Abundance, Source Apportionment and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons in PM2.5 in the Urban Atmosphere of Singapore
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Materials and Sample Analysis
2.3. Airmass Backwards Trajectory Analysis
2.4. Health Risk Assessment
2.5. Statistical Analysis
3. Results
3.1. Distribution of PM2.5, PAHs and NPAHs
3.2. Main Sources of PAHs and NPAHs
3.2.1. Diagnostic Ratios
3.2.2. Airmass Backwards Trajectory Analysis
3.3. Health Effects of PAHs and NPAHs
3.3.1. Toxic Equivalent Concentration Relative to BaP (TEQ)
3.3.2. ILCR Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xing, Y.F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The Impact of PM2.5 on the Human Respiratory System. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [CrossRef] [PubMed]
- World Bank. The Global Health Cost of PM2.5 Air Pollution: A Case for Action Beyond 2021; World Bank Publications: Washington, DC, USA, 2022; ISBN 978-1-4648-1816-5. [Google Scholar]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, D.A.; O’Neill, S.M.; Larkin, N.K.; Holder, A.L.; Peterson, D.L.; Halofsky, J.E.; Rappold, A.G. Wildfire and Prescribed Burning Impacts on Air Quality in the United States. J. Air Waste Manag. Assoc. 2020, 70, 583–615. [Google Scholar] [CrossRef] [PubMed]
- Lara, S.; Villanueva, F.; Martín, P.; Salgado, S.; Moreno, A.; Sánchez-Verdú, P. Investigation of PAHs, Nitrated PAHs and Oxygenated PAHs in PM10 Urban Aerosols. A Comprehensive Data Analysis. Chemosphere 2022, 294, 133745. [Google Scholar] [CrossRef]
- Nowakowski, M.; Rykowska, I.; Wolski, R.; Andrzejewski, P. Polycyclic Aromatic Hydrocarbons (PAHs) and Their Derivatives (O-PAHs, N-PAHs, OH-PAHs): Determination in Suspended Particulate Matter (SPM)—A Review. Environ. Process. 2022, 9, 2. [Google Scholar] [CrossRef]
- Yang, L.; Tang, N.; Matsuki, A.; Takami, A.; Hatakeyama, S.; Kaneyasu, N.; Nagato, E.G.; Sato, K.; Yoshino, A.; Hayakawa, K. A Comparison of Particulate-Bound Polycyclic Aromatic Hydrocarbons Long-Range Transported from the Asian Continent to the Noto Peninsula and Fukue Island, Japan. Asian J. Atmos. Environ. 2018, 12, 369–376. [Google Scholar] [CrossRef]
- Abdel Shafy, H.I.; Mansour, M.S.M. A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impact, Effect on Human Health and Remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Zhang, L.L.; Yang, L.; Zhou, Q.Y.; Zhang, X.; Xing, W.L.; Wei, Y.; Hu, M.; Zhao, L.; Toriba, A.; Hayakawa, K.; et al. Size Distribution of Particulate Polycyclic Aromatic Hydrocarbons in Fresh Combustion Smoke and Ambient Air: A Review. J. Environ. Sci. 2020, 88, 370–384. [Google Scholar] [CrossRef]
- Farrington, J.; Takada, H. Persistent Organic Pollutants (POPs), Polycyclic Aromatic Hydrocarbons (PAHs), and Plastics: Examples of the Status, Trend, and Cycling of Organic Chemicals of Environmental Concern in the Ocean. Oceanography 2014, 27, 196–213. [Google Scholar] [CrossRef]
