Nitropyrene (2-NP) and 2-nitrofluoranthene (2-NFR)
in Singapore were mainly formed under the daytime OH-initiated reaction pathway. Combined
with airmass backward trajectory analysis, the Indonesia air mass could have influenced Singapore’s
air pollution levels in PSW. However, these survey results showed that no effect was found on the
concentrations of PAHs and NPAHs in PM2.5 in Indonesia during SW because of Indonesia’s efforts
in the environment. It is worth noting that air masses from southern China could impact the PAH
and NPAH concentrations according to long-range transportation during the NE. The results of the
total incremental lifetime cancer risk (ILCR) via three exposure routes (ingestion, inhalation and
dermal absorption) for males and females during the four seasons indicated a low long-term potential
carcinogenic risk, with values ranging from 10−10 to 10−7. This study systematically explains the
latest pollution conditions, sources, and potential health risks in Singapore, and comprehensively
analyses the impact of the tropical monsoon system on air pollution in Singapore, providing a new
perspective on the transmission mechanism of global air pollution.

Atmosphere 2022, 13, 1420. https://doi.org/10.3390/atmos13091420 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos13091420
https://doi.org/10.3390/atmos13091420
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0003-2816-2450
https://orcid.org/0000-0002-9244-1705
https://orcid.org/0000-0002-5216-6382
https://orcid.org/0000-0002-1709-9225
https://orcid.org/0000-0002-3106-6534
https://doi.org/10.3390/atmos13091420
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos13091420?type=check_update&version=2


Atmosphere 2022, 13, 1420 2 of 14

Keywords: PM2.5; polycyclic aromatic hydrocarbons; nitro-polycyclic aromatic hydrocarbons; health
risk assessment

1. Introduction

Among air pollutants, fine particulate matter (PM2.5: diameter < 2.5 µm) negatively
affects human health and is closely related to human respiratory diseases [1]. In recent years,
a network for continuous PM2.5 monitoring has been established worldwide, and policies
have been continuously formulated to improve PM2.5 pollution reduction [2]. Following
this growing recognition, PM2.5, which contains a large number of toxic substances, is
easily transported by wind and can persist in the atmosphere for extended periods due to
its small size [3,4]. Polycyclic aromatic hydrocarbons (PAHs) have received much attention
as the most carcinogenic and mutagenic substances in PM2.5 [5–7]. PAHs represent a
group of aromatic hydrocarbons with two or more fused benzene rings and are considered
ubiquitous atmospheric contaminants [8,9]. Most PAHs are persistent organic pollutants
(POPs) in the environment due to their hydrophobicity and chemical inertness [10–12].
However, PAHs can react with ozone and hydroxyl radicals to form a series of PAH
derivatives [13,14]. Among these PAH derivatives, nitro-PAHs (NPAHs) have received
global attention due to their higher mutagenicity and genotoxicity [15–17].

Southeast Asia remains among the most air polluted regions globally according to the
annual update of the Air Quality Life Index in 2022 [18]. This is the result of the reliance
on coal for power generation and vegetation fires to support “slash-and-burn” farming
methods across Southeast Asia [19,20]. Moreover, South Asia monsoons can transport
haze throughout most of the Association of Southeast Asian Nations (ASEAN) countries,
including Singapore, Indonesia, Malaysia, Brunei, Thailand, and the Philippines [21].
In addition, the unique climatic conditions in recent years have further exacerbated the
haze severity in affected countries, such as the dry weather conditions attributable to
the El Niño-Southern Oscillation and positive Indian Ocean dipole during the southwest
monsoon season (SW) [22,23]. Therefore, the near-catastrophic extent of seasonal haze
episodes prompted the ASEAN Agreement on Transboundary Haze Pollution (AATHP) in
2002 [24,25]. Unfortunately, during the repeated severe air pollution events in Southeast
Asia in 2013 and 2019, the pollutant level exceeded 200 µg/m3, especially PM2.5 [26,27].
Several studies have found that these seasonal haze episodes in an acute setting contribute
to worsening asthma problems and other respiratory-related symptoms [28–31]. In addition,
studies have consistently reported increased short-term respiratory morbidity and mortality
levels due to seasonal exposure to smoke originating from episodic wildfires [32]. Among
ASEAN countries, Singapore has experienced smoke haze episodes almost every dry season
since the late 1990s due to its geographical location. Singapore is a typical industrial country
with a small land area and high population density bordering Malaysia to the north and
is adjacent to Indonesia to the south. Several studies have been conducted encompassing
short-term measurements of PAHs in Singapore, but the seasonal and yearly variations in
PAHs remain poorly understood in this region [33–36].