- Zhang, L.L.; Morisaki, H.; Wei, Y.; Li, Z.; Yang, L.; Zhou, Q.Y.; Zhang, X.; Xing, W.L.; Hu, M.; Shima, M.; et al. PM2.5-Bound Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons inside and Outside a Primary School Classroom in Beijing: Concentration, Composition, and Inhalatshnion Cancer Risk. Sci. Total Environ. 2020, 705, 135840. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Wang, Y.; Bai, P.C.; Hayakawa, K.; Zhang, L.L.; Tang, N. Characteristics and Influencing Factors of Polycyclic Aromatic Hydrocarbons Emitted from Open Burning and Stove Burning of Biomass: A Brief Review. Int. J. Environ. Res. Public Health 2022, 19, 3944. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T.; Ramdahl, T.; Bjørseth, A. The Fate of Airborne Polycyclic Organic Matter. Environ. Health Perspect. 1983, 13, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Keyte, I.J.; Roy, M. Harrison; Gerhard Lammel. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons—A review. Chem. Soc. Rev. 2013, 42, 9333–9391. [Google Scholar] [CrossRef]
- Bolton, J.L.; Trush, M.A.; Penning, T.M.; Dryhurst, G.; Monks, T.J. Role of Quinones in Toxicology. Chem. Res. Toxicol. 2000, 13, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Misaki, K.; Takamura-Enya, T.; Ogawa, H.; Takamori, K.; Yanagida, M. Tumour-Promoting Activity of Polycyclic Aromatic Hydrocarbons and Their Oxygenated or Nitrated Derivatives. Mutagenesis 2016, 31, 205–213. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, L.L.; Zhang, H.; Zhou, Q.Y.; Zhang, X.; Xing, W.L.; Takami, A.; Sato, K.; Shimizu, A.; Yoshino, A.; et al. Comparative Analysis of PM2.5-Bound Polycyclic Aromatic Hydrocarbons (PAHs), Nitro-PAHs (NPAHs), and Water-Soluble Inorganic Ions (WSIIs) at Two Background Sites in Japan. Int. J. Environ. Res. Public Health 2020, 17, 8224. [Google Scholar] [CrossRef]
- Greenstone, M. Air Quality Life. Available online: https://aqli.epic.uchicago.edu/reports/ (accessed on 25 July 2022).
- Ketterings, Q.M.; Tri Wibowo, T.; van Noordwijk, M.; Penot, E. Farmers’ Perspectives on Slash-and-Burn as a Land Clearing Method for Small-Scale Rubber Producers in Sepunggur, Jambi Province, Sumatra, Indonesia. For. Ecol. Manag. 1999, 120, 157–169. [Google Scholar] [CrossRef]
- Page, S.E.; Hooijer, A. In the Line of Fire: The Peatlands of Southeast Asia. Philos. Trans. R. Soc. B 2016, 371, 20150176. [Google Scholar] [CrossRef]
- Chongsuvivatwong, V.; Phua, K.H.; Yap, M.T.; Pocock, N.S.; Hashim, J.H.; Chhem, R.; Wilopo, S.A.; Lopez, A.D. Health and Health-Care Systems in Southeast Asia: Diversity and Transitions. Lancet 2011, 377, 429–437. [Google Scholar] [CrossRef]
- Yuen, B.; Mainguy, G.; Kong, L. Climate Change and Urban Planning in Southeast Asia. SAPI EN. S. Surv. Perspect. Integr. Environ. Soc. 2009, 2, 3. [Google Scholar] [CrossRef]
- Lieberman, V.; Buckley, B. The Impact of Climate on Southeast Asia, circa 950–1820: New Findings. Mod. Asian Stud. 2012, 46, 1049–1096. [Google Scholar] [CrossRef]
- Heilmann, D. After Indonesia’s Ratification: The ASEAN Agreement on Transboundary Haze Pollution and Its Effectiveness as a Regional Environmental Governance Tool. J. Curr. Southeast Asian Aff. 2015, 34, 95–121. [Google Scholar] [CrossRef]
- Sunchindah, A. Transboundary Haze Pollution Problem in Southeast Asia: Reframing ASEAN’s Response. Available online: https://www.eria.org/publications/transboundary-haze-pollution-problem-in-southeast-asia-reframing-aseans-response/ (accessed on 25 July 2022).
- Velasco, E.; Rastan, S. Air Quality in Singapore during the 2013 Smoke-Haze Episode over the Strait of Malacca: Lessons Learned. Sustain. Cities Soc. 2015, 17, 122–131. [Google Scholar] [CrossRef]
- Niampradit, S.; Kliengchuay, W.; Mingkhwan, R.; Worakhunpiset, S.; Kiangkoo, N.; Sudsandee, S.; Hongthong, A.; Siriratruengsuk, W.; Muangsuwan, T.; Tantrakarnapa, K. The Elemental Characteristics and Human Health Risk of PM2.5 during Haze Episode and Non-Haze Episode in Chiang Rai Province, Thailand. Int. J. Environ. Res. Public Health 2022, 19, 6127. [Google Scholar] [CrossRef]
- Tchounwou, P. Environmental Research and Public Health. Int. J. Environ. Res. Public Health 2004, 1, 1–2. [Google Scholar] [CrossRef]
- Myatt, T.A.; Vincent, M.S.; Kobzik, L.; Naeher, L.P.; MacIntosh, D.L.; Suh, H. Markers of Inflammation in Alveolar Cells Exposed to Fine Particulate Matter from Prescribed Fires and Urban Air. J. Occup. Environ. Med. 2011, 53, 1110–1114. [Google Scholar] [CrossRef]
- Jacobson, L.d.S.V.; Hacon, S.d.S.; de Castro, H.A.; Ignotti, E.; Artaxo, P.; Ponce de Leon, A.C.M. Association between Fine Particulate Matter and the Peak Expiratory Flow of Schoolchildren in the Brazilian Subequatorial Amazon: A Panel Study. Environ. Res. 2012, 117, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Ho, A.F.W.; Zheng, H.; De Silva, D.A.; Wah, W.; Earnest, A.; Pang, Y.H.; Xie, Z.; Pek, P.P.; Liu, N.; Ng, Y.Y.; et al. The Relationship Between Ambient Air Pollution and Acute Ischemic Stroke: A Time-Stratified Case-Crossover Study in a City-State with Seasonal Exposure to the Southeast Asian Haze Problem. Ann. Emerg. Med. 2018, 72, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Mertz, K.J.; Arena, V.C.; Brink, L.L.; Xu, X.; Bi, Y.; Talbott, E.O. Estimation of Short-Term Effects of Air Pollution on Stroke Hospital Admissions in Wuhan, China. PLoS ONE 2013, 8, e61168. [Google Scholar] [CrossRef]
- Wei See, S.; Balasubramanian, R.; Sern Yang, T.; Karthikeyan, S. Assessing Exposure to Diesel Exhaust Particles: A Case Study. J. Toxicol. Environ. Health Part A 2006, 69, 1909–1925. [Google Scholar] [CrossRef]
- He, J.; Balasubramanian, R. Passive Sampling of Gaseous Persistent Organic Pollutants in The Atmosphere. Energy Procedia 2012, 16, 494–500. [Google Scholar] [CrossRef]
- Urbančok, D.; Payne, A.J.R.; Webster, R.D. Regional Transport, Source Apportionment and Health Impact of PM10 Bound Polycyclic Aromatic Hydrocarbons in Singapore’s Atmosphere. Environ. Pollut. 2017, 229, 984–993. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Shen, J.; Tan, S.T.; Ng, L.C.; Fang, M.; Jia, S. Effects of Architecture Structure on Volatile Organic Compound and Polycyclic Aromatic Hydrocarbon Diffusion in Singapore’s Integrated Transport Hubs. Chemosphere 2022, 287, 132067. [Google Scholar] [CrossRef]
- Kraus, J.; Trihamdani, A.R.; Kubota, T.; Lee, H.S.; Kawamura, K. Interaction of Singapore and Johor Bahru on Urban Climate during Monsoon Seasons. In Proceedings of the ICUC9—9th International Conference on Urban Climate Jointly with 12th Symposium on the Urban Environment, Toulouse, France, 20–24 July 2015; Available online: http://www.meteo.fr/icuc9/LongAbstracts/poster_10-8-8641497_a.pdf (accessed on 25 July 2022).