In the present research, PM2.5 samples were collected in the urban environment of
Singapore for more than one year. The objective of this study was to (1) better understand the
pollution status of PM2.5, PAHs and NPAHs in a subtropical urban atmosphere, (2) analyze the
seasonal variation and influencing factors of atmospheric transport, (3) explore the potential
sources of PAHs and NAPHs in PM2.5, and (4) evaluate the potential health risks of PAHs
and NPAHs in PM2.5. This study represents the first evaluation of the distribution of airborne
PAHs and NPAHs during different seasons and an assessment of the potential health risks of
PAHs and NPAHs in Singapore.
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2. Materials and Methods
2.1. Sample Collection

Seventy-seven PM2.5 samples were collected from January 2020 to August 2021 on the
National University of Singapore (NUS) campus which is located at a latitude of 1.29◦ N
and longitude of 103.77◦ E, as shown in Figure 1. The island of Singapore is situated north
of the equator, near Malaysia, Indonesia and southern China linking the Indian Ocean to the
South China Sea. The northeast and southwest monsoons determine Singapore’s climate
characteristics [37,38]. Due to the geographical location and typically tropical climate of
Singapore, the four seasons were divided into: the northeast monsoon season (NE), SW,
presouthwest monsoon season (PSW) and prenortheast monsoon season (PNE). In general,
the NE lasts from December to March while the SW ranges from June to September. The
PSW extends from April to May and the PNE occurs between October and November.
Details the sampling period are provided in Table S1.
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Figure 1. The location of the sampling site (the original image comes from the open-source website:
https://d-maps.com/index.php?lang=en, accessed on 17 July 2022).

PM2.5 samples were collected using a high-volume air sampler (Sibata Sci. Tech. Ltd.,
Saitama, Japan) equipped with a quartz fiber filter (2500QAT-UP, Pallflex Products, Putnam,
CT, USA) at an intake flow rate of 1000 L/min. PM2.5 samples were collected for a week at
a month, and the filters were changed every 24 h. After sampling, the samples were stored
in a desiccator for 48 h and then weighed. These samples were wrapped in aluminum foil
and refrigerated at −20 ◦C until the samples were analyzed.

2.2. Materials and Sample Analysis

The pretreatment process, analytical procedure and quality control process were the
same as those in our previous study [39,40]. In each PM2.5 sample, ten PAHs—fluoranthene
(FR), pyrene (Pyr), benzo[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene (BbF),
benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), benzo[e]pyrene (BeP), benzo[ghi]perylene
(BgPe), and indeno [1,2,3-cd]pyrene (IDP) (Supelco Park, Bellefonte, PA, USA)—and four
NPAHs—2-NFR, 1-NPs, 2-NPs, and 6-nitrobenzo[a]pyrene (6-NBaP) (Chiron, Trondheim,
Norway)—were analyzed with a high-performance liquid chromatography (HPLC) system
with fluorescence detection (Shimadzu Inc., Kyoto, Japan). Two internal standards (Pyr-d10
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and BaP-d12) were purchased from Wako Pure Chemicals (Osaka, Japan). All reagents were
of analytical grade. Blank and standard samples were analyzed every seven samples to
avoid cross-contamination and confirm the stability of the HPLC system.