- Li, X.; Zhang, K.; Babovic, V. Projections of Future Climate Change in Singapore Based on a Multi-Site Multivariate Downscaling Approach. Water 2019, 11, 2300. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Zhang, X.; Bai, P.C.; Neroda, A.; Mishukov, V.F.; Zhang, L.L.; Hayakawa, K.; Nagao, S.; Tang, N. PM-Bound Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons in the Ambient Air of Vladivostok: Seasonal Variation, Sources, Health Risk Assessment and Long-Term Variability. Int. J. Environ. Res. Public Health 2022, 19, 2878. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, L.L.; Yang, L.; Zhou, Q.Y.; Zhang, X.; Xing, W.L.; Hayakawa, K.; Toriba, A.; Tang, N. Impact of COVID-19 Outbreak on the Long-Range Transport of Common Air Pollutants in KUWAMS. Chem. Pharm. Bull. 2021, 69, 237–245. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, L.L.; Chen, L.; Han, C.; Akutagawa, T.; Endo, O.; Yamauchi, M.; Neroda, A.; Toriba, A.; Tang, N. Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons in Five East Asian Cities: Seasonal Characteristics, Health Risks, and Yearly Variations. Environ. Pollut. 2021, 287, 117360. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, X.; Xing, W.L.; Zhou, Q.Y.; Zhang, L.L.; Wu, Q.; Zhou, Z.; Chen, R.; Toriba, A.; Hayakawa, K.; et al. Yearly Variation in Characteristics and Health Risk of Polycyclic Aromatic Hydrocarbons and Nitro-PAHs in Urban Shanghai from 2010–2018. J. Environ. Sci. 2021, 99, 72–79. [Google Scholar] [CrossRef]
- Lao, J.Y.; Xie, S.-Y.; Wu, C.-C.; Bao, L.-J.; Tao, S.; Zeng, E.Y. Importance of Dermal Absorption of Polycyclic Aromatic Hydrocarbons Derived from Barbecue Fumes. Environ. Sci. Technol. 2018, 52, 8330–8338. [Google Scholar] [CrossRef]
- Gungormus, E.; Tuncel, S.; Hakan Tecer, L.; Sofuoglu, S.C. Inhalation and Dermal Exposure to Atmospheric Polycyclic Aromatic Hydrocarbons and Associated Carcinogenic Risks in a Relatively Small City. Ecotoxicol. Environ. Saf. 2014, 108, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Zhang, H.; Zhang, X.; Xing, W.L.; Wang, Y.; Bai, P.C.; Zhang, L.L.; Hayakawa, K.; Toriba, A.; Tang, N. Exposure to Atmospheric Particulate Matter-Bound Polycyclic Aromatic Hydrocarbons and Their Health Effects: A Review. Int. J. Environ. Res. Public Health 2021, 18, 2177. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, L.; Zhang, H.; Xing, W.L.; Wang, Y.; Bai, P.C.; Zhang, L.L.; Hayakawa, K.; Toriba, A.; Wei, Y.; et al. Assessing Approaches of Human Inhalation Exposure to Polycyclic Aromatic Hydrocarbons: A Review. Int. J. Environ. Res. Public Health 2021, 18, 3124. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, G.; Baboli, Z.; Moslemnia, M.; Tobekhak, M.; Tahmasebi Birgani, Y.; Neisi, A.; Ghanemi, K.; Babaei, A.A.; Hashemzadeh, B.; Ahmadi Angali, K.; et al. Assessment of Incremental Lifetime Cancer Risks of Ambient Air PM10-Bound PAHs in Oil-Rich Cities of Iran. J. Environ. Health Sci. Eng. 2021, 19, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Qin, N.; Tuerxunbieke, A.; Wang, Q.; Chen, X.; Hou, R.; Xu, X.; Liu, Y.; Xu, D.; Tao, S.; Duan, X. Key Factors for Improving the Carcinogenic Risk Assessment of PAH Inhalation Exposure by Monte Carlo Simulation. Int. J. Environ. Res. Public Health 2021, 18, 11106. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, L.; Zhang, X.; Xing, W.L.; Wang, Y.; Bai, P.C.; Zhang, L.L.; Li, Y.; Hayakawa, K.; Toriba, A.; et al. Characteristics and Health Risks of Polycyclic Aromatic Hydrocarbons and Nitro-PAHs in Xinxiang, China in 2015 and 2017. Int. J. Environ. Res. Public Health 2021, 18, 3017. [Google Scholar] [CrossRef]
- EPA/600/R-11/052; U.S. EPA. 2010 U.S. Environmental Protection Agency (EPA) Decontamination Research and Development Conference. U.S. Environmental Protection Agency: Washington, DC, USA, 2011.
- Collins, J.F.; Brown, J.P.; Alexeeff, G.V.; Salmon, A.G. Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regul. Toxicol. Pharmacol. 1998, 28, 45–54. [Google Scholar] [CrossRef]
- Singapore Department of Statistics. Available online: https://www.singstat.gov.sg//media/files/standards_and_classifications/nsa.ashx (accessed on 21 July 2022).