2.3. Airmass Backwards Trajectory Analysis

The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model (HYSPLIT-4,
Windows-based version, NOAA Air Resources Laboratory) developed by the National Oceanic
and Atmospheric Administration (NOAA), was used to calculate backwards trajectories and ob-
tain air mass routes during the sampling period [41,42]. Backwards trajectories were generated
at 500 m above ground level to ensure that all trajectory started in the atmospheric boundary
layer. Each backwards trajectory was calculated at hourly intervals and tracked for 96 h. In this
study, cluster analysis of all backward trajectories was conducted based on the monsoon season
and premonsoon season characteristics. The meteorological data used in the backwards trajec-
tory calculation were retrieved from the National Centers for Environmental Prediction (NCEP)
Global Data Assimilation System (GDAS, global, 2005-present). In addition, meteorological
conditions (daily rainfall, mean temperature and mean wind speed) were obtained from the
Changi Automatic Weather Observatory, Singapore (http://www.weather.gov.sg accessed on
25 July 2022).

2.4. Health Risk Assessment

The human health risk assessment process in this study considered various exposure
pathways in the different environments where humans may be exposed to pollutants
and may experience adverse effects. The exposure pathways included ingestion, dermal
absorption and inhalation [43,44]. The populations considered included males and females
exposed to pollutants in the atmospheric environment. The incremental lifetime cancer risk
(ILCR) was assessed combined with the toxic equivalency factor (TEF) model [45,46].

The ILCR values for the ingestion, dermal absorption, and inhalation exposure routes
and summation of the three risk forms (the total ILCR) were estimated as follows [47,48]:

Ring =
C × CSFing × 3

√
BW
70 × IRing × EF × ED

BW × AT × 106 (1)

Rinh =
C × CSFinh × 3

√
BW
70 × IRinh × EF × ED

BW × AT × PEF
(2)

Rdem =
C × CSFdem × 3

√
BW
70 × SA × AF × ABS × EF × ED

BW × AT × 106 (3)

Total ILCR = ILCRing+ILCRinh+ILCRdem (4)

where C is the sum of the toxic equivalent concentrations of the 16 individual PAHs
in ng/m3 (C = TEQPAH), which can be calculated as follows [49]:

TEQi= Ci × TEFi (5)

TEQtotal = ∑ TEQi (6)

where TEFi is the toxic equivalent of the individual PAHs as listed in Table S2 [50,51].
Ring, Rinh, and Rdem denote the risk values considering the ingestion, inhalation, and

dermal absorption exposure routes, respectively. The carcinogenic slope factors (CSFs)
of BaP were parameterized as 7.3, 25, and 3.85 (1/(mg/kg/day)) for ingestion (CSFing),
inhalation (CSFinh), and dermal adsorption (CSFdem), respectively. Moreover, BW is the
average body weight in kg. IRing is the intake rate under the ingestion exposure route in
mg/day, EF is the annual exposure frequency in days/year, ED is the exposure duration
in years, AT is the average life span in days, IRinh is the intake rate under the inhalation
exposure route in mg/day, PEF is the particle emission factor in mg/kg, SA is the exposed

http://www.weather.gov.sg
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area of skin in cm2, AF is the skin adherence factor in mg/cm2, and ABS is the skin
absorption factor in day−1. Details of the parameters used are provided in Table S3 [52,53].

2.5. Statistical Analysis

In this study, the difference of PAH and NPAH concentrations in the PM2.5 samples
during the different seasons was explored according to one-way ANOVA. The test results
were expressed considering a 95% confidence interval. SPSS version 24.0 (IBM Corp.,
Armonk, NK, USA) was used for statistical analysis.

3. Results
3.1. Distribution of PM2.5, PAHs and NPAHs

The PM2.5 concentration during the sampling period was 17.1 ± 8.38 µg/m3, which
was higher than that at the same sampling location in 2015 (13.0 ± 2.73 µg/m3) [54]. More-
over, the average PM2.5 concentration in Singapore was slightly lower than that of Kuala
Lumpur (19.3 µg/m3) in Malaysia [55], just half that of Jakarta (33.0 µg/m3) in Indone-
sia [56], and much lower than that of Hanoi (73.6 µg/m3) in Vietnam [57]. The PAH concen-
tration was 0.62 ± 0.31 ng/m3, and the NAPHs concentration reached 13.2 ± 10.7 pg/m3,
which is the first report on NPAHs in Singapore. It has been reported that the concentra-
tions of 1-NP, 2-NP and 2-NFR in Singapore are slightly higher than those at background
observatories (Noto Peninsula) but much lower than those in Beijing, Shenyang, and
Vladivostok [58,59]. BgPe was the most abundant PAH (PSW: 26%, PNE: 24%, NE: 28%,
SW: 23%), while 2-NFR was the most abundant NPAH (PSW: 62%, PNE: 36%, NE: 56%,
SW: 40%). As shown in Figure 2, the six analyzed PAHs in PM.2.5 in previous studies
were compared, and the average concentration was 0.72 ng/m3 in 2006 [50], 0.68 ng/m3

in 2015 [60], and 0.40 ng/m3 in 2020 (this study). Due to repeated seasonal haze over
the past 20 years, especially after the 2015 Southeast Asian haze caused economic loss
(SGD 1.46 billion) in Singapore [61], Singapore has introduced an environmental law on
transboundary haze pollution, and imposed fines and penalties for foreign companies
to create toxic smog that spread across Singapore, effectively curbing Indonesia’s forest
fires [62]. Meanwhile, the PAH concentration had a sharp drop in 2020, which might
explain why the introduction of Euro VI standards for vehicles in Singapore began on
1 September 2017 [63].
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The seasonal concentrations of PM2.5, PAHs and NPAHs in PM2.5 are summarized
in Table 1. The PM2.5 concentrations during the PNE and SW were 32.8 ± 7.34 µg/m3

and 19.8 ± 6.52 µg/m3, respectively, which are slightly higher than the air quality target
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of Singapore (12 µg/m3) and 3-fold higher than the World Health Organization (WHO)
guideline value (5 µg/m3). The highest PAH concentration was observed during the PNE,
and the lowest was observed during the PSW, where the PAH concentrations reached
0.77 ± 0.12 and 0.47 ± 0.12 ng/m3, respectively. In regard to NPAHs, the highest concen-
tration was observed during the SW, and the lowest concentrations were observed during
the PSW, at 15.5 ± 9.27 pg/m3 and 10.3 ± 10.0 pg/m3, respectively. However, according to
one-way ANOVA results, the concentration values of PAHs (p = 0.22) and NAPHs (p = 0.64)
in PM2.5 during the four seasons were not significant difference. This means that no signifi-
cant change in the emission sources of PAHs and NPAHs during the survey period [35].
Meanwhile, almost uniform weather conditions throughout the sampling period, such
as temperature, rainfall, and wind speed, were suggested to be another factor [64–66]
(Table S4).

Table 1. The mean concentration and standard deviation of PM2.5, ten PAHs and four NPAHs in
PM2.5 in Singapore from 2020 to 2021.