- Panis, L.I.; De Geus, B.; Vandenbulcke, G.; Willems, H.; Degraeuwe, B.; Bleux, N.; Mishra, V.; Thomas, I.; Meeusen, R. Exposure to particulate matter in traffic: A comparison of cyclists and car passengers. Atmos. Environ. 2010, 44, 2263–2270. [Google Scholar] [CrossRef]
- Kalaiarasan, M.; Balasubramanian, R.; Cheong, K.W.D.; Tham, K.W. Particulate-Bound Polycyclic Aromatic Hydrocarbons in Naturally Ventilated Multi-Storey Residential Buildings of Singapore: Vertical Distribution and Potential Health Risks. Build. Environ. 2009, 44, 418–425. [Google Scholar] [CrossRef]
- Othman, M.; Latif, M.T. Air Pollution Impacts from COVID-19 Pandemic Control Strategies in Malaysia. J. Clean. Prod. 2021, 291, 125992. [Google Scholar] [CrossRef]
- Rendana, M.; Idris, W.M.R.; Rahim, S.A. Changes in Air Quality during and after Large-Scale Social Restriction Periods in Jakarta City, Indonesia. Acta Geophys. 2022, 2022, 1–9. [Google Scholar] [CrossRef]
- Nguyen, T.P.M.; Bui, T.H.; Nguyen, M.K.; Nguyen, T.H.; Vu, V.T.; Pham, H.L. Impact of Covid-19 Partial Lockdown on PM2.5, SO2, NO2, O3, and Trace Elements in PM2.5 in Hanoi, Vietnam. Environ. Sci. Pollut. Res. 2022, 29, 41875–41885. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Sato, K.; Tokuda, T.; Tatematsu, M.; Hama, H.; Suematsu, C.; Kameda, T.; Toriba, A.; Hayakawa, K. Factors Affecting Atmospheric 1-, 2-Nitropyrenes and 2-Nitrofluoranthene in Winter at Noto Peninsula, a Remote Background Site, Japan. Chemosphere 2014, 107, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, K.; Tang, N.; Nagato, E.; Toriba, A.; Lin, J.-M.; Zhao, L.; Zhou, Z.; Qing, W.; Yang, X.; Mishukov, V.; et al. Long-Term Trends in Urban Atmospheric Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons: China, Russia, and Korea from 1999 to 2014. Int. J. Environ. Res. Public Health 2020, 17, 431. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Khlystov, A.; Norford, L.K.; Tan, Z.-K.; Balasubramanian, R. Characterization of Traffic-Related Ambient Fine Particulate Matter (PM2.5) in an Asian City: Environmental and Health Implications. Atmos. Environ. 2017, 161, 132–143. [Google Scholar] [CrossRef]
- Quah, E.; Chia, W.-M.; Tan, T.-S. Economic Impact of 2015 Transboundary Haze on Singapore. J. Asian Econ. 2021, 75, 101329. [Google Scholar] [CrossRef]
- Chun, J.; Lye, L.H. Environmental Law in Singapore; Academy Publishing: Cambridge, MA, USA, 2019; pp. 118–120. [Google Scholar]
- National Environment Agency Switching Over to Higher Emission Standards to Reduce Harmful Vehicular Emissions. Available online: https://www.nea.gov.sg/our-services/pollution-control/air-pollution/air-pollution-regulations (accessed on 20 July 2022).
- Zhang, L.L.; Yang, L.; Zhang, H.; Zhou, Q.Y.; Zhang, X.; Xing, W.L.; Toriba, A.; Hayakawa, K.; Tang, N. Impact of the COVID-19 outbreak on the long-range transport of particulate PAHs in East Asia. Aerosol Air Qual. Res. 2020, 20, 2035–2046. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.L.; Yang, L.; Zhou, Q.Y.; Xing, W.L.; Toriba, A.; Hayakawa, K.; Wei, Y.J.; Tang, N. Characteristics of polycyclic aromatic hydrocarbons (PAHs) and common air pollutants at Wajima, a remote background site in Japan. Int. J. Environ. Res. Public Health 2020, 17, 957. [Google Scholar] [CrossRef]