Compound PNE NE PSW SW

PM2.5 (µg/m3) 32.8 ± 7.34 11.4 ± 5.16 8.49 ± 3.21 19.8 ± 6.52

FR 0.04 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.03 ± 0.01
Pyr 0.06 ± 0.02 0.04 ± 0.02 0.04 ± 0.01 0.06 ± 0.03
BaA 0.04 ± 0.01 0.02 ± 0.02 0.02 ± 0.01 0.04 ± 0.02
Chr 0.08 ± 0.03 0.05 ± 0.04 0.04 ± 0.01 0.07 ± 0.03
BbF 0.08 ± 0.02 0.07 ± 0.04 0.05 ± 0.02 0.07 ± 0.03
BkF 0.04 ± 0.01 0.03 ± 0.02 0.02 ± 0.01 0.03 ± 0.01
BaP 0.06 ± 0.01 0.04 ± 0.03 0.04 ± 0.01 0.06 ± 0.02
BeP 0.09 ± 0.02 0.06 ± 0.04 0.05 ± 0.01 0.08 ± 0.03
BgPe 0.18 ± 0.04 0.17 ± 0.11 0.12 ± 0.03 0.15 ± 0.06
IDP 0.10 ± 0.03 0.09 ± 0.06 0.06 ± 0.02 0.07 ± 0.03
ΣPAHs (ng/m3) 0.77 ± 0.12 0.61 ± 0.37 0.47 ± 0.12 0.65 ± 0.25

2-NFR 4.22 ± 2.56 7.03 ± 6.36 6.43 ± 8.94 6.19 ± 4.59
1-NP 3.34 ± 1.36 2.00 ± 2.36 1.86 ± 0.85 3.44 ± 2.63
2-NP 0.11 ± 0.07 1.32 ± 1.68 0.60 ± 0.44 0.95 ± 0.66
6-NBaP 4.27 ± 1.74 2.17 ± 2.66 1.41 ± 0.54 4.93 ± 2.66
ΣNPAHs (pg/m3) 11.9 ± 4.06 12.5 ± 12.5 10.3 ± 10.0 15.5 ± 9.27

3.2. Main Sources of PAHs and NPAHs
3.2.1. Diagnostic Ratios

Several source identification diagnostic ratios were applied in this research. The combi-
nation of the [BbF]/([BbF] + [BkF]) and [IDP]/([BgPe] + [IDP]) ratios was used to distinguish
traffic or other sources of PAHs and NPAHs in PM2.5. Our previous research confirmed that
these two diagnostic ratios can effectively discriminate the source of PAHs in the particle
phase with high accuracy and independent of spatial and temporal distributions [39,67].

As shown in Figure 3a, most values of [BbF]/([BbF] + [BkF]) and [IDP]/([BgPe] + [IDP])
ranged from 0.66 to 0.81 and 0.26 to 0.49, respectively. These results indicated that traffic
emissions were the main contributors to PAHs and NPAHs in PM2.5 in Singapore.

On the other hand, [BeP] and [BaP] are structural isomers but are known to signifi-
cantly differ in terms of the photooxidation rate [68]. The atmospheric degradation of BaP
is much faster than that of BeP during transportation due to its higher reactivity [69,70].
Regarding NPAHs, the [2-NFR]/[1-NP] ratio was also used to clarify local sources, in which
1-NP is usually considered to indicate direct emissions, while 2-NFR formed secondarily in
the atmosphere via photochemical reactions of parent PAH (FR) [58,71,72]. [2-NFR]/[1-NP]
ratio values less than 5 were typically observed at sites near primary emission sources
according to a previous study [13,73,74]. Therefore, the values of [BaP]/([BaP] + [BeP])
and [2-NFR]/[1-NP] can generally suitably indicate aerosol ageing to speculate about local
emissions and long-range transportation. The results for the [BaP]/([BaP] + [BeP]) and
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[2-NFR]/[1-NP] ratios are shown Figure 3b. Most of the [BeP]/([BaP] + [BeP]) values were
close to 0.5, while most of the [2-NFR]/[1-NP] values were below 5. Local emissions were
the main source of PAHs and NPAHs in PM2.5 in Singapore during the four monsoon
seasons. However, as shown in Figure 3b, the values of several [2-NFR]/[1-NP] ratios were
larger than 5, although their [BaP]/([BaP] + [BeP]) ratios were close to 0.5 (15 February 2020,
14 January 2021 and 14–15 May 2020). This suggested that aged aerosols coming from other
areas may also influence atmospheric PAHs and NPAHs in Singapore depending on the
day (for details, see Section 3.2.2).
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pore: (a) The values of the [BbF]/([BbF] + [BkF]) and [IDP]/([BgPe] + [IDP]) ratios; (b) The values of
[BaP]/([BaP] + [BeP]) and [2-NFR]/[1-NP] ratios; (c) the values of several [2-NFR]/[1-NP] ratio.