- Yang, L.; Suzuki, G.; Zhang, L.L.; Zhou, Q.Y.; Zhang, X.; Xing, W.L.; Shima, M.; Yoda, Y.; Nakatsubo, R.; Hiraki, T.; et al. The characteristics of polycyclic aromatic hydrocarbons in different emission source areas in Shenyang, China. Int. J. Environ. Res. Public Health 2019, 16, 2817. [Google Scholar] [CrossRef]
- Xing, W.L.; Yang, L.; Zhang, H.; Zhang, X.; Wang, Y.; Bai, P.C.; Zhang, L.L.; Hayakawa, K.; Nagao, S.; Tang, N. Variations in Traffic-Related Polycyclic Aromatic Hydrocarbons in PM2.5 in Kanazawa, Japan, after the Implementation of a New Vehicle Emission Regulation. J. Environ. Sci. 2022, 121, 38–47. [Google Scholar] [CrossRef]
- Ishii, S.; Hisamatsu, Y.; Inazu, K.; Kobayashi, T.; Aika, K. Mutagenic Nitrated Benzo[a]Pyrene Derivatives in the Reaction Product of Benzo[a]Pyrene in NO2–Air in the Presence of O3 or under Photoirradiation. Chemosphere 2000, 41, 1809–1819. [Google Scholar] [CrossRef]
- Oliveira, C.; Martins, N.; Tavares, J.; Pio, C.; Cerqueira, M.; Matos, M.; Silva, H.; Oliveira, C.; Camões, F. Size Distribution of Polycyclic Aromatic Hydrocarbons in a Roadway Tunnel in Lisbon, Portugal. Chemosphere 2011, 83, 1588–1596. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N.; Sakata, M. Effect of Photooxidation on. DELTA.13C of Benzo(a)Pyrene and Benzo(e)Pyrene in the Atmosphere. Geochem. J. 2002, 36, 235–245. [Google Scholar] [CrossRef]
- Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Frattoni, M.; Zacchei, P.; Miguel, A.H.; de Castro Vasconcellos, P. Formation and transport of 2-nitrofluoranthene and 2-nitropyrene of photochemical origin in the troposphere. J. Geophys. Res. Atmos. 1996, 101, 19567–19581. [Google Scholar] [CrossRef]
- Araki, Y.; Tang, N.; Ohno, M.; Kameda, T.; Toriba, A.; Hayakawa, K. Analysis of Atmospheric Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons in Gas/Particle Phases Separately Collected by a High-Volume Air Sampler Equipped with a Column Packed with XAD-4 Resin. J. Health Sci. 2009, 55, 77–85. [Google Scholar] [CrossRef]
- Bamford, H.; Baker, J.E. Nitro-polycyclic aromatic hydrocarbon concentrations and sources in urban and suburban atmospheres of the Mid-Atlantic region. Atmos. Environ. 2003, 37, 2077–2091. [Google Scholar] [CrossRef]
- Lammel, G.; Mulder, M.D.; Shahpoury, P.; Kukučka, P.; Lišková, H.; Přibylová, P.; Prokeš, R.; Wotawa, G. Nitro-Polycyclic Aromatic Hydrocarbons—Gas–Particle Partitioning, Mass Size Distribution, and Formation along Transport in Marine and Continental Background Air. Atmos. Chem. Phys. 2017, 17, 6257–6270. [Google Scholar] [CrossRef]
- He, J.; Zielinska, B.; Balasubramanian, R. Composition of Semi-Volatile Organic Compounds in the Urban Atmosphere of Singapore: Influence of Biomass Burning. Atmos. Chem. Phys. 2010, 10, 11401–11413. [Google Scholar] [CrossRef]
- He, J.; Balasubramanian, R. Semi-Volatile Organic Compounds (SVOCs) in Ambient Air and Rainwater in a Tropical Environment: Concentrations and Temporal and Seasonal Trends. Chemosphere 2010, 78, 742–751. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, P.; Li, J.; Mendola, P.; Sherman, S.; Ying, Q. Estimating Population Exposure to Ambient Polycyclic Aromatic Hydrocarbon in the United States-Part II: Source Apportionment and Cancer Risk Assessment. Environ. Int. 2016, 97, 163–170. [Google Scholar] [CrossRef]
- Kelly, J.M.; Ivatt, P.D.; Evans, M.J.; Kroll, J.H.; Hrdina, A.I.H.; Kohale, I.N.; White, F.M.; Engelward, B.P.; Selin, N.E. Global Cancer Risk from Unregulated Polycyclic Aromatic Hydrocarbons. Geohealth 2021, 5, e2021GH000401. [Google Scholar] [CrossRef]
- Nisbet, I.C.; LaGoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- Delistraty, D. Toxic equivalency factor approach for risk assessment of polycyclic aromatic hydrocarbons. Toxicol. Environ. Chem. 1997, 64, 81–108. [Google Scholar] [CrossRef]
- Polachova, A.; Gramblicka, T.; Parizek, O.; Sram, R.J.; Stupak, M.; Hajslova, J.; Pulkrabova, J. Estimation of Human Exposure to Polycyclic Aromatic Hydrocarbons (PAHs) Based on the Dietary and Outdoor Atmospheric Monitoring in the Czech Republic. Environ. Res. 2020, 182, 108977. [Google Scholar] [CrossRef]
- Zhang, L.L.; Morisaki, H.; Wei, Y.J.; Li, Z.G.; Yang, L.; Zhou, Q.Y.; Zhang, X.; Xing, W.L.; Hu, M.; Shima, M.; et al. Characteristics of air pollutants inside and outside a primary school classroom in Beijing and respiratory health impact on children. Environ. Pollut. 2019, 255, 113147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, H.; Wang, Y.; Bai, P.B.; Zhang, L.L.; Wei, Y.; Tang, N. Personal PM2.5-bound PAH exposure and lung function in healthy office workers: A pilot study in Beijing and Baoding, China. J. Environ. Sci. 2022, in press. [Google Scholar] [CrossRef]
- Wislocki, P.G.; Bagan, E.S.; Lu, A.Y.; Dooley, K.L.; Fu, P.P.; Han-Hsu, H.; Beland, F.A.; Kadlubar, F.F. Tumorigenicity of nitrated derivatives of pyrene, benz[a]anthracene, chrysene and benzo[a]pyrene in the newborn mouse assay. Carcinogenesis 1986, 7, 1317–1322. [Google Scholar] [CrossRef] [PubMed]
Compound | PNE | NE | PSW | SW |
---|---|---|---|---|
PM2.5 (μg/m3) | 32.8 ± 7.34 | 11.4 ± 5.16 | 8.49 ± 3.21 | 19.8 ± 6.52 |
FR | 0.04 ± 0.01 | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.01 |
Pyr | 0.06 ± 0.02 | 0.04 ± 0.02 | 0.04 ± 0.01 | 0.06 ± 0.03 |
BaA | 0.04 ± 0.01 | 0.02 ± 0.02 | 0.02 ± 0.01 | 0.04 ± 0.02 |
Chr | 0.08 ± 0.03 | 0.05 ± 0.04 | 0.04 ± 0.01 | 0.07 ± 0.03 |
BbF | 0.08 ± 0.02 | 0.07 ± 0.04 | 0.05 ± 0.02 | 0.07 ± 0.03 |
BkF | 0.04 ± 0.01 | 0.03 ± 0.02 | 0.02 ± 0.01 | 0.03 ± 0.01 |
BaP | 0.06 ± 0.01 | 0.04 ± 0.03 | 0.04 ± 0.01 | 0.06 ± 0.02 |
BeP | 0.09 ± 0.02 | 0.06 ± 0.04 | 0.05 ± 0.01 | 0.08 ± 0.03 |
BgPe | 0.18 ± 0.04 | 0.17 ± 0.11 | 0.12 ± 0.03 | 0.15 ± 0.06 |
IDP | 0.10 ± 0.03 | 0.09 ± 0.06 | 0.06 ± 0.02 | 0.07 ± 0.03 |
ΣPAHs (ng/m3) | 0.77 ± 0.12 | 0.61 ± 0.37 | 0.47 ± 0.12 | 0.65 ± 0.25 |
2-NFR | 4.22 ± 2.56 | 7.03 ± 6.36 | 6.43 ± 8.94 | 6.19 ± 4.59 |
1-NP | 3.34 ± 1.36 | 2.00 ± 2.36 | 1.86 ± 0.85 | 3.44 ± 2.63 |