The [2-NFR]/[2-NP] ratio is used to clarify the advantages of atmospheric reactions
initiated by ·OH (close to 10) and NO3· (close to 100) radicals because 2-NP and 2-NFR
are formed in the atmosphere mainly by the ·OH radical and NO3· radical pathways [58].
As shown in Figure 3c, the average [2-NFR]/[2-NP] ratios ranged from 0.27 to 39.8, which
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means that particle-phase 2-NP and 2-NFR in Singapore were mainly formed by the OH
radical pathway, in agreement with previous studies [14,39,49].

3.2.2. Airmass Backwards Trajectory Analysis

To explore possible emission sources for long-range transportation during the sam-
pling period, 96 h backwards trajectories of the air masses arriving in Singapore during
the different monsoon seasons are shown in Figure 4. During the PNE (Figure 4a) the air
masses did not follow a dominant pathway and were partly terrestrial and oceanic in origin,
originating from various directions. Thirty-four percent of the air masses originated from
the northwest coast of Indonesia across Southern Sumatra province, Lampung province,
Banten province, 31% of the air masses originated from Laut Sawu, part of the Pacific
Ocean, and 28% of the air masses exhibited a loop trajectory with a low altitude. Dur-
ing PSW (Figure 4b), all air masses originated from the Java Sea and passed through the
islands of Bangka Belitung Islands and Billiton Island. Most of the NE air masses were
of continental origin; more than half of the air masses stemmed from southern China,
such as Fujian Province, Guangdong Province or Taiwan Island/strait (82%); and 16%
of the air masses originated from the Philippines (Figure 4c). Sixty-eight percent of the
air masses received at the sampling site exhibited obvious Indonesian origin character-
istics and thirty-one percent of the air masses originated from the local area during the
SW (Figure 4d).
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According to previous reports [33,35,75,76], haze usually occurs in Singapore during PNE,
PSW and SW since land clearing activities in South Sumatra and Kalimantan in Indonesia.
As we mentioned before, a series of active measures taken by the Singapore government to
target cross-border pollution has led to a significant decrease in the number of forest fires in
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Indonesia. In this study, a few hotspots were observed in Indonesia during the PNE and SW
as shown in satellite images (https://www.globalforestwatch.org/, accessed on 20 June 2022).
This may be the reason why PM2.5, PAH and NPAH concentrations were slightly higher
during PNE and SW than during PSW and NE.

Moreover, as mentioned earlier, the ratio of [2-NFR]/[1-NP] during the periods of
14–15 May 2020 (PSW) and 15 February 2020, and 14 January 2021 (NE) was above 5.
Meanwhile, the PAH and NPAH concentrations were 0.68 and 29.08 pg/m3 (14 May 2020),
0.52 and 19.63 pg/m3 (15 May 2020), 0.36 and 9.6 pg/m3 (15 February 2020), and 0.57 and
5.87 pg/m3 (14 January 2021), respectively. These values were higher than most PAH and
NPAH concentrations during the period, showing that transboundary pollution has an
impact on Singapore’s airborne PAHs and NPAHs. As shown in Figure 4b,c, the air masses
on 14–15 May 2020 originated from the Java Sea near Indonesia, while the air masses on
15 February 2020 and 14 January 2021 originated from southern China. Although this study
could not prove that the air mass passed through the areas mentioned above during high
pollution periods in these areas, it can be speculated that long-range transport has the
potential to exacerbate air pollution in Singapore during PSW and NE periods.

3.3. Health Effects of PAHs and NPAHs
3.3.1. Toxic Equivalent Concentration Relative to BaP (TEQ)

In general, global-scale modelling and air quality monitoring rely on BaP as an indica-
tor for risk assessment considering the total PAHs and derivatives of PAHs mixtures since
BaP was proven to be the major contributor to the cancer risk of PAHs (40–80%) [77]. Some
studies have proven that BaP to represent far less than 50% of the cancer risk [78], and the
potential exposure risks of other PAHs and derivatives, for example, Dibenz[a,h]anthracene
(DBA) [79] and dinitropyrenes (DNPs) [80] which TEFs are equal or higher than that of
BaP cannot be ignored. However, these compounds have not been covered in this study.
In this study, the ten PAHs and two NPAHs were evaluated, except 6-NBaP and 2-NP,
due to the lack of corresponding TEF data. The obtained TEQ results for the total and
individual PAHs and NPAHs during the four seasons are listed in Table 2. The total TEQ
values of BaP varied between 0.01 and 0.26 pg/m3 during the four seasons. During the
sampling period, the total TEQ concentration was much lower than the European Union
standard (1 ng/m3), and the highest ILCR values were obtained for BaP, BbF, IDP, BkF and
BaA in PM2.5, which can pose a high carcinogenic risk to human health [33,81,82]. In the
future, regular monitoring of atmospheric PAHs is needed to detect changes, especially
considering 4- to 6-ring PAHs.

Table 2. The concentration range of ten PAHs and two NPAHs (except 6-NBaP and 2-NP) with
respect to the toxic equivalent factor.

NE PNE PSW SW

PAHs (pg/m3)

FR 0.01–0.06 0.03–0.05 0.02–0.03 0.01–0.07
Pyr 0.02–0.12 0.04–0.08 0.03–0.05 0.03–0.12
BaA 0.48–10.0 2.14–5.66 1.06–3.01 1.07–7.60
Chr 0.11–1.88 0.43–1.09 0.25–0.54 0.20–1.34
BbF 1.05–19.0 5.11–10.4 3.27–9.11 3.18–13.6
BkF 0.73–8.86 2.58–5.09 1.48–3.77 1.65–5.83
BaP 8.53–196 48.1–75.3 20.6–57.4 27.1–105
BeP 0.03–0.41 0.13–0.21 0.07–0.13 0.07–0.29

BgPe 0.41–4.75 1.13–2.26 0.76–1.85 0.71–3.04
IDP 2.25–25.1 4.64–13.4 3.25–9.47 3.68–14.3

ΣPAHs 15.1–263 71.1–108 30.8–78.2 38.5–148

NPAHs (pg/m3)
2-NFR 0.02–0.27 0.02–0.07 0.01–0.22 0.01–0.17
1-NP 0.02–1.03 0.15–0.53 0.11–0.34 0.07–0.94

ΣNPAHs 0.02–1.31 0.17–0.53 0.12–0.49 0.08–0.99

Total (ng/m3) 0.01–0.26 0.07–0.11 0.03–0.08 0.04–0.15

https://www.globalforestwatch.org/
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3.3.2. ILCR Assessment

In the atmospheric environment, humans are exposed to PAH vapor or PAHs con-
tained in particulate matter and dust, which pose a potential carcinogenic risk even at low
doses. Many studies have reported that sources of human exposure to PAHs mainly include
the inhalation of air (traffic, biomass burning and residential heating-related emissions),
consumption of food and skin contact [83]. Laboratory studies suggest that NPAHs are
highly toxic and can be up to 1000-fold more toxic than their respective parent compounds,
which cannot be ignored [84]. In this study, the accumulated exposure risk for PAHs and
NPAHs in PM2.5 through direct ingestion, dermal contact, and respiratory exposure could
be quantitatively assessed with the ILCR model. An ILCR value below 10−6 is considered
acceptable, while a value exceeding 10−4 indicates the need for risk reduction [77].