2-NP | 0.11 ± 0.07 | 1.32 ± 1.68 | 0.60 ± 0.44 | 0.95 ± 0.66 |
6-NBaP | 4.27 ± 1.74 | 2.17 ± 2.66 | 1.41 ± 0.54 | 4.93 ± 2.66 |
ΣNPAHs (pg/m3) | 11.9 ± 4.06 | 12.5 ± 12.5 | 10.3 ± 10.0 | 15.5 ± 9.27 |
NE | PNE | PSW | SW | ||
---|---|---|---|---|---|
PAHs (pg/m3) | FR | 0.01–0.06 | 0.03–0.05 | 0.02–0.03 | 0.01–0.07 |
Pyr | 0.02–0.12 | 0.04–0.08 | 0.03–0.05 | 0.03–0.12 | |
BaA | 0.48–10.0 | 2.14–5.66 | 1.06–3.01 | 1.07–7.60 | |
Chr | 0.11–1.88 | 0.43–1.09 | 0.25–0.54 | 0.20–1.34 | |
BbF | 1.05–19.0 | 5.11–10.4 | 3.27–9.11 | 3.18–13.6 | |
BkF | 0.73–8.86 | 2.58–5.09 | 1.48–3.77 | 1.65–5.83 | |
BaP | 8.53–196 | 48.1–75.3 | 20.6–57.4 | 27.1–105 | |
BeP | 0.03–0.41 | 0.13–0.21 | 0.07–0.13 | 0.07–0.29 | |
BgPe | 0.41–4.75 | 1.13–2.26 | 0.76–1.85 | 0.71–3.04 | |
IDP | 2.25–25.1 | 4.64–13.4 | 3.25–9.47 | 3.68–14.3 | |
ΣPAHs | 15.1–263 | 71.1–108 | 30.8–78.2 | 38.5–148 | |
NPAHs (pg/m3) | 2-NFR | 0.02–0.27 | 0.02–0.07 | 0.01–0.22 | 0.01–0.17 |
1-NP | 0.02–1.03 | 0.15–0.53 | 0.11–0.34 | 0.07–0.94 | |
ΣNPAHs | 0.02–1.31 | 0.17–0.53 | 0.12–0.49 | 0.08–0.99 | |
Total | (ng/m3) | 0.01–0.26 | 0.07–0.11 | 0.03–0.08 | 0.04–0.15 |
PSW | PNE | NE | SW | |||||
---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | Male | Female | |
Ingestion | 1.44 × 10−7 | 1.65 × 10−7 | 6.92 × 10−7 | 7.92 × 10−7 | 2.55 × 10−7 | 2.91 × 10−7 | 3.07 × 10−7 | 3.51 × 10−7 |
Inhalation | 1.05 × 10−10 | 1.01 × 10−10 | 1.72 × 10−10 | 1.65 × 10−10 | 1.24 × 10−10 | 1.19 × 10−10 | 1.50 × 10−10 | 1.44 × 10−10 |
Dermal | 3.18 × 10−8 | 3.64 × 10−8 | 5.19 × 10−8 | 5.94 × 10−8 | 3.75 × 10−8 | 4.29 × 10−8 | 4.52 × 10−8 | 5.17 × 10−8 |
SUM | 1.76 × 10−7 | 2.01 × 10−7 | 7.44 × 10−7 | 8.52 × 10−7 | 2.92 × 10−7 | 3.34 × 10−7 | 3.52 × 10−7 | 4.03 × 10−7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, H.; Zhang, X.; Bai, P.; Zhang, L.; Huang, S.J.; Pointing, S.B.; Nagao, S.; Chen, B.; Toriba, A.; et al. Abundance, Source Apportionment and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons in PM2.5 in the Urban Atmosphere of Singapore. Atmosphere 2022, 13, 1420. https://doi.org/10.3390/atmos13091420
Wang Y, Zhang H, Zhang X, Bai P, Zhang L, Huang SJ, Pointing SB, Nagao S, Chen B, Toriba A, et al. Abundance, Source Apportionment and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons in PM2.5 in the Urban Atmosphere of Singapore. Atmosphere. 2022; 13(9):1420. https://doi.org/10.3390/atmos13091420
Chicago/Turabian StyleWang, Yan, Hao Zhang, Xuan Zhang, Pengchu Bai, Lulu Zhang, Sim Joo Huang, Stephen Brian Pointing, Seiya Nagao, Bin Chen, Akira Toriba, and et al. 2022. "Abundance, Source Apportionment and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons in PM2.5 in the Urban Atmosphere of Singapore" Atmosphere 13, no. 9: 1420. https://doi.org/10.3390/atmos13091420
APA StyleWang, Y., Zhang, H., Zhang, X., Bai, P., Zhang, L., Huang, S. J., Pointing, S. B., Nagao, S., Chen, B., Toriba, A., & Tang, N. (2022). Abundance, Source Apportionment and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons in PM2.5 in the Urban Atmosphere of Singapore. Atmosphere, 13(9), 1420. https://doi.org/10.3390/atmos13091420