Table 3 reveals that the total ILCR values of PAHs and NPAHs under the three exposure routes
exhibited the following seasonal characteristics: PNE (males: 7.44 × 10−7, females: 8.52 × 10−7)
> SW (males: 3.52 × 10−7, females: 4.03 × 10−7) > NE (males: 2.92 × 10−7, females: 3.34 × 10−7)
> PSW (males: 1.76 × 10−7, females: 2.01 × 10−7). The ILCR values obtained in this study ranged
from 10−7 to 10−10, revealing a potentially low cancer risk concern among Singapore residents in
regard to incremental lifetime exposure.

Table 3. ILCRs for three exposure routes in four seasons from 2020 to 2021 in Singapore.

PSW PNE NE SW

Male Female Male Female Male Female Male Female

Ingestion 1.44 × 10−7 1.65 × 10−7 6.92 × 10−7 7.92 × 10−7 2.55 × 10−7 2.91 × 10−7 3.07 × 10−7 3.51 × 10−7

Inhalation 1.05 × 10−10 1.01 × 10−10 1.72 × 10−10 1.65 × 10−10 1.24 × 10−10 1.19 × 10−10 1.50 × 10−10 1.44 × 10−10

Dermal 3.18 × 10−8 3.64 × 10−8 5.19 × 10−8 5.94 × 10−8 3.75 × 10−8 4.29 × 10−8 4.52 × 10−8 5.17 × 10−8

SUM 1.76 × 10−7 2.01 × 10−7 7.44 × 10−7 8.52 × 10−7 2.92 × 10−7 3.34 × 10−7 3.52 × 10−7 4.03 × 10−7

4. Conclusions

In this study, the abundance of PM2.5, PAHs and NPAHs in PM2.5 from 2020 to 2021 in
Singapore was evaluated. To the best of our knowledge, this is the first report on atmospheric
NPAHs in Singapore. Atmospheric yearly average concentrations of PM2.5 and PAHs were
compared to historical data. The results indicated that the PM2.5 concentration in this area
was not lower than that according to previous data over the past decade, while there was
a significant decline in PAHs in the atmosphere. Singapore adopted Euro VI emission
standards for petrol vehicles on 1 September 2017, which could reduce vehicular PAH
emissions. PM2.5, PAHs and NPAHs exhibited no obvious seasonal characteristics based on
comparison of the PM2.5, PAH and NPAH concentrations among the 4 seasons. In particular,
the pollution level of PM2.5 during the four seasons was higher than the target value defined
in WHO guidelines. By combining diagnostic ratios and airmass backwards trajectories,
the results demonstrated that local traffic emissions constituted a major source of PAHs and
NPAHs in Singapore. The [2-NFR]/[2-NP] ratios indicated that the daytime OH-initiated
reaction was the dominant formation pathway for 2-NFR and 2-NP in Singapore. This study
found that air masses from Indonesia might affect the PAH and NPAH concentrations in
PM2.5 during PSW. In addition, the air masses from South China during NE might also have
an impact on the PAH and NPAH concentrations in PM2.5 in Singapore. In addition, the
ILCR values during the survey period remained well below the safe limit, indicating that
the air quality in Singapore is suitable and that the long-term exposure hazard to residents
is minimal. However, continued monitoring of transboundary haze is recommended.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/atmos13091420/s1, Table S1. Sampling periods and sample numbers;
Table S2. Toxic equivalent factor (TEF) of PAHs and NPAHs; Table S3. Parameters used for the estimation
of the incremental lifetime cancer risks (ILCRs); Table S4. Daily weather conditions in each sample in
Singapore from 2020 to 2021.

https://www.mdpi.com/article/10.3390/atmos13091420/s1
